L]
e el =}

b b e b e e e D B e b b 00 b e e N O 01 W N

o .8 o o o o e 0o Oe o

‘e

—

N
L]

1

1.11.2

e o o o
e o o

e e e e
NN NSNNNNN
e o o o e o s o o Y

e o

B) e o & o o
)
N OUIRWRNH ONOUIEeWN -

e o o o

HEHEHERMEE OW 0000 0 Mo
DN W

[eNolelololololoe)

1.10.16.1
1.10.16.2
1.10.16.3
1.10.16.4
1.10.16.5
1.10.16.6
.11

1.11.1

Table of Contents

PART ONE - THE BASIC'MACHINE
Introduction

Bits ’ :
Effective Address Calculation
Effective Address Examples
AOBJN Loops

Programming Environment

Assembler/Linker

Automatic Generation Of Links
GAP ’

Who Inserts Link Words
Binding The Mode

Literals

Linker Optimization

Symbol Names

Indirect Words

Rules For Op-code A551gnment
Duplicate Op- codes _
New Names

I/0 Instructlons,

EOP

ACOP

Priveledged Instructions

Stack Pointers

Type O

Type 1

New Instructions

MOVEIA - MOVE Immediate And Always Skip
PUSHI - PUSH Immediate
B{L,R}{Z,0,N,C}{N,E, -,
SSTEP - Single STEP

EA - Effective Address

Al

BUS{-,I,M,B} - Backward SUBtract.
IVID{- I M B} - Backward Integer DIvide.
IDV[I] .
UMAP User MAP
XJSR - EXtended Jump To Subroutlne
XRET - EXtended RETurn From Subroutine
XDIS - DISMISS Interrupt ’
XPCW - Exchange PCW
BBLT - Backward BLT

EOP

SAV - SAvVe AC's

RST - ReSTore AC's

PSAV - Popping SAVe

SAVE - SAVE AC's

REST - RESTore AC's

PSAVE - Popping SAVE
Modifications To Existing Instructions
SETOM

SETZM

1.11.3 BLT

1.11.4 POPJ

1.11.5 ADJSP

1.11.6 Doubleword Integers
1.11.7 JSR, JSP, PUSHJ, And POPJ
1.11.8 Jsa

1.11.9 JRA

1.11.10 SETZ

1.11.11 SETO

1.11.12 - XCT

1.11.13 MAP

1.11.14 - JUMPA

1.11.15 JSR

©1.11.16 SETCMM

1.11.17 SETCA

1.11.18 JFCL :
1.11.19 T{R,L,D,S}{N,Z,0, c}{ ,A,N,E}
12 ~Byte P01nters :
1.12.1 Format

1.12.2 Byte Instructions

1.12.2.1 {ILDB,IDPB,IBP,LDB,DPB}{-,A,W,L}

1.12.2.2 DPBI - De9051t Byte Immedlate

1.12.2.3 LDBX - LoaD Byte EXtended

1.12.2.4 B{A0S,sos}{-,L,E,LE,A,GE,N,G}

1.12.3 ADJBP »
1.12.3.1 DECBP - DECrement Byte Pointer
1.12.3.2 U{LDB,DPB}

1.12.3.3 PHY{LDB,DPB}

.13 - Floating Point

1.13.1 Single

1.13.2 Double

1.13.3 Triple

1.13.4 Obsolete

1.13.5 Immediate

1.13.6 Op-code Assignment
1.13.7 Complex Numbers

1.13.8 New Instructions
1.13.8.1 FMOVEI - Floating MOVE Immediate
1.13.8.2 {T,Q,H}MOVE[M]

1.13.8.3 {p,T,Q,H}SkP{-,L,E,LE,A,GE,N,G}
1.13.8.4 {D,T,Q,H}SETZ[M] o
1.13.8.5 {-,D,T}[CINEG

1.13.8.5.1 NEG

1.13.8.5.2 DNEG

1.13.8.5.3 TNEG

1.13.8.5.4 CNEG

1.13.8.5.5 DCNEG
©1.13.8.5.6 TCNEG

- 1.13.8.6 Conversions
1.14 EXTEND

1.14.1 SMOVE - String Move
1.14.2 BSMOVE - Backward String MOVE

0 1.14.3 CONCAT -~ Concatenate Two Strings

1.14.4 - SRCH{E,N} - Search A String

'1.14.5 SPAT{E,N} Search A String

[
[e)}

= b
- . L]
~NoOOre
OO
e g K -

.
e

a E‘
i
[

H".f:—él 3 Al
e g T trm be
N -

-

L
. L) .
el

s o OO~

DN O
. . L] . L] .

AW

WWWWwWwwwo
e o o e e & e
NoOO i W

D R R O
HFHWOWONOOEWN

¢« o o o

4.18

4.20

e

(SR e TR
1 :

R e

scomMpP{-,L,E,LE,A,GE,N,G} - String COMPare 77

Conceal

FLAGS

TRAPS

Trap Types

JOBDAT

Page Maps

UPMP - User Page Map Page
EPMP - Exec Page Map Page

PART II: THE VECTOR OPTION

VMOVE - MOVE A Vector
v{MUL,DIV,ADD,SUB} {2, 3}
v{F,DF,TF,C,DC,TC} {AD,SB,MP,DV}{2,3}
v{ADD,MUL, {F,DF,TF,C,DC,TC} {AD,MP}}
{-,D,T}POLY

{-,F,DF,TF,C,DC,TC}MAT

PART III: STRING ARITHMETIC
Unsigned Arithemetic
S{ADD,SUB,MUL,DIV}{2,3}

ASMOVE - Arithmetic String MOVE
CNS - Convert Number System
asc{-,L,E,LE,A,GE,N,G}

CTB - Convert To Binary

CFB - Convert From Binary

PART IV: THE STACK OPTICN
K{ADD,SUB,BUS,MUL,DIV,VID,MOD,DOM},
K{F,DF,TF,C,DC,TC}{AD,SB,BS,MP,DV,VD}
{D,T,Q,H} {PUSH,POP}

FPUSHI - Floating PUSH Immediate
P{ADD, SUB,MUL,DIV}(I]
PF{AD,SB,MP,DV}[1I]

PADDM - Popping ADD To Memory

PFADM - Popping Floating Add To Memory
PUSHZ '

PLDB - Popping LoaD Byte

PDPB - Popping DePosit Byte

PMOVEM - Popping MOVE To. Memory

PUPJ

K{—,D,T}SKP{—,L,E,LE,A,GE,N,G}

Stack Boolean

kK{-,D,T,C,DC,TC}NEG

Stack Conversions

SWAP

KILL

78
79
82
82
83
84
84
85

86
87
91
91
94
95

96

100
101
102
107
108
109
110
110

111
112
113
114
115
116
117
118
118

118

119
119
120
121
122
123
124
125
126
127

128

APPENDIXS 129,

Effective Address Calculation 129
Statistics subod39
Alternatives 134
Index . : S
OPCODE list by number: i g

OPCODE list by name

1.0 PART ONE - THE BASIC MACHINE

1.1 I%?%oduction
This is a proposal for a new machine.

The machine is quite similar to a PDP10. It is assumed
that the reader is intimately familiar with the PDP10. This
document shall only describe the differences. Anything
which 1is not covered in this document can be assumed to
function in the same manner as a PDP10.

Indeed, the machine is very similar to a PDP10. There
are, however, some major differences. We do not expect that
there will be a single program that will run on the new
machine without at least some modification. PDP10
compatibility was not our primary goal. Instead, our goal
was to produce the best machine possible. Compatibility is
a good idea only when it does not sacrifice quality.

We do not anticipate that programs will run without
modification, Some programs will require more modification
than others. Many will require a complete rewrite. The
operating system 1itself falls into this last category.
Neither TOPS10 nor TOPS20 can be modified to run on the new
machine. The new machine will run an operating system of a
totally new design. It is not our purpose here to design
the operating system, just the machine.

We will define the instruction set, but only that
portion that applies to user mode. We have tried to avoid
defining those things which are unique to exec mode. We
have not defined the format of the I/0 registers nor the
page maps. We do, however, cover a few aspects of exec
(e.qg. op-codes 31-37). We have tried to keep these to a
minimum.

The machine comes in four flavors: the basic machine
and three options (the vector option, the stack option, and
the arithmetic string option). o '

The following are registered trademarks of the Digital
Equipment Corporation: PDP, DDT, VAX.

Page 2

1.2 Bits

This is a 32 bit machine not 36. The bitskare.numbééed
from left to right as follows: '

, Oidou s
10 010 0 0!'0 0 O!1 1 1t1 1 l'l 1 212 2 212 2 212 3 3'3 3313 3
10112 3 4'5 6 710 1 213 4 516 7 0'1 2 314 5 6!7 0 1t2 3 415 6
et e R A e e e st e A e e e e R e R ikt B Dt Bl S Tl
[R O I A D e e s e R A A R A A R A A A A A
S e s T S e e st S S e s s T Tt et
(3| ! ! ! ! ! ! ! ! !
!
LH ! RH

Note that the bits are divided into groups of three.
This is an octal machine not Hex.

Note that the bits are numbered in octal not decimal.
This will eliminate a long standing source of confusion. No
longer will people be confused by the default radix of the
POINT pseudo op (nor the B shifts). Why should the radix be
any different than that used anywhere else?

A 32 bit word is easily divided into 4 bytes of 8 Dbits
each. This is not, however, a byte oriented machine. It is
a word oriented machine. '

Although the word size is 32, the address size is 31.
The machine supports a 31 bit virtual address. The address
specifies a word number not a byte number. - o

1.3

Page 3

Effecti?e Address Calculation

Referuto the following diagrams:

Instruction format:

iy
M

Effective address calculation proceeds as follows:

1. If bit 15 (the Mode bit) is zero, then bits 16-37
give the effective address. This quantity is not

sign extended, bits 0-15 of E are set to zero.

2. If bit 15 is one, then bits 16-37 are interpreted
as I, X, and Y. The Y field is sign extended and
added to the «contents of the 1index register
specified by X. The index register is taken as a

full 32 bit quantity (the LH is not ignored).

that registers 0 and 17 cannot be used as index

registers. X=0 indicates that indexing is not

'0 RS 111 11111 3!
10 e ' 011 41516 71!
e t—————— e m e — e ——————— +
! OPCODE ! AC 10! Z !
e — fom————— Fomm e — - — +
! 9 bits 14 bits ! ! 18 bits !
'0 111 1'1!11t1 212 3!
10 0!1 4151617 213 7!
e t—————— -t mm o +
! OPCODE ! AC 11!'I! X ! Y !
e t—————— e i o e +
! 9 bits 14 bits ! ! !4 bits ! 13 bits !
Indirect Word:

100 31!
1011 71
e e +
10! , Z !
b e ——————— e — e —
1! ' 31 bits !
101010 0!0 11 3!
101112 . 516 112 7!
ettt t—————— e —— +
11t X1 ! X2 ! Y !
t—F—tmmm - tom———— e e +
VoLt ! ! 22 bits !

Page 4

take place. X=17 indicates that the PC should be
used as an index register (this 1is known as "PC
relative addressing"). :

Programmers of the VAX will potentially
misconstrue the above statement. We do not mean to
imply that the PC is addressable as register 17.
Register 17 and the PC are two totally independent
quantities. The programmer is free to use register
17 as a general purpose register. He may store any
value that he wishes in register 17. He may not,
however, wuse register 17 for the purposes of
indexing. If the programmer puts a 17 1in the X
field, he will not get the value of register 17.
He will, instead, get the value of the PC. In all
other contexts register 17 will functions normally.
Register 17 is much 1like register O: It is a
general purpose register but cannot be used for
indexing. ’

Perhaps "PC relative addressing" 1is a poor
choice of words. The addressing 1isn't always
relative to the PC. It's sometimes relative to
other quantities. X=17 merely 1indicates that
relative addressing is to take place. The base of
relativity is taken from context (but its usually
the PC). During an XCT instruction, for example,
X=17 indicates that the addressing is relative to -
the location of the instruction being executed and
not relative to the location of the XCT itself.

Those of - you who doubt the usefulness of
position independent addressing should refer to
section 1.6 (Programming Environment). ‘

If bit 16 (The I bit) 1is one, then indirect
addressing takes place. An indirect word is
fetched from the word specified by X and Y. If bit
0 (the Mode bit) in the indirect word is zero, then
bits 1-37 give the effective address. This field
is not sign extended. 31 bits 1is the largest
virtual address you can have.

If bit 0 of the indirect word 1is one, then
bits 1-37 are interpreted as I, X1, X2, and Y. The
Y field is sign extended.

Note that there are two index registers. This
is convenient for accessing two dimensional arrays.
Note, however, that a two dimensional array cannot
be accessed in position independent code.- One of
the two index registers will be set to 17.

Page 5

Note that X=17 indicates that addressing is
relative to the location that the indirect word was
fetched from and not relative to the PC.

[

In general, X=17 indicates that the MA
register should be added to the effective address.
The MA register contains the address of the last
location fetched from memory. In most cases MA
will contain a copy of the PC. It's possible,
however, that the MA will contain: 1). The
address of an instruction being XCT'ed 2). The
address of an indirect word 3). The address of a
byte pointer

Without using an indirect word, the effective address
can specify any quantity from -2**12 up to +2**18-1. By
using an indirect word, the effective address can specify
any quantity from -2**21 up to +2**31-1.

Effective address calculation, as on the PDP10, ignores
all overflows.

At this point the diligent reader may wish to turn to
appendix 5.2. This section contains a statistical analysis
of the effective address calculation. How often is the mode
bit =zero? How often 1is it one? How often is the I bit
used? How often is X used? ' :

The diligent reader may also wish to study appendix 5.1
. This section documents the algorithm used b the
microcode to compute the effective address.

1.4 Effective Address Examples

It is important to stress that the effective address is
a full 32 bit quantity. Perhaps some examples will clarify:

1. The instruction MOVEI 1,-1 causes the assembler to
generate the instruction 10043017777, This
instruction sets all bits in AC 1.

2. The instruction ADDI 1,-47 generates the
instruction 13443017731. It is equivalent to
SUBI 1,+47 .

3. The instruction CAIE 1,-2 1is not equivalent to
CAIE 1,777776 . The former generates 14103017776 .
The latter generates 14102777776 . The former
skips if ACl is 37777777776 . The latter skips if
ACl is 00000777776.

Page 6

4, The instruction TRO 1,-1 1is not equivalent to

TRO 1,177777 (see section 1,11.19). The latter
sets the RH to ones. The former sets both halves
to ones. Pyt

5. MOVEI T1,(T2) is not equiwvalent to MOVEI Tl,@T2f .
They differ if the sign bit of T2 is on. '

1.5 AOBJN Loops

Note what happens when a memory reference is attempted
and bit 0 of the effective address is one. The machine only
supports 31 bit virtual addresses. Therefore bit 0 should
always be zero. 1If, however, bit 0 is one, then the entire
LH of the address is 1ignored. The result is a 16 bit
address. : -

This feature will enable some of the older PDP1l0
programs to run without modification. Study the following
example:

HRLZI T1,-TABLEN
SETZ T2,

LOOP: ADD T2,TAB(T1)
AOBJN T1,LOOP

This is, at best, a kludge. It does, however, allow
the program to run provided that the program is loaded at an
address below 2**16.

Note that the process of truncating the LH does not
take place at the time of effective address calculation.
Instead it takes place at the time the actual reference is
made (i.e. at the time of wvirtual to physical address
translation). Example: The instruction MOVEI Tl1l,-1 sets Tl
to 37777777777 <(not 177777). The instruction MOVE T1,-1
sets Tl to the contents of location 177777 (not location
37777777777) . ' ‘ :

Page 7

1.6 Programming Environment

One cannot understand the machine fully without knowing
the programming environment under which the machine is
intended to run. Key in this environment is the usage of
multiple sharable segments. :

Consider, for a moment, the total amount of memory used
by SCAN and WILD. The majority of all TOPS10 utilities have
copies of SCAN and WILD linked into. them. The amount of
space used is enormous.

Clearly, there would be a tremendous savings 1if a
single copy of SCAN and WILD could be shared amongst the
utilities. This requires, however, that a given process be
allowed to attach to more than one sharable segment. For
example, a wuser running DIRECT might attach to four
different segments: SCAN, WILD, HELPER, and DIRECT itself.
Meanwhile other programs might attach to FOROTS, LIBOL,
DBMS, SORT, the scientific subroutine library, GLXLIB, and a
host of user written subroutines.

The question quickly becomes one of virtual address
space. At what address will SCAN exist? Where will WILD
be?

Hypothetically lets assign an address of 500000 to
SCAN, Lets put WILD at 512000, HELPER at 521000, SORT at
523000, etc.

Will there be enough virtual address space to fit all
the possible subroutines that anyone would ever want to
attach to? Clearly the answer is "No". Regardless of how
large the address space, its only a matter of time before
the user base exceeds it.

To solve the problem, then, we must take a radically
different tact. The solution we have chosen is a simple
one: For each of the users sharing a particular segment,
the segment will ‘exist at a different virtual address.

It isn't the user who picks the virtual address, it's
the monitor. The user, for example, might tell the monitor
merely that he wishes to attach to SCAN. The monitor would
pick the next available address and report this to the user.

The ramifications of this approach are great.
Firstmost, each of the segments must be written to be
position independent. This has had a profound influence on
‘the design of the instruction set.

Lets digress now for a moment and discuss what we .mean
by the word "segment". Our usage is quite different than
the TOPS10 concept of a HISEG. Our concept is a superset of
the HISEG concept.

Page 8

Each segment shall be divided into two regions:

1). The Code Region - This region consists of zero or more
pages. The region is reentrant: it's both write locked and
shareable. As the name implys, the region is typically used
to store code. . ; '

2). The Data Region - This region consists of zero or more
pages. The region is write enabled. It is not shareable.
The data region is used to store local variables.

Note that the code region is analagous to the TOPS10 concept
of a HISEG. The data region is analagous to the concept of
a LOWSEG. The addressing, however, 1is quite different.
TOPS10 seperates the HISEG and the LOWSEG by a wide gap in
addresses. The HISEG is loaded at 400000 and the LOWSEG 1is
loaded at 0. On the new machine, however, the code region
is immediately adjacent to the data region.

Example: A segment like SCAN would take about 8 pages.
These would be 8 consecutive pages. Two of the pages would
be data pages. The other six pages would be code pages.

SCAN contains a call to HELPER. The HELPER segment,
however, 1is position independent. The address that HELPER
is loaded at will not be known in advance. The address
cannot be hard coded into SCAN.EXE . We therefore reserve
an extra word in SCAN's data region. The monitor will store
the address of HELPER 1in this location as soon as the
information is known. SCAN will use this location as an
indirect word whenever it wishes to call HELPER. ‘

Note that the indirect word must be in the data region
and not the «code region. The address stored at this
location is potentically different for each user of SCAN and
HELPER. S

How does the monitor know where to store the address of
HELPER? It finds this information in the EXE directory of
the SCAN segment, It is one of two new things that we've
added to the directory. We've added two lists: the INTERN
list and the EXTERN list.

The INTERN list is a list of all the entry points to
the segment. Each item in the list contains two pieces of
information: 1). The symbolic name of the entry point, and
2). The offset within the segment of the entry point.

The EXTERN list is a list of all the external
subroutines called by this segment. Each item in the list
contains three pieces of information: 1). The symbolic
name of the subroutine, 2). The offset within this segment
where the address of the subroutine is to be stored, and 3).
The filespec of the segment where the subroutine can be
found.

Page 9

To continue our example, we see that DIRECT has two
items in its EXTERN list: SCAN and WILD. SCAN, in turn,
has one item in its EXTERN list: HELPER. Both HELPER and
WILD are "leaf nodes" (they don't call anything). The
monitor will load all four segments when the user says "RUN
DIRECT". The wuser of DIRECT need not be aware of which
segments the program calls.

One might suspect that this process will make the RUN
command quite slow. In actuallity, however, the difference
will not be noticeable. The frequently used segments will
all tend to stay in core. The monitor need not load them,
it merely attaches to them (at least for the code region).
The data region, however, might need to be loaded from the
EXE file upon each invocation. But this can be avoided if
the data region is "null" (i.e. it is known that the data
region initially contains nothing but zeros). Even if
non-null we can still attach to an existing copy of the data
region. We merely mark the pages as "copy on write".

Disclaimer: Our usage of SCAN and WILD should be taken
merely as an example. We do not mean to imply that the new
system will support anything remotely similar to present day
SCAN or WILD. '

Page 10

1.7 Assembler/Linker

Programming on this machine can be made significantly
easier if we assume several changes in the assembler/linker.

1.7.1 Automatic Generation Of Links - ‘

In position independent code, if the location
referenced by the effective address of an instruction is not
within plus or minus 2**12 of the PC then an indirect word
must be wused. The indirect word must be located within
2**12 of the PC but the location pointed to by the indirect
word can be anywhere within 2**21.

These indirect words will not be coded manually. The
assembler and/or linker will insert them automatically
whenever it sees that the target isn't within 2%**12, The
programmer need not even be aware that this is taking place.
He need not be aware of the distance to the target. The
programmer, for example, might code "JRST FOO##". If need
be, the assembler/linker will automatically convert this to
"JRST @[FOO##1".

Terminology: We shall use the term "link word” to
refer to an indirect word which was inserted automattically.
This will distinguish it from an indirect word which was
deliberately coded. '

1.7.2 GAP -

The assembler will have a new pseudo op: GAP. It will
"be wused to indicate an unreachable position in the code.

I.E. A position where the assembler is free to insert 1link
words (if need be). Example: ;

SKIPE Tl ; IF THEN ELSE

JRST FOO

JRST BAR ' '

GAP ; UNREACHABLE CODE, INSERT LINKS HERE
FOO: e o o ’

BAR:

Note that it is not necessary to insert GAPs unless the
module is bigger than 2**12, For small modules the link
words can all be 1nserted at the end.

One way of thinking of it is that GAP merely subdivides
a PSECT into several smaller PSECTS. Each of the resulting
PSECTs is smaller that 2**12, Thus there's always room to

Page 11

insert the link words at the end of the PSECT.

The assembler will support two types of PSECTS: code
PSECTS and data PSECTS (see section 1.6 p8). Code PSECTS
are those which are 1loaded 1into the code region of a
segment. Data PSECTS are those which are loaded into the
data region. The GAP pseudo op will be supported for both
types of PSECTS.

1.7.3 Who Inserts Link Words -

Some of the 1link words can be inserted by the
assembler. Others, however, must be done by the linker.
With a global symbol, for example, it 1is not known until
link time whether the symbol is within 2**12., It is not
known whether a link word will be needed.

Despite the fact that the assembler is able to do some
of the 1links, it is our recommendation that the assembler
not attempt this. We recommend that link words be inserted
only by the linker. This will consolidate the code in a
single place. :

1.7.4 Binding The Mode -

One unusual property of this machine is its ambiguity.
For a given assembly language statement, the effective
address can often be coded in several different ways. Which
one should be generated?

To decide this, one must first answer two questions:
1). Where 1is the code to be loaded? and 2). Should
position independent addressing be used?

We propose that these issues should not be resolved
until 1link time. The assembler should not attempt to
resolve them. 1In fact the assembler should not generate any
code for bits 15-37 of any instruction (at least not in
those cases where the effective address is relocatable).
Instead the assembler will place two pieces of information
into the REL file: The PSECT number being referenced, and
the offset into the PSECT. Its ultimately the linker who
chooses the addressing mode. Its the linker who generates
the code for bits 15-37 of the instruction. The linker will
have a variety of switches to control the decision making
process.

Page 12

1.7.5 Literals -

Consider the following example: There exists a module
which 1is slightly larger than 2**12. In this module there
is an integer literal which is referenced ten times. Nine
of the references are within 2%**12 of the literal pool.
These nine references do not require link words. The tenth,
however, might conceivably wuse a link word (which is
inserted at a GAP). But that would be a silly way to code
it. Instead of 1inserting a link word we should insert a
second copy of the literal. The resulting code would take
the same amount of space but would run much faster.

The plan requires, however, that it be the linker who
resolves the literals. The assembler can no longer fulfill
this function as the assembler doesn't know which references
require link words.

The assembler must define, in the REL file, the wvalue
of each 1literal. Its up to the linker to decide where to
place each of the literals. It doesn't necessarily place
them all 1in a single pool. Moreover, many of the literals
will be duplicated in several pools.

This plan has the added advantage that literals can be
shared across modules. ,

1.7.6 Linker Optimization -

Note that the efficiency of a program can be influenced
by the order that the modules are linked. A pair of modules
with frequent references to each other should be loaded ' in
the same 2**12 of address space. This will avoid needlesss
link words. :

In a large program it can be extremely difficult to
decide which order to 1load the modules. We could
theoretically write an optimizing linker which would make
the decision for us. Our research shows, however, that such
a linker isn't really necessary (see section 5.2). It seems
that 1link words are fairly rare. We therefore suspect that
the difference between an optimized linker and an
unoptimized linker would not be substantial.

We recommend that the initial 1mplementation not be.
optimized. At a later date, however, an optimizing linker
would definitely make a good project.

The optimizing linker might use any of a wide " variety
of algorithms. The better ones are likely to Dbe
combinitorial (and therefore quite slow). We believe,
however, that heuristics will be found that run quite fast
and produce results which are close to optimal.

Page 13

One proposed heuristic is to choose the order based on
reference density. Load first the module which resolves the
greatest number of outstanding references. But give
preference to small modules. In other words, look not at
the actual number of references but rather the density of
references. Load first the module with the highest density.

1.7.7 Symbol Names -

The assembler/linker must support symbols longer than 6
characters. Some of the opcodes, in fact, are longer.

1.7.8 Indirect Words -

The pseudo op "Z" will generate an indirect word (see
section 1.3). The syntax will be:

z [elladdrll((x1[,x2])]

Page 14

1.8 Rules For Op-code Assignment
1.8.1 Duplicate Op-codes -

One of the most reknown aspects of the PDPl0 is its
duplicate op-codes. For example code 670 (TDO) is identical
to code 434 (OR). This is a remnant leftover from the PDP6.
The PDP6 was a hardwired machine. By assigning duplicate
op-codes, the designers were able to save alot of
combinitorial logic. Besides, there were op-codes to spare.

Over the years, however, numerous op-codes have been
added. There are few left now and we can no longer afford
to waste a single one. Moreover, all the modern machines
are microprogrammed. Dispatch is now handled by a RAM and
the assignment of opcodes has no affect on the amount of
logic used.

The new machine will have no duplicate op-codes. The
assembler will map both TDO and OR to the same op-code (code
434), Code 670 will be recycled and used for a new
instruction. The other duplicates will be handled in a
similar manner.

. The following is a table of duplicate op-codes. The
instructions are grouped into -equivalence classes. Note
that the grouping is slightly different on the new machine
than it was for the PDP10. (see also section 6.0: the
opcode index). : :

PDP10 New machine
op-code Both only only

300 CAl BLN
- TRN BRN
TLN ' DSKP
TDN TSKP
TSN QSKP
JUMP - HSKP
CAM .
SETA
SETAI
SETMM
201 MOVEI HRRZI(1)
SETMI MOVMI(2)
205 MOVSI(3)
HRLZI(3)
304 CAIA BLNA
TRNA BRNA
TLNA DSKPA
TDNA TSKPA

TSNA | QSKPA

201(4)

CAMA

SETZ
SETZI

HLLZI(5)
HLRZI(5)

HSKPA

Page 15

HLLEI(S)
HLREI(S)

N/A(6) SETO
SETOI

N/A(7) SETCA
SETCAI

434 OR
TDO

660 TRO
ORI

202 MOVEM
SETAM
SETAB

200 MOVE
SETM
SETMB

203 MOVES
SKIP
HLLS
HRRS

430 XOR
TDC

640 TRC
XORI

630 TDZ
ANDCM

620 TRZ
ANDCMI

Footnotes:

1. On a PDPl0, HRRZI is equivalent to MOVEI. This is not
true on the new machine: a MOVEI instruction doesn't
necessarily set the LH of AC to zero.

2. On the PDP10, MOVMI is equivalent to MOVEI. On the new
machine, however, the sign bit of the effective address
isn't necessarily zero and therefore the instructions are
not equivalent. : :

Page 16

3. On a PDP10, HRLZI is equivalent to MOVSI. This 1is not
true on the new machine: a MOVSI 1instruction doesn't
necessarily set the RH of AC to zero.

4. (see section 1,11.10).

5. On a PDP10, HLLZI, HLRZI, HLLEI, and HLREI are all
‘equivalent to SETZ. On the new machine, however, none of
these instructions is equivalent to any of the others.

6. Not applicable (see section 1.11.11).

7. Not applicable (see section 1.11.17).

1.8.2 New Names -

The AOBJN instruction will be known by' a new name:
AOBJL. There will be no change in functionality, only a
change in name. For compatibility, the assembler will
recognize both mneumonics, but AOBJL is the preferred name.

Likewise AOBJP will be known as AOBJGE.

The ANDCB group will be known as NOR.

The ORCB group will be known as NAND.

FLTR will be known as FLT.

Page 17

1.8.3 I/0 Instructions -

The PDP10 reserves op-codes 700-777 for the I/0
instructions. These instructions will not exist on the new
machine. Instead, the new machine will perform I/0 1in a
fashion similar to the PDPll. Each of the registers in each
of the I/0 controllers will be directly addressable by
referencing the correct location in physical memory. The
operating system will be free to map these physical
addresses to any virtual addresses it may desire. No doubt
the operating system will choose a bank of virtual addresses
in the lowest 2**18 of memory so that they can be referenced
without a link word. '

It is not our purpose here to define the formats of any
of the I/0 registers. It's likely, however, that they would
be VAX compatible.

Note that the new machine doesn't have a "User I/0"
bit. If the operating system wishes to allow a user to
perform 1/0 operations it need merely map the I/0 registers
into the user's virtual address space.

Any memory reference instruction can be used to
manipulate the I/0 registers. Of particular interest,
however, are the instructions B{L,R}{N,0,Z,C}{-,N,E, A}

1.8.4 EOP -

Op-code 400 is known as the "EOP" instruction. The
effective address of this instruction 1is treated as an
extension of the op-code. The effective address specifies
which subfunction 1is to be performed. We can therefore
support a large number of functions while only wusing a
single op-code. Each of these functions has a single
operand: an AC.

10805 ACOP -

Op-codes 254-256 are known as "ACOP's". In these
instructions the AC field is treated as an extension of the
op-code. The AC field specifies which subfunction will be
performed. We can therefore support a large number of
functions while only using a small number of op-codes. Each
of these functions has a single operand: E.

On the PDP10 there are numerous instructions for which
the AC field is ignored (e.g. JUMPA, SETCMM, etc). The new
machine will continue to support these instructions, but the
AC field will no longer be ignored. These instructions will
be implemented as ACOP functions. The programmer need not

Page 18

be aware of this fact. The syntax of his source code will
not change. JSR, for example, will merely be OPDEFed to
"JRST 5,". ' :

1.8.6 Priveledged Instructions -

On the PDP10 op-codes 31-37 are LUUO's. On the new
machine, however, they are LUUO's only in user mode. In
exec mode they are something quite different.

On the PDP10 there are several op-codes which are legal
only in exec mode (e.q. PXCT, MAP, etc). On the new
machine these instructions have been moved to 31-37.

Note that one of these instructions (op-code 31) is an
ACOP type 1instruction (the AC field is an extension of the
op-code) . .

Page 19
1.9 Stack Pointers

‘ The machine supports two types of stack pointers:
(types 0 and 1) .

1.9.1 Type 0 -

1010 ‘ 31
1011 71
b e —— e — - —— +
10! addr !
e e +

It is anticipated that type 0 stack pointers will be
the most popular.

Type zero is indicated by a zero in bit 0. Bits 1-37
contain the address of the current word on the stack. A PDL
overflow can occur only if the address is incremented above
2**31-1. The stack must therefore be placed at the extreme
top of the virtual address space.

If a second type 0 stack is desired, the program can

protect against overflow by making inaccessable the pages at
either end of the stack.

1.9.2 Type 1 -

1010 : 112 ' 3!
1011 710 7!
e m——— e +
11! -N ! addr !
e —— e — e ————— +

Type 1 is indicated by a 1 in bit 0. Bits 1-17 contain
a count of the number of words that remain after the current
word. This count is expressed as a negative number. Thus
the entire left half (bits 0-17) contains the two's
complement of the count. Bits 20-37 contain the address of
the current word on the stack. This address must fall below
2**16, The stack may not be placed at a higher address.

Type 1 stack pointers are intended bonly for PDP10
compatibility. ' ‘

Page 20

1.10 New Instructions
The new machine supports a wide variety of instructions

that did not exist on the PDP10. The following is a list of
miscellaneous new instructions. :

1.10.1 MOVEIA - MOVE Immediate And Always Skip (op-code 310) -

This instruction is just like MOVEI except that the
instruction skips.

1.10.2 PUSHI - PUSH Immediate (op-code 314) -

The PUSHI instruction is similar to the PUSH
instruction except that E itself is pushed instead of C(E).

Page 21

1.10.3 T{R,L,D}{U,NU} -

Test and skip if Unanimous.

The AC is compared against a mask. For each of the
bits which is one in the mask, the corresponding bit in the
AC must also be a one. The test must be wunanimous. The
selected bits in AC must all be ones.

For each of the bits which is zero 1in the mask, the
corresponding bit in the AC is ignored.

Legend:
R - Right - The mask is E.
L - Left - The mask is a copy of E with the LH and RH
swapped.
D - Direct - The mask is C(E).
U - Skip if Unanimous
NU - Skip if Not Unanimous.
Note that
T?U T1,foo
Is equivalent to:
T2C T1, foo
T?CE T1l, foo
Note that
T?NU T1l, foo
Is equivalent to:
T?C T1, foo
T?CN T1l, foo

Note the difference between T?NN and T?U. T?NN will
skip if any of the selected bits is one. T?U will only skip
if all of the selected bits are one. '

The instruction TRU Tl,-1 is equivalent to CAIE T1,-1.
Both skip if Tl is all ones.

TLU
TLNU
TDU
TDNU

601
605
610
614

Page 22

Page 23

1.10.4 B{L,R}{Z,0,N,C}{N,E,- A} -

Each of these instructions manipulates a single bit in
the word addressed by E. Bits 11-14 of the instruction are
not interpreted as an AC number. Instead they are
interpreted as a bit number. .

Legend:

L - Test the bit in the LH (i.e. AC=0 means bit 0).
R - Test the bit in the RH (i.e. AC=0 means bit 20).

Z - Zero the bit.

O - Set the bit to one.

N - Don't change the bit.
C - Complement the bit.
N
E
A
b

- Skip if the bit was originally Non-zero.
- Skip if the bit was originally zero.

- Always skip.

lank - Never skip.

Example: The instruction "BLO 3,FOO" will set bit 3 in
location FOO. The instruction "BRNE 3,FOO"™ will skip if bit
23 in location FOO is zero. The 1instruction "BLCN O0,FOO"
will complement the sign bit of location FOO and skip if the
sign bit was originally on.

Note that on a 32 bit machine it takes 5 bits to
express a bit number. The AC field, however, is only 4 bits
wide. To get around this problem, the class "L
instructions have all been assigned even op-codes. The
class "R" instructions have all been assigned odd op-codes.
Thus bits 10-14 of the instruction give the actual bit
number (all five bits). Thus the source statement "BLNN
23,T1" will cause the assembler to generate the code "BRNN
3,T1".

A major use-of this instruction group is to manipulate

bits in the I/0 page.

Mneumonic Op-code

BLN 300
BRN 300
BLNE 702
BRNE 703
BLNA 304
BRNA 304
BLNN 706
BRNN 707
BLZ 710

BLZE
BRZE
BLZA
BRZA
BLZN
BRZN
BLC

BRC

BLCE

BRCE
BLCA
BRCA
BLCN
BRCN
BLO

BRO

BLOE
BROE
BLOA
BROA
BLON
BRON

712

713

714
715
716
717
720
721
722
723
724
725
726
727
730
731
732
733
734
735
736
737

Page 24

Page 25

1.10.5 SSTEP - Single STEP (op-code 256-1) -

This instruction is intended for the soul purpose of
implementing $X in DDT.

The C(E) is taken as the address of an instruction to
be executed. Note the difference between XCT and SSTEP. In
XCT, C(E) is the instruction itself. In SSTEP, C(E) is the
address of the instruction.

SSTEP is unlike XCT in another important respect. In
SSTEP, if the instruction being executed attempts to alter
the PC, then the PC isn't actually changed. Instead, C(E)
is updated. If a normal (non-skip) instruction is executed,
then C(E) will be incremented once (as the PC normally is).
A skip instruction will increment C(E) by two. A jump
instruction (JRST, JUMP??, etc) stores the effective address
of the JRST. A subroutine call (e.g. PUSHJ) places the
address of the PUSHJ plus one on the stack and overwrites
C(E) with the address of the subroutine.

Example:
BAR: SSTEP MYPC
MYPC: FOO
FOO: JSP T1,G0O
GOO: s

Location MYPC is overwritten with the address of GOO, Tl is
set to FOO+1l, and the next instruction is taken from BAR+l.

The instruction is implemented by the microcode with
little or no support from the hardware. The microcode
stores E and the original PC in internal registers. It then
moves C(E) 1into the PC and executes a normal instruction
cycle. Upon instruction exit, the modified PC is stored at
location E and the original PC is restored.

Note that the SSTEP instruction interprets C(E) as an
indirect word (the sign bit is not ignored). Thus C(E) may
be coded as a position independent pointer. Note, however,
that the sign bit of C(E) is always set to zero when the
modified PC is stored.

The modified PC is stored at the address specified by
the original E. If C(E) is an indirect word that points to
a second indirect word, it's the original E that determines
where the modified PC is stored. S

If one SSTEP attempts to execute a second SSTEP then
the chain 1is aborted and C(E) is set to -1. An SSTEP may
execute an XCT, and an XCT may execute a SSTEP.

Page 26

Note that if the target instruction page faults, the
page fault PC is that of the SSTEP instruction and not that
of the target instruction.

Page 27

1.10.6 EA - Effective Address (op-code 123) -

The effective address of the EA instruction specifies
the address of a second 1instruction. Fetch the second
instruction and compute its effective address. Place the
result in AC. .

If the EA instruction had existed on the PDP10, then
EA T1,FOO ;CASE ONE
would have been equivalent to:
MOVEI T1l,Q@F00 | ;CASE TWO

On the new machine, however, the two are not equivalent.
Example: Consider the instruction: ~

FOO: MOVE T2,47

Case one (above) puts a 47 into Tl. However case two puts
"MOVE T2,47" into Tl (note that the sign bit of location FOO
is zero, the op-code is 200).

Think of it this way: The new machine has two types of
effective addresses: The 19 bit format and the 32 bit
format. The former variety appears as the low order 19 bits
of every instruction (see section 1.3). The 32 bit format
is used for indirect words. The purpose of the EA
instruction 1is to specify an indirect word that uses the 19
bit format instead of the 32 bit format.

The EA instruction is used heavily by DDT.

Page 28

1.10.7 BUS{-,I,M,B} - Backward SUBtract.

The BUS instruction is similar to the SUB instruction
except that the order of the operands is reversed. SUB
computes AC-C(E), whereas BUS computes C(E)-AC.

Mneumonic Op-code What

BUS 140 " AC=C(E)-AC
BUSI 141 AC=E-AC
BUSM 142 C(E)=C(E)-AC

BUSB 143 AC=C(E)-AC

Page 29

1.10.8 1viDp{-,I,M,B} - Backward Integer DIVide. -

The IVID instruction is similar to the IDIV instruction
except that the order of the operands is reversed. IDIV
computes AC/C(E), whereas IVID computes C(E)/AC.

Mneumonic Op-code What

IVID 150 AC=C(E)/AC (no remainder)
IVIDI 151 AC=E/AC
IVIDM 152 C(E)=C(E)/AC

IVIDB 153 C(E)=AC=C(E)/AC

Page 30

1.10.9 IDV[I] -

The IDV instruction is similar to the IDIV instruction
except that IDV does not return a remainder. AC+l is
unchanged.

Mneumonic Op-code

IDV 100
IDVI 101
IDVM 232

Note: The assembler will recbgnize ‘the mneumonic
"IDVM" and map it equal to "IDIVM". Neither returns a
remainder.

Page 31

1.10.10 UMAP - User MAP (op-code 032) -

This instruction is similar to MAP except that the user
page map is used instead of the exec page map.

All indirect words and index registers specified by the
effective address calculation are fetched from exec virtual

space.

This instruction is priVileged. It's legal only from
exec mode. If executed from user mode, it's an LUUO.

Page 32

1.10.11 XJSR - EXtended Jump To Subroutine (opcode 031-0) -
C(E)=FLAGS |

C(E+1)=PC+1
PC=E+2

1.10.12 XRET - EXtended RETurn From Subroutine (opcode 031-1) -

FLAGS=C(E)
PC=C(E+1)

1.10.13 XDIS - DISMISS Interrupt (opcode 031-3) -

Same as XRET except dismiss the current interrupt (if
any) .

1.10.14 XPCW - Exchange PCW (opcode 031-2) -

C(E)=FLAGS
C(E+1)=PC+1
FLAGS=C(E+2)
PC=C(E+3)

Page 33

1.10.15 BBLT - Backward BLT (opcode 256-4) -

The effective address gives the location of a three
word argument block: ‘

E+0/ FF
+1/ FT
+2/ LT

Words FF through FF+(LT-FT)-1 are moved to FT through LT
respectively.

BBLT is just like BLT except that FF+(LT-FT)-1 is the
first word transfered instead of FF. (see section 1.11.3).

Page 34

1.10.16 EOP -

Op-code 400 is known as the "EOP" instruction. The
effective address of this instruction 1is treated as an
extension of the op-code. The effective address specifies
which subfunction 1is to be performed. We can therefore
support a large number of functions while only using a
single op-code. Each of these functions has a single
operand: an AC,

The effective address is decoded as follows: -

'l 112 212 213 313 3t
'6 710 112 710 3t4 7!
Fommm——————— B e s et o e Fmm——————— +
! ! 01=PSAV ! NL ! FR ! LR !
! o o e o —— tm—————— +
! 00 ! 00 ! group number ! function number !
! Fommm————— - Fmmm————— +
! ! 10 ! reserved !
! ! 11 ! !
pm—m—mm————— o —————— B e et +
! 01=SAVE ! !
! 10=REST ! bit mask !
! 11=PSAVE ! !
o ———————— e e ———————_————— e ——— — +

The vast majority of all EOP functions have zeros in
bits 16-21. These functions are divided into groups. Bits
1 22-27 give the group number. Bits 30-37 denote the function

number within that group.

Page 35

1.10.16.1 SAV - SAVe AC's (on The Stack) -

The SAV instruction is one of the many functions of
EOP. It is represented by an octal 0075 in bits 16-27 of
the effective address. Bits 30-37 of the effective address
are decoded as follows: .

The register denoted by FR 1is pushed onto the stack.
Register FR+1 1is then pushed. Then FR+2, ..., etc. The
process stops when the register denoted by LR is pushed onto
the stack.

Note that for the purposes of this instruction register
17 is said to be followed by register 0. Thus if FR=16 and
LR=1, four registers will be pushed: 16, 17, 0, and 1 (in
that order).

As with all stack instructions, the stack pointer is
taken from the register denoted by bits 11-14 of the
instruction (not bits 11-14 of the effective address).

Whether it be a MACRO or not, the assembler will
recognize the syntax:

SAV P,FR,LR

Page 36

1.10.16.2 RST - ReSTore AC's (from The Stack) -

The RST 1instruction is an EOP function. It is
represented by an octal 0074 in bits 16-27 of the effective

address. Bits 30-37 of the effective address are decoded as
follows: :

13 313 3!
10 314 7!
o —————— t—————— +
! FR ! LR !
Fmm—m——— fmm————— +

The instruction is the inverse operation from SAV. The
registers are popped back off the stack. Note that since LR
was the last register pushed, it is now the first register
popped. '

The assembler will recdgnize the syntax:

RST P,FR,LR

Page 37

1.10.16.3 PSAV - Popping SAVe -

The PSAV instruction 1s an EOP function. The effective
address is decoded as follows: ‘

11 212 213 313 31
'6 112 7t0 314 7!
Fmm————— ———————— pm—————— Fm—————— +
10 0 0 1! NL ! FR ! LR !
t—————— Fmmm——————— pmm———— fm—————— +

Registers FR through LR are pushed onto the stack as
they would be by the SAV instruction. The stack pointer is
then adjusted by the quantity +NL (see ADJSP). The sign bit
is then 1lit 1in the effective address register and this
modified value is pushed onto the stack.

The assembler will recognize the syntax: .

PSAV P,FR,LR(,NL]

Example: We are all familiar with the PDP10 subroutine
SAVE4.

PUSHJ P,SAVE4
is equivalent to:
PSAV P,Pl,P4
Note that the POPJ instruction will automatically undo
the effects of the PSAV instruction (see section 1.11.4:

POPJ) .

Note that the purpose of. the NL field 1is to allocate
space on the stack for the storage of local variables.

Page 38

1.10.16.4 SAVE - SAVE AC's (on The Stack) -

This instruction is an EOP. The effectiVe ‘address is
decoded as follows:

11 112 31

16 710 ‘ 7!
o +
10 1t Bit mask . !
o e ——————— +

Bits 20-37 are a bit mask which indicates what AC's are to
be pushed onto the stack. Bit 20 in the mask corresponds to
AC 0, Bit 37 to AC 17, etc. :

Note: This instruction is significantly slower than
the SAV instruction. Whenever possible SAV should be used
instead of SAVE.

The assembler will recognize the syntax:

SAVE P,a,b,c,...

Note that AC 0 is the first to be pushed and AC 17 is
the last. Thus:

SAVE . P,Pl,P2,P3,P4

is equivalent to:

SAV P,P1,P4

Page 39

1.10.16.5 REST - RESTore AC's (from The Stack) -

This instruction is an EOP. The effective address is
decoded as follows:

11 112 .31
16 710 71
B e +
11 0! Bit mask !
e +

This instruction is the inverse operation of SAVE. The
registers are popped back off the stack.

Page 40

1.10.16.6 PSAVE - Popping SAVE -

~ This instruction is an EOP. The effective address 1is
decoded as follows:

11 112 : -31
te 70 ' 71
o e +
11 1! Bit mask !
e et ettt et T +

The registers specified by the bit mask are pushed onto
the stack exactly as they would be by the SAVE instruction.
The sign bit is then lit in the effective address register
and this modified value is then pushed onto the stack.

Note that the POPJ instruction will automatically wundo
the effects of the PSAVE instruction (see section 1.11.4:
'POPRPJ) .)

Page 41

1.11 Modifications To Existing Instructions

Most of the instructions on the new machine function
exactly the same as the equivalent instruction on the PDP10.
There are a few, however, that function slightly different.
The following is a list of these differences.

1.11.1 SETOM -

On the PDP10, the AC field was ignored. Not so on the
new machine. If the AC field 1is zero, the instruction
behaves as it did on the PDP10. If the AC 1is non-zero,
however, then AC gets a copy of C(E) as it was before being
set to ones. The manipulation of C(E) is performed as an
uninterruptable read pause write. This will be useful for
the implementation of interlocks.

1.11.2 SETZM -

(See SETOM) Iff the AC is non-zero then AC gets a copy
of the original C(E).

Page 42

1.11.3 BLT -

BLT is totally different than it was on the PDP10. BLT
is now function 3 of op-code 256. E gives the address of a
three word argument block:

E+0/ FF ;FIRST FROM
E+1/ FT ;FIRST TO
E+2/ - LT ; LAST TO

Locations FF through FF+(LT-FT)-1 are copied to FT through
LT. Note that location FF is the first moved.

Each of the three words 1in the argument block 1is
interpreted as an indirect word. If relative addressing is
specified then each is relative to a different address. FF
is relative to E+0. VLT is relative to E+2,.

See also BBLT (section 1.10.15).

Page 43

1.11.4 POPJ -

The instruction begins by POPing the top word off the
stack. The microcode places it in an internal register
called X.

FOO:

If the sign bit of X is zero, add the effective address
of the POPJ instruction to X. Branch to the resulting
address (i.e. copy the modified value of X to the PC).

If, however, the sign bit of X is one, decode the rest
of the word as follows:

1010 11112 212 213 313 3!
011 6!7!0 1!2 : 710 314 7!
e - o ————— Fmm————— tm—————— +
vl 10! ! NL ! FR ! LR !
1! Ignored B e i o o +
! ! 11! Bit Mask !
el e et ot - — +

Bit 17 tells us whether a PSAV or a PSAVE has been done (see
section 1.10.16). 1In either case, the process is reversed.
A PRST or PREST is simulated. We then pop the next word off
the stack and place it 1in register X. Note that the
effective address register is still unchanged. It still
contains the effective address from the POPJ instruction.
GOTO FOO. :

Note: On the PDP1l0, E was ignored. On the new
machine, however, it 1is wused to implement skip returns.
Example:

A0S (P)
POPJ P,

Is roughly equivalent to:
POPJ P,1

Note that the later does not actually modify any location on
the stack.

Page 44

1.11.5 ADJSP -

The ADJSP instruction is the same as on the PDP10
except that E is taken as a 32 bit signed integer instead of
-an 18 bit signed integer.

1.11.6 Doubleword Integers -

~ The format for a double precision integer is different
than that on the PDP10. On the PDP10, bit 0 of the second
word is not a significant bit. It is a copy of bit 0 of the
first word (the sign bit). On the new machine, however, bit
0 of the second word is a significant bit.

Instructions affected: DADD, DSUB, DMUL, DDIV, DMOVN,
DMOVNM, MUL{-,I,M,B}, DIV{-,I,M,B}.

Page 45

1.11.7 JSR, JSP, PUSHJ, And POPJ -

These instructions no longer save the flags. The PC is
taken as a full 32 bit quantity.

1.11.8 JsAa -

C(E)=C(AC)
C(E+1)=C(AC+1)
C(AC)=PC+1
C(AC+1)=E
PC=E+2

1.11.9 JRA -

PC=C(AC)
C(AC)=C(C(AC+1))
C(AC+1)=C(C(AC+1)+1)

Page 46

1.11.10 SETZ -

On the PDP10, the effective address of SETZ is ignored
(but most programmers leave it zero). On the new machine,
however, it is required that E be zero. The assembler, in
fact, maps the mneumonic SETZ to the same op-code as MOVEI.
"SETZ T1," is mapped to "MOVEI T1,0"

1.11.11 SETO -

The assembler maps the mneumonic SETO into "MOVEI -1",

Page 47

1.11.12 XCT -

On the PDP10, an AC field of zero meant XCT. A
non-zero AC meant PXCT. The new machine doesn't have a
previous context execute. Use ULDB and UDPB instead. The
XCT instruction is now function 0 of ACOP 256.

1.11.13 MAP -

This instruction has changed op-code from 257 to 033.
It is still 1legal only from exec. If executed from user
mode it used to be trapped as an MUUO. It's now an LUUO
instead.

1.11.14 JUMPA -

On the PDP10, the AC field of JUMPA is ignored. Not so
on the new machine. The mneumonic JUMPA now maps to the
same op-code as JRST. The AC field of JRST is not ignored.

On the PDP10 JUMPA is used by DDT for inserting patchs.
On the new machine DDT should use JRST instead.

1.11.15 JSR -
On the PDP10 the AC field was ignored. On the new

machine JSR 1is "JRST 5,". Note that JSR saves a full word
PC. It does not store flags.

1.11.16 SETCMM -

On the PDP10' the AC field was 1ignored. On the new
machine SETCMM is function 5 of ACOP 256.

1.11.17 SETCA -

On the PDP10 the effective address was ignored. On the
new machine the assembler maps the mneumonic "SETCA" to
"XORI __1" .

Page 48

1.11.18 JFCL -

The JFCL instruction 1is not supported on the new
machine. The user should, instead, perform a bit test of
location .JBTRP (see section 1.17). '

Note that the assembler will continue to recognize the
mneumonic JFCL. It will be mapped, however, to the same
op-code as CAI.

1.11.19 T{R,L,D,S}{N,Z,0,C}{-,A,N,E} -

TR?? is almost like TD?? except that TD?? deals with
C(E) whereas TR?? deals with E itself. Both deal in full
32 bit quantities. TR?? does not ignore the left half of

E.

TL?? is almost like TS??. TS?? deals with a copy of
C(E) that has had its halves swapped. TL?? deals with a
copy of E that has had its halves swapped. ~ Both deal in
full 32 bit quantities. TL?? does not ignore the left half
of E.

Page 49

1.12 Byte Pointers
1.12.1 Format -

The hardware has provisions for eight different types
of byte pointers. Bits 0-2 of the BP indicate the type. At
present, only two types are defined (type 4 and type 5). An
attempt to use any of the remaining types will cause trap 7
(illegal operand).

10 0!0 0t1 11111

10 213 710 41516

Fm———— fmmm—————— o o e
t 4 ! S ! P 10! Z

Fm————— o ——— Fmmm—————— o e
!0 0t!0 0!1 1111t 212

10 213 710 4151617 213

t———— o —————— Fmm——— t—t—t——m————— e
r 4 ! S ! P 111! X ! Y

fm——— fmmm—————— pm——————— tot—dmmmm e
10 0to0 0tl 1!1

10 213 710 415

+———— b m———————— o
! 5 ! S ! P ! C

t———— fm——————— o ————— e
! INDIRECT WORD

+ ———
1.12.1.1

In a type 4 byte pointer, bits 15-37 specify the
effective address. The format of these bits is exactly the
same as that of the basic instruction format. If relative
addressing 1is wused, the base address is that of the byte
pointer, not the PC. ‘

In a type 5 byte pointer, the second word specifies the
effective address. The format of this word is exactly the
.same as that of an indirect word. Note that 1if relative
addressing 1is wused, the base address is that of the second
word, not the first word.

Page 50

1.12.1.2

As on the PDP10, the S field indicates the number of
bits per byte. An S field of zero, however, indicates a 32
bit byte (a fullword). '

1.12.1.3

The P field indicates the number of bits to the right
of the target byte. This is exactly the same as the P field
on the PDP10. Note, however, that unlike the PDP1l0, there
is no way to specify the ficticous byte just to the left of
a word (on the PDP10, programmers would set P to "D36). You
must instead specify the last byte of the previous word.

1.12.1.4

In a type 5 byte pointer, the C field indicates a count
of the number of bytes remaining after the current byte.
This field is used by the instructions
{I1LDB, IDPB,LDB,DPB, IBP} {W,L} (see section 1.12.2.1).

1.12.1.5

The assembler will recognize two pseudo ops: POINT and
POINTR. | :

POINT will build a type 4 byte pointer. The format is
identical to that on the PDP10: POINT S,E,N (where N=37-P).

POINTR will build a type 5 byte pointer. The format
is: POINTR S,E,N[,C]. If the C field 1is omitted it
defaults to 2**18-1. (which is the largest positive number
that will fit in.the C field). :

1.12.1.6

Consider one of the subtle differences between a type
and type 5 byte pointer. , o :

BP4: POINT 40,@.+1,37
. g £ .
BP5S: POINTR 40,E,37

If an ILDB instruction is executed, the result(s) would be:

Page 51

BP4: POINT 40,@.+2,37

z E
BP5: POINTR 40,E+1,37,2**18-2

The resulting BP4 1is probably not what the programmer
intended.

1.12.2 Byte Instructions -

The new machine supports all of the PDP10's byte

instructions. In addition, it supports a wide variety of
new ones.

Page 52

1.12.2.1 {I1LDB,IDPB,IBP,LDB,DPB}{-,A,W,L} -

The last character of each mneumonic 1indicates under
what circumstances the instruction will skip:

W - skip if Win.

Skip if the resulting C field is greater than or equal
to zero (i.e. skip if the string is not yet exhausted).

L - skip if Loose

Skip if the resulting C field is less than zero (i.e.
skip if the string is exhausted).

A - Always skip
blank - neVer skip

(same as the equivalent instruction on the PDP10).

The instructions {ILDB,IDPB}{W,L} begin by incrementing
the byte pointer. In doing so, they decrement the C field.
The instructions then take one of two possible actions
depending on the sign bit of the resulting C field (bit 15).
If the sign bit is 0, the target byte is loaded/stored. If
the sign bit 1is 1, the target byte 1is not referenced
(ILDB{W,L} does not alter the AC). ,

The instructions {ILDB,IDPB}{-,A} decrement the C field
but ignore the result. The target byte 1s always
loaded/stored. , '

The instructions {LDB,DPB}{W,L} take one of two
possible actions depending on the sign bit of the C field
(they do not modify the C field). If the sign bit is 0, the
target byte is loaded/stored. If the sign bit is 1, the
tagget byte is not referenced (LDB{W,L} does not alter the
AC).

Note: If the byte pointer is a type 4 byte pointer (no
C field) then we assume an infinite supply of bytes. The
"W" class instruction will always skip. The "L" class
instruction will never skip.

Example: Consider the following well known PDP10
subroutine: :

CI: SOSGE IBUF+.BFCTR
JRST CI2
ILDB T1l,IBUF+,.BFPTR

Page 53

AOS (P)
POPJ P,
CI2: .o

This could be coded as:

CI: ILDBL T1l,IBUF+.BFPTR
POPJ p,1

Mneumonic Op-code

ILDB 134 (same as PDP10)
ILDBA 257 (new)
ILDBW 264 (new)
ILDBL 324 (new)
IDPB 136 (same as PDP10)
IDPBA 330 (new)
IDPBW 417 (new)
IDPBL 435 (new)
IBP 133 (same as PDP10)
IBPA 256-10 (new)
IBPW 256-11 (new)
IBPL 256-12 (new)
LDB 135 (same as PDP10)
LDBA 543 (new)
LDBW 611 (new)
LDBL 615 (new)
DPB 137 (same as PDP10)
DPBA 650 (new) -
DPBW 670 (new)

DPBL 740 (new)

Page 54

1.12.2.2 DPBI - DePosit Byte Immediate (op-code 251) -

This instruction is similar to DPB except that AC is
deposited instead of C(AC). The AC field (bits 11-14 of the
instruction) is taken as a 4 bit number. This number 1is
deposited as specified by the byte -pointer. If S is greater
than 4, the unused bits are zeroed. The 4 bit - wide number
is not sign extended.

Example: The instruction:

'DPBI ~ ~D8,[POINT 5,F00,7]

Will set bits 3-7 of location FOO to eight (this could be
particularly handy if FOO is a byte pointer).

1.12.2.3 LDBX - LoaD Byte EXtended (op-code 104) -

This instruction is similar to LDB except that the byte
is sign extended.

Example: Given the byte pointer:
FOO: POINT 3,[47],37

The instruction "LDB T1,FOO" will set Tl to 7. The
instruction "LDBX T1,FOO" will set Tl to -1.

Page 55

1.12.2.4 B{AO0S,sos}{-,L,E,LE,A,GE,N,G} -

The AC field is treated as an extension to the op-code.
¢ .s all 16 functions share the same code (number 255).

E gives the address of a byte. pointer. The byte is
incremented or decremented. Example:

BAOS?? E
Is equivalent to:

LDBX Tl,E

AOS Tl
DPB Tl,E
SKIP?? Tl

Mneumonic AC Field

BAOS 0
BAOSL 1
BAOSE 2
BAOSLE 3
BAOSA 4
BAOSGE 5
BAOSN 6
BAOSG 7
BSOS 10
BSOSL 11
BSOSE 12
BSOSLE 13
BSOSA 14
BSOSGE 15
BSOSN 16
BSOSG 17

Page 56

1.12.3 ADJBP -

As on the PDP10, ADJBP is the same op-code as IBP (code
133). If the AC field 1is zero, the instruction 1is
interpreted as IBP. IF the AC field 1is non-zero, the
instruction is interpreted as ADJBP. The contents of that
AC is taken as a signed byte count. The byte pointer 1is
advanced - forward or backward by that number of bytes.
Unlike the PDP10, the AC is unchanged. The new machine
modifies the byte pointer 1in the location specified by E
(including the C field). To determine if the C field has
expired use the instruction "BL? 15,E",

Note that ADJBP preserves byte alignment but IBP does
not. ,

Page 57

1.12.3.1 DECBP - DECrement Byte Pointer (op-code 256-6) -
DECBP is the inverse of IBP.

DECBP does not preserve byte alignment. If you wish to
preserve byte alignment use ADJBP instead.

Page 58

1.12.3.2 U{LDB,DPB} -

ULDB - User LDB (op-code 036)
UDPB - User DPB (op-code 037)

The new machine does not have .a PXCT instruction. PXCT
has been replaced by ULDB and UDPB. These instructions are
just like LDB and DPB except that the data 1is taken from
user space 1instead of exec space. Note that the byte
pointer itself is in exec space. The effective address
calculation specified by the byte pointer is carried out
entirely in exec space. The only thing that comes from user
space is the actual data.

Note that if the target address is in the range 0 to 17
then the wuser AC set is used. Thus the effective address
calculation uses the exec AC set but the target data comes
from the wuser AC set. Note that by loading the FLAGS
register the monitor can select which AC set to use as the
exec set and which to use as the user set.

This facility is not as extensive as PXCT, but it |is
perfectly satisfactory for 99% of the cases. If the monitor
wants to do something more extensive (like BLT) it can
always map the user's page in the exec map.

Consider the case where the argument block to a UUO has
a pointer to a second argument block. The user would like
this pointer to be in position independent format. PXCT
would be useful to compute the ultimate effective address.
Without PXCT, however, we suggest the monitor contain a
subroutine to simulate effective address calculation. The
subroutine will execute quickly as most effective address
calculations are simple ones.

These instructions are legal only from exec mode. If
executed from user mode they are LUUOs.)

Note that it is indeed possible for these instructions
to get a proprietary violation (see section 1.15). The
instruction will trap if the reference is not legal for the
segment which issued the current UUO.

Page 59

1.12.3.3 PHY{LDB,DPB} -

PHYLDB - PHYsical LDB (op-code 034)
PHYDPB - PHYsical DPB (op-code 035)

These instructions are similar to LDB and DPB except
that the data is taken from physical address space instead
of virtual address space. Note that the byte pointer itself
is in virtual address space. The effective address
calculation specified by the byte pointer is carried out
entirely in the virtual address space. The only thing that
comes from physical space is the actual data byte.

Note that if the target address is in the range 0 to 17
then physical locations 0-17 are referenced (not the exec AC
set).

These 1instructions are priveledged. They can be
executed only from exec mode. If executed from user mode
they are LUUOs.

Page 60

1.13 Floating Point

The machine supports three types of floating point
numbers: Single, Double, and triple. :

1.13.1 Single -

The format of a single precision floating point number
is exactly the same as that on the PDP10 except that there
are four less bits of precision. Therefore:

Bits
0 Sign bit
1-10 (8 bits) Exponent (excess 200)

11-37 (23 bits) Fraction

Negative numbers are expressed as the two's complement of
the entire word.

1.13.2 Double -

The double precision format is exactly like the single
precision format except that it has an extra 32 bits of
precision (one word). Unlike the PDP10, bit zero of the
second word 1is not ignored. It is a meaningful data bit
just like any other.

Bits
0 Sign bit
1-10 (8 bits) Exponent

11-77 (55 bits) Fraction

1.13.3 Triple -

The triple precision format has 25 additional bits of
precision and 7 additional bits of exponent:

Bits
0 Sign bit
1-17 (15 bits) Exponent

20-137 (80 bits) Fraction

Page 61

1.13.4 Obsolete -

The machine does not support unrounded single precision
floating point. The op-codes for F{AD,SB,MP,DV}{-,M,B} are
obsolete and have been recycled. The assembler, however,
still recognizes these mneumonics and maps them into the
equivalent rounded instruction (F{AD,SB,MP,DV}R{-,M, B}
respectively).

The old style KAlQ double precision floating point
format is no longer supported. The instructions DFN, UFA,
FADL, FSBL, FMPL, and DFVL (op-codes 131, 130, 141, 151,
161, and 171 respectively) are obsolete. The op-codes have
been recycled.

1.13.5 Immediate -

The instructions F{AD,SB,MP,DV}[R]I function slightly
different than they did on the PDP10. On the PDP1l0, the
halves of E were swapped before use. On the new machine, E
is shifted left ~Dl14 bits before use. This will allow for
the greatest utilization of the 18 significant bits of E (1
sign bit, 8 bits of exponent, and 9 bits of fraction).

Page 62

1.13.6 Op-code Assignment -

There are 16 arithmetic instructions for single
precision numbers: F{AD,SB,MP,DV}{-,I,M,B}; 4 instructions
for double precision: DF{AD,SB,MP,DV}; and 4 instructions
for triple precision: TF{AD,SB,MP,DV}, ‘

Opcode Mneumonic

144 FAD

145 FADI
146 FADM
147 FADB
154 FSB

155 FSBI
156 FSBM
157 FSBB
164 FMP

165 FMPI
166 FMPM
167 FMPB
174 FDV

175 FDVI
176 FDVM
177 FDVB
110 DFAD
111 DFSB
112 DFMP
113 DFDV
102 TFAD
103 TFSB
106 TFMP

107 TFDV

Page 63

1.13.7 Complex Numbers -

All three types of floating point are supported for
complex numbers. Complex 1integers are not supported. In
core, complex numbers are represented by an ordered pair in
which the real part is stored first and the imaginary part
is stored second. In single precision format the real part
is in word 0, and the imaginary part is in word 1. In
double precision format the real part is in words 0-1, and
the imaginary part is in words 2-3. 1In triple precision
format the real part is in words 0-2, and the imaginary part
is in words 3-5.

Once you've learned the mneumonics for the floating
point instructions the complex ‘instructions are easy:
merely replace the "F" with a "C". Thus the mneumonics ' for
complex arithmetic are: {-,D,T}C{AD,SB,MP,DV}.

(E+FI) = (A+BI) op (C+DI)

oP

AD - Add: E=A+C F=B+D

SB - Subtract: E=A-C F=B-D

MP - Multiply: E=AC-BD F=BC+AD

DV - Divide: E=(AC+BD)/(CC+DD) F=(BC-AD)/(CC+DD)

OPCODE MNEUMONIC

746 CAD
747 CSB
750 CMP
751 Cbhv
752 DCAD
753 DCSB
754 DCMP
755 DCDV
756 TCAD
757 TCSB
760 TCMP

Page 64

1.13.8 New Instructions (Floating And Complex) -

" The following is a list of instructions which are used
in connection with floating point:

1.13.8.1 FMOVEI - Floating MOVE Immediate (op-code 401) -

E is shifted 14 bits to the left and the result is
placed in the AC. . .

1.13.8.2 {T,Q,H}IMOVE(M] -
TMOVE - Triple MOVE (op-code 130)

C(AC)=C(E)
C(AC+1)=C(E+1)
C(AC+2)=C(E+2)

TMOVEM - Triple MOVE to Memory (op-code 131)

C(E)=C(AC)
C(E+1)=C(AC+1)
C(E+2)=C(AC+2)

OMOVE - Quad MOVE (op-code 742)

C(AC)=C(E)

C(AC+1)=C(E+1)
C(AC+2)=C(E+2)
C(AC+3)=C(E+3)

QOMOVEM - Quad MOVE to Memory (op-code 743)

C(E)=C(AC)

C(E+1)=C(AC+1)
C(E+2)=C(AC+2)
C(E+3)=C(AC+3)

HMOVE - Hex MOVE (op-code 744)

C(AC)=C(E)

C(AC+1)=C(E+1)
C(AC+2)=C(E+2)
C(AC+3)=C(E+3)
C(AC+4)=C(E+4)
C(AC+5)=C(E+5)

HMOVEM - Hex MOVE to Memory (op-code 745)

C(E)=C(AC)

C(E+1)=C(AC+1)
C(E+2)=C(AC+2)
C(E+3)=C(AC+3)
C(E+4)=C(AC+4)
C(E+5)=C(AC+5)

Page 65

Page 66

Note that MOVE[M] is used for single precision floating
point numbers. DMOVE(M] 1is wused for double precision
floating point numbers or single precision complex numbers.
TMOVE([M] is wused for triple precision floating point
numbers. OQMOVE[M] is wused for double precision complex
numbers. -~ HMOVE[M] is wused for . triple precision complex
numbers., '

Page 67

1.13.8.3 {D,T}skp{-,L,E,LE,A,GE,N,G} {Q,H}SKP{-,E,A, N} -

These instructions are similar to
Skip{-,L,E,LE,A,GE,N,G}. Instead of testing a single word
in memory, they test a Doubleword, Tripleword, Quadword, or
Hexword (respectively). Unlike SKIP, the data is not copied
into the AC. The AC field 1is decoded as part of the
op-code.

Note that for Quadwords and Hexwords it is not possible
to test for {L,LE,GE,G}. These concepts are not meaningful
in the context of complex numbers.

Mneumonic Opcode

DSKP 300 (same as CAI)
DSKPL 331 (same as SKIPL)
DSKPE 254-2

DSKPLE 254-3

DSKPA 304 (same as CAIA)
DSKPGE 335 (same as SKIPGE)
DSKPN 254-6

DSKPG 254-7

TSKP 300 (same as CAI)
TSKPL 331 (same as SKIPL)
TSKPE 254-12

TSKPLE 254-13

TSKPA 304 (same as CAIA)
TSKPGE 335 (same as SKIPGE)
TSKPN 254-16

TSKPG 254-17

QSKP 300 (same -as CAI)
QSKPE 254-10

QSKPA 304 (same as CAIA)
QSKPN 254-11

HSKP 300 (same as CAI)
HSKPE 254-14

HSKPA 304 (same as CAIA)

HSKPN 254-15

Page 68

1.13.8.4 {D,T,Q,H}SETZ[M] -
Zero the Doubleword, Tripleword, Quadword, or Hexword.

Mneumonic Opcode

DSETZM 256-13
TSETZM 256-14
QSETZM 256-15
HSETZM 256-16
DSETZ EOP-1
TSETZ EOP-2
QSETZ EOP-3
- HSETZ EOP-4

Note that it 1s better to code "{D,T,Q,H}SETZ AC," than
"{D,T,Q,H}SETZM AC". The SETZ instruction is potentially
faster than the corresponding SETZM (it has the potential to
zero all the affected AC's simultaneously). Moreover, the
prefetch of the next instruction can start sooner with SETZ
than with SETZM.

Note that the SETZ group uses modulus 16 arithmetic but
" the SETZM group does not, Thus "TSETZ 17," will zero
registers 17,0, and 1. But "TSETZM 17" will zero register
17 and core locations 20 and 21.

Page 69

1.13.8.5 {—(D,T}[C]NEG -

1.13.8.5.1 NEG (EOP-7) -
NEGate the AC (take the two's.complement).
NEG T1,
is equivalent to:
MOVN T1,T1
Note that the NEG instruction is faster than its equivalent

(it allows the prefetch of the next instruction to start
sooner) .

1.13.8.5.2 DNEG (EOP-10) -

NEGate (take the two's complement) of the doubleword
AC,AC+lo |

DNEG T1,
is equivalent to:
DMOVN T1,T1

Note that the DNEG instruction is faster than the equivalent
DMOVN.

1.13.8.5.3 TNEG (EOP-11) -

NEGate (take the two's complement) of the tripleword
AC,AC+1,AC+2, :

1.13.8.5.4 CNEG (EOP-12) -
NEGate the complex number in AC and AC+l.
CNEG T1,
is equivalent to:

NEG T1,
NEG T1+1,

Page 70

1.13.8.5.5 DCNEG (EOP-13) -
NEGate the pair of doublewords begining at AC.
DCNEG T1, - ‘
is equivalent to:

DNEG T1,
DNEG T1+2,

1.13.8.5.6 TCNEG (EOP-14) -
NEGate’the pair of triplewords begining at AC.
TCNEG T1,
is equivalent to:

TNEG T1,
TNEG T1+3,

Page 71

1.13.8.6 Conversions -

The EOP instruction supports twenty different functions
for the purpose of converting between various number
systems. The function codes are listed 1in the following
table: .

TO

pommm b m e — b mm—pm e ————+

! I. ¢t DI ' F ! DF ! TF !

Fmm b m e b ———— - ——— +

! Tt X ot 200 21t 22 23 ¢

! DI ! 24 ! X ! 25t 26 ! 27 !

FROM ! F ! 30 ¢t 31 ¢+ X t 32t 33!
! DF ! 34 ' 35 ! 36 ¢ X t 37!

! TF ! 40 ! 41 ! 42 ' 43 ! X !

pommm b ———m——— b ——p———— ¢

I - Integer

DI - Double Integer

F - Floating (single precision)
DF - Double Floating

TF - Triple Floating

Example: The instruction CDIDF converts a number from
doubleword integer format into double precision floating
point format. This instruction is function 26 of EOP.

Func Name Notes

20 CIDI C(AC+1)=C(AC) C(AC)=0
21 CIF same as FLTR

22 CIDF

23 CITF

24 CDII C(AC)=C(AC+1) *
25 CDIF

26 CDIDF

27 CDITF A

30 CFI same as FIX *
31 CFDI *

32 CFDF same as SETZ AC+1,
33 CFTF

34 CDFI *

35 CDFDI *

36 CDFF (rounded)

37 ‘ CDFTF

40 - CTFI *

41 CTFDI *

42 CTFF (rounded)

43 CTFDF (rounded)

* = Sets one of the overflow bits and/or traps 1if the
conversion is not possible.

Page 72

1.14 EXTEND (opcode 256-7)

The EXTEND instruction is completely different from
that on the PDP10.

The format of the extend instruction is as follows:

EXTEND [BYTE (~D9)OPCODE(4)AC(~D19)E2
additional arguments

co] :

The effective address of the EXTEND instruction specifies
the location of an argument block. The argument block is
two or more words long. The exact length depends on which
function is specified. ‘ '

The format of words E+1 through E+n varies from
function to function. The format of word E+0, however,
remains constant. The format of E+0 1is identical to the
basic 1instruction format (see section 1.3). The first nine
bits specify a function code. The next 4 bits specify an

AC. The last nineteen bits specify an effective address.

Note that the EXTEND instruction has two effective
addresses. To avoid confusion we refer to them by seperate
names: "E" and "E2". We use the name "E" to denote the
original effective address (the 1location of the argument
block). "E2" refers to the effective address specified by
bits 15-37 of E+0.

Note that the term "AC" is not deemed to be confusing.
There's only one AC not two. Bits 11-14 of the original
instruction are not interpreted as an AC. They are,
instead, part of the op-code. The term "AC" shall be used
only to refer to bits 11-14 of E+0.

Most of the arguments (E+1, E+2, E+3, ...) are
interpreted as indirect words (see section 1.3). Thus any
value between -2**21 and +2**31-1 can be specified. By
using 17 as .an index register, position independent
addressing can be acheived. Moreover, by setting the
indirect bit, one need not specify the actual value. One
can instead specify the address where the argument is to be
found. :

rage /3

1.14.1 SMOVE - String Move (EXTEND 1) -

E+0/ BYTE (~D9)1(4)0(~D19)PAD
+1/ addr of BP A
+2/ addr of BP B

Sting B is copied to string A.

Both byte pointers must be type 5. Any other type code
will result in an "illegal operand" trap. Note that the
argument block contains the address of the byte pointer and
not the byte pointer itself.

If string B is shorter than string A, it is padded by
inserting extra bytes at the end of the string. E2
specifies the value of the pad byte.

If string B is longer than string A, it is truncated by
dropping bytes from the end of the string.

The following piece of pseudo code documents the
algorithm used by the microcode:

; EA E2,0(E) : PERFORMED BY EXTEND'S DISPATCH
MOVEI T1,Q1(E) ‘ ‘
MOVE Al,0(T1)
MOVEI . A2,@1(T1l)
MOVEI T1,82(E)
MOVE B1,0(T1)
MOVEI B2,@1(T1)
SMOVEl: ILDBW T1,Bl
MOVE T1,E2
IDPBL T1,Al
JRST SMOVE1

1.14.2 BSMOVE - Backward String MOVE (EXTEND 2) -

BSMOVE 1is jdst like SMOVE except that the Dbytes are
moved in reverse order. The difference in order will only
matter if the two strings overlap.

BSMOVE is to SMOVE as BBLT is to BLT.

Page 74

1.14.3 CONCAT - Concatenate Two Strings (EXTEND 3) -

This instruction is almost the same as SMOVE except
that it does not insert PAD characters if the target string
is shorter than the source.

E+0/ BYTE (~D9)3(~D23)0
+1/ addr of BP A ’
+2/ ‘addr of BP B

Both bYte pointers must be type 5.

Note that E+1 is the addr of byte pointer A and not the
byte pointer 1itself. At the conclusion of the instruction
byte pointer A is incremented by the number of bytes in
string B. Byte pointer B is unchanged.

Page 75

1.14.4 SRCH{E,N} - Search A String -

E+0/ BYTE (~D9)OPCODE (4)AC(~D19)CHAR
+1/ addr of BP

SRCHE - (EXTEND 4) Search the string specified by BP for the
character specified by CHAR. Stop the search upon finding
the first byte equal to CHAR. If AC is non-zero, store in
AC the byte number where the target character was found
(zero if the character was not found). The instruction
skips 1iff the target character was found. Note that BP
should initially point to the ficticious byte Jjust Dbefore
the first byte to be tested (i.e. the C field of the BP
contains the number of bytes to be tested).

SRCHN - (EXTEND 5) Search the string for the first byte
which is not equal to CHAR. If AC is non-zero, store in AC
the byte number of the first byte not equal to CHAR (zero if
the entire string was equal to CHAR). The instruction skips
iff there is at least one byte not equal to CHAR.

Note that BP must be a type 5 byte pointer.

Noté that its perfectly legal to use 32 bit bytes (full
words) .

Page 76

1.14.5 SPAT{E,N} Search A String (with Pattern Matching) -

E+0/ BYTE = (~D9)OPCODE(4)AC(~D19)<ADDR OF BIT MASK>
+1/ addr of BP ‘ '

+2/ ' MIN ‘

+3/ MAX

These instructions are quite similar to SRCH{E,N}.
Instead of searching for a single character, however, we
search for any of a group of <characters. This group is
specified by a bit mask. The first bit in the mask
corresponds to the character whoose value is MIN. The last
bit in the mask corresponds to the character whoose value is
MAX. The length of the mask (in bits) is MAX-MIN+1l.

- SPATE is function 6 of EXTEND. SPATN is function 7.

Example: Pseudo code for SPATE

SPATE: EA E2,0(E)
MOVEI T1,Q1(E)
MOVE Al,0(T1)
MOVEI A2,Q1(T1)
MOVEI MN,@Q2(E)
MOVEI MX,@3(E)
MOVEI K,1

SPATEl: ILDBW T1,Al
JRST SPATE?2

CAML T1,MN

CAMLE T1,MX

JRST SPATE3

SUB T1,MN

LSHC T1,-5

LSH =~ T2,-"D27

MOVNS T2

MOVSI T3,100000 _ ;SET SIGN BIT
LSH T3,(T2) ~

ADD T1,E2

TDNE T3,(T1)

JRST SPATE4
SPATE3: AOJA K,SPATE1l
SPATE2: SETZ K

14
SPATE4: LDB T1,[POINT 4,0(E),14] ;AC
SKIPE Tl , _
MOVEM K, (T1)
SKIPN K
- ; NON-SKIP

- ; SKIP

Page 77

1.14.6 ScomMP{-,L,E,LE,A,GE,N,G} - String COMPare -

E+0/ BYTE (~D9)OPCODE(4)AC(~D19)PAD
+1/ addr of BP A
+2/ addr of BP B

Compare string A with string B. Stop upon finding the
first pair of Dbytes that are unequal. If AC is non-zero,
store in AC the byte number of the first pair of bytes that
are unequal. Skip the next instruction depending on which
string is greater.

Both byte pointers must be type 5. Any other type code
will result in an "illegal operand" trap.

Note that SCOMP and SCOMPA are not no-ops. AC returns
the byte number of the first byte which is unequal.

Using the AC returned by SCOMP, an ADJBP will point to
the first byte that differs.

Name EXTEND Skip
SCOMP 10 never
SCOMPL 11 A<B
SCOMPE 12 A=B
SCOMPLE 13 A<=B
SCOMPA 14 always
SCOMPGE 15 A>=B
SCOMPN 16 A<>B

SCOMPG 17 A>B

Page 78

1.15 Conceal

The PDP10 had a flag bit called "PUBLIC". On the new
machine this flag has been extended into a three bit field.
The field is called "CONCEAL". A value of zero in the field
is roughly equivalent to the PUBLIC bit being lit. A
non-zero value means that the program 1is concealed. Note
that there are seven different flavors of concealment.

This allows the program to attach to seven different
segments, each of which contains proprietary code. Each
segment is protected from unauthorized access by the wuser.
Each segment is protected from each of the others.

If the program is running in PUBLIC mode (i.e.
CONCEAL=0) then it can only reference those pages which are
PUBLIC.

I1f, however, the program is running with CONCEAL=X then
it can reference both PUBLIC pages and those pages with
CONCEAL=X.

The one exception to these rules 1is the PORTAL
instruction. Any program can reference any word in any page
(regardless of the value of CONCEAL) but only if the
reference 1is a fetch for execution and only if the word
contains a PORTAL instruction. The PORTAL instruction is
used to declare the 1legal entry points to a concealed
segment.

Although the CONCEAL field is only 3 bits wide, this
does not mean that the program can only attach to seven
different segments. He can attach to much more than this.
But only seven of the segments can be concealed. As
concealed segments are rather rare, this should not be
restrictive. '

Note that the conceal field is only meaningful in wuser
mode. All references are considered legal if the machine is
in exec mode.

Note that ULDB and UDPB are considered to be user mode
references and it is indeed possible for these instructions
to get a proprietary violation. This feature can be
disabled by lighting the "CONCEAL Disable Bit" in the FLAGS
register (see section 1.16).

Page 79

1.16 FLAGS

On the PDP10, the "PC" was divided into 2 halves. The
RH contained the program counter and the LH contained flags.
Oon the new machine each half has been expanded into a full
32 bit register.

Note that the FLAGS register is accessable only from
exec, A user mode program can neither read nor write the
FLAGS register. ‘

Note that the FLAGS register does not contain any

overflow bits. These have been moved elsewhere (see section
1.17).

Format of the FLAGS register:

0 User Mode (sign bit)
1-2 spare
3 User Mode Address Break Inhibit

If on, prevents user references from causing
address breaks.

The bit is not intended as an equivalent of bit
8 in the KL10 PC. It is, instead, an equivalent for
bit 4 in the KI1l0 "DATAO PAG,". The bit 1is not a
one shot. When 1lit the bit stays lit forever. To
simulate a one shot use the SSTEP instruction.

The bit has no affect on exec mode references
nor physical references.

4 Load Exec AC Set

When the FLAGS register is written, this bit
determines whether bits 5-7 are loaded. A one in
bit 4 causes bits 5-7 to be loaded as the new exec
AC set. A zero 1in bit 4 causes bits 5-7 to be
ignored (the exec AC set is not changed).

When the FLAGS register is read, bit 4 1is
always on.

5-7 Exec AC Set

10 Load User AC Set

11-13
14-17

20

21

22-24

25
26-27

30
31
32
33
‘34

Page 80

Similar to Dbit 4 Dbut controls bits 11-13
instead of bits 5-7,.

User AC Set
spare |
Disable CONCEAL

If this bit is on, the CONCEAL field is
ignored. All references are considered legal.

The bit is intended so that CONCEAL may be
temporarily disabled during a routine that does lots
of ULDB's and UDPB's. Most routines that do these
instructions, however, do not wish to ignore
CONCEAL. It is desired for the instruction to trap
if the reference is not legal for the segment that
issued the current UUO.

Load CONCEAL

Similar to Dbit 4 Dbut controls bits 22-24
instead of bits 5-7.

CONCEAL
spare
Load PI Enables

These bits control the ~usage of bits 30-37.
When the FLAGS register is written, bits 26-27 are

interpreted as follows:

00 - No change to PI enables. Ignore bits 30-37.

01 Turn on those enables selected by bits 30-37.

10 - Turn off those enables selected by bits 30-37.
11 - Load the PI ehables from bits 30-37.

When the FLAGS register is read, bits 26 and 27 are
always on, ;

PI System

PIA 1
PIA 2
PIA 3

PIA 4

Page 81

35 PIA 5
36 PIA 6

37 PIA 7

Page 82

1.17 TRAPS
The microcode maintains an internal register called
TRAPS. This register 1is a bit mask which indicates the

types of failures that have occurred during this instruction
" (integer overflow, floating overflow, no divide, etc).
Normally this register will be zero. If, however, the
register is non-zero at the conclusion of the instruction,
the microcode will take special actions. The following code
is executed at the conclusion of every instruction:

~JUMPE TRAPS , NEXT ;s NO TRAPS GOTO NEXT INSTRUCTION
GOO: IORB TRAPS, .JBTRP ;SET BITS IN USER CORE ’

AND TRAPS, .JBNBL ; ENABLED FOR THIS TRAP?

JUMPE TRAPS, NEXT s NO

TDNE TRAPS, .JBMOD ;YES, WHO FIELDS THE TRAP?

JRST FOO ;s MONITOR

MOVEM PC, .JBTOP ;USER, STORE OLD PC

MOVE PC, .JBTNP ;GET NEW PC

SETZ TRAPS, ; CLEAR THEM

-JRST NEXT ; GOTO NEXT INSTRUCTION
FOO: MOVEM FLAGS, .ESTOP ; STORE OLD PC

MOVEM PC, .ESTOP+1)

MOVE FLAGS, .ESTNP ;GET NEW PC

MOVE PC, .ESTNP+1

SETZ TRAPS, ; CLEAR THEM

JRST NEXT

;GOTO NEXT INSTRUCTION

It is important to note that the instruction at GOO 1is an
IORB and not an IORM. The user trap routine must be careful
to clear .JBTRP before dimissing the current trap else havoc

may occur on subsequent traps. (See also section 2.5:
MAT) . |
1.17.1 Trap Types -

[os]
-
(ad
-3
]
o))
o

I
]
|
|
i
|
{
|
|
|
}
A
i
|
i
i
1
|

Integer Overflow
Integer No Divide
Floating Overflow
Floating Underflow
Floating No Divide
String Overflow
String No Divide
Illegal Operand
0 PDL Overflow

0O WO

1.18

Word

0-17
20
21

22

23

24
25
26

27
30
31
32-n

JOBDAT

.JBDAT
.JBTRP

.JBNBL

.JBMOD

.JBTOP
.JBTNP

.JBUUO

.JBUUE
.JBUOP

.JBUNP

Page 83

ACs
Addr of 1lst word beyond JOBDAT.
Bit mask of traps which have occurred.

Bit mask of enabled traps. A zero bit means
that the error condition is ignored. 1If the
bit is a one, however, a trap will occur.

Bit mask that tells who fields the trap: A
zero bit means that the user fields the trap
(via .JBTNP). If the bit is a one, however,
then the monitor fields the trap (via
.ESTNP).

Note that even the traps which occur in exec
mode have the choice of being fielded either
by .JBTNP or .ESTNP.

Trap Old PC.

Trap New PC.

Upon encountering an LUUO, the microcode
will store the opcode and AC field 'in this
location. Only bits 0-14 of this 1location
are meaningful. Bits 15-37 are
indeterminate.

Note that in the case of an XCT of an LUUO
it would be non-trivial to determine the
opcode via .JBUOP

LUUO Effective Address.

LUUO 0l1ld PC

LUUO New PC

Fields defined by the monitor.

Page 84

1.19 Page Maps

It is not our purpose to define the address translation
mechanism. We consider this to be implementation dependant.

We will only define those portions of the page map
which are not related to address translation. We do not
assign actual word numbers. The offsets are considered
implementation dependant. We define only the field names
and the number of words occupied by each field.

1.19.1 UPMP - User Page Map Page -

Name Words What
.USK 10 These words are used by the microcode to
store status information when an

interruptable instruction 1is interrupted.
The information tells exactly how far the
instruction got before it was interrupted.
In order to restart the instruction at the
correct spot, the microcode will retrieve
these words from the UPMP, (See section 2.5
for an example).

The format of these words is different for
each instruction. 1In general, however, word .
0 is zero if the instruction is to start at
the Dbeginning. Word O is non-zero if the
instruction is to restart in the middle.
This 1is not to say that .USK is inspected
each time an interruptable instruction
begins. It is inspected only if the RESTART
flag is on. The RESTART flag is lit by the
XDIS instruction. -

Example: see section 2.5 (the MAT
instruction). Note that for the sake of
simplicity the MAT instruction is the only
one where we have 1included a complete
description of .USK . The reader should
assume, however, that all interruptable

" instructions function in a manner consistent
with the MAT instruction.

1.19.2

Name

.ESTOP
.ESTNP

.ESK

Page 85

EPMP - Exec Page Map Page -

Words

10*10

What

Trap O0ld PCW (FLAGS and PC).
Trap New PCW (FLAGS and PC).

Eight blocks of eight words each. There's
one block for each interrupt level (plus one
for UUO level). Each block 1is a copy of
.USK (used to restart an interruptable
instruction).

Page 86

2.0 . PART II: THE VECTOR OPTION

The vector instructions are considered to be an option
to the basic machine. Each of the instructions can be
implemented purely in the microcode. They are best
implemented, however, by building special purpose hardware.

It is not envisioned that the custom hardware would
exist in the 1initial implementation of the machine. The
instructions would 1initially be implemented in the
microcode. A pipeline version wouldn't come until much
later.

Even without special purpose hardware, the instruction
~will still run much faster than if the equivalent were coded
in assembly.

Page 87

2.1 VMOVE - MOVE A Vector (EXTEND 200)

The VﬁOVE instruction will move vector B to vector A,
The format of the argument block is as follows:

E+0/ BYTE (~D9)200(4)0(~D19)N
+1/ addr of vector A
+2/ delta A
. addr of vector B
delta B

-~ pumber of items

,3 As always, each of these parameters is interpreted as
an indirect word (see section 1.3). Thus the programmer can
either specify the actual value or the address where the
value is to be found.

The E+2 parameter specifies the distance (in words)
between two items in vector A., The E+4 parameter specifies
the distance between two items in vector B. Parameter N
specifies the number of words per item. N can have almost
any value, but the most popular values are as follows:

N Datum

1 integer or single precision floating point
2 double floating or single complex

3 triple precision floating point

4 double precision complex

6 triple precision complex

The following piece of 'pseudo’ code documents the
algorithm used by the microcode:

VMOVE: MOVEI AO,QL(E) ; ADDR OF VECTOR A
MOVEI BO,Q@3(E) ~ :ADDR OF VECTOR B
MOVEI C0,@5(E) ; NUMBER OF ITEMS
MOVEI DA,QR2(E) ;DELTA A
MOVEI DB, Q4 (E) :DELTA B
EA N,0(E) A ;E2
VMOVE2: MOVE AI,AO ;ADDR OF ITEM A
MOVE BI,BO ;ADDR OF ITEM B
MOVE CI,N :WORDS PER ITEM
VMOVEl: MOVE T1,(AI) : COPY AN ITEM
MOVEM T1, (AO)
ADDI AI,1
ADDI A0, 1
S0JG CI,VMOVE1l
ADD AO,DA ' ;STEP TO NEXT ITEM
ADD BO, DB :

SOJN CO,VMOVE2 : LOOP

Some examples will help to clarify.

following fortran program:

C MOVE A VECTOR
REAL X(100),Y(100)
DO 1 I=1,100

1 X(1)=Y(1)

This could be coded®

E+0/ BYTE (~D9)200(4)0(~D19)1
+1/ X

+2/ 1

+3/ Y

+4/ 1

+5/ ~D100

The program:

C MOVE A MATRIX
REAL X(100,5),Y(100,5)
DO 1 I=1,100
DO 1 J=1,5

1 X(1,J3)=Y(I,J)

Could be coded as:

E+0/ BYTE (~D9)200(4)0(~D19)1
+1/ X .

+2/ 1
+3/ Y
+4/ 1

+5/ ~D500

Page 88

Consider

the

Page 89

C MOVE A "COLUMN"
REAL X(100,5),Y(100,5)
DO 1 I=1,100

1 Xx(1,1)=Y(1,2)

Could be coded as follows: (if in row major order)

E+Q/ BYTE (~D9)200(4)0(~D19)1

+1/ X
+2/ 5
+3/ Y+1
+4/ 5

+5/ ~D100
Or it could be coded as follows: (if in column major order)

E+0/ BYTE (~D9)200(4)0(~D19)1

+1/ X
+2/ 1
+3/ Y+~D100
+4/ 1

+5/ ~D100

C MOVE A "ROW" TO A "COLUMN"
REAL X(100,100),Y(100,100)
DO 1 I=1,100

1 X(1,2)=Y(1,1)

Could be coded as follows: (if in row major order)

E+0/ BYTE (~D9)200(4)0(~D19)1

+1/ X+1
+2/ ~D100
+3/ Y

+4/ 1

+5/ ~D100

Page 90

C MOVE A DOUBLE "ROW" TO A DOUBLE "COLUMN"
DOUBLE PRECISION X(100,100),Y(100,100)
DO 1 I=1,100

1 x(1,2)=Y(1,1)

Could be coded as follows: (row major)

E+0/ BYTE (~D9)200(4)0(~D19)2

+1/ X+2
+2/ ~D200
+3/ Y

+4/ 2

+5/ ~D100

C MOVE REAL PART OF "COLUMN" TO "ROW"
COMPLEX Y(100,100)
REAL X(100,100)

- DO 1 I=1,100

1 X(2,I)=REAL(Y(I,1))

Could be coded as follows: (row major)

E+Q/ BYTE (~D9)200(4)0(~D19)1
+1/ X+7~D100
+2/ 1
+3/ Y
+4/ ~D200
+5/ ~D100

Page 91

2.2 Vv{MUL,DIV,ADD,SUB, {F,DF,TF,C,DC,TC}{AD,SB,MP,DV}}{2,3}

These instructions are used to perform arithmetic
operations upon pairs of vectors. The format of the
argument block is as follows:

E+0/ BYTE (~D9)201(4)0(~D19)FUNC

+1/ number of items

+2/ addr of vector A

+3/ delta A

+4/ addr of vector B

+5/ delta B

+6/ addr of vector C ;included only if 3 operands
+7/ delta C ;included only if 3 operands

The E2 field gives the function code (each of these
instructions 1is implemented as a function of EXTEND 201).
Note that some of the functions have two operands and some
have three (hence the last character of the mneumonic).

Name FUNC Op Datum

VADD2 0 A=A+B INTEGER

VADD3 1 C=A+B INTEGER

VSUB2 2 A=A-B INTEGER

VSUB3 3 C=A-B INTEGER

VMUL2 4 A=A*B INTEGER

VMUL3 5 C=A*B INTEGER

VD1IV2 6 A=A/B INTEGER

VDIV3 7 C=A/B INTEGER

VFAD2 10 A=A+B SINGLE FLOATING
VFAD3 11 C=A+B SINGLE FLOATING
VFSB2 12 A=A-B SINGLE FLOATING
VFSB3 13 - C=A-B SINGLE FLOATING
VFMP2 14 A=A*B SINGLE FLOATING
VFMP3 15 C=A*B SINGLE FLOATING
VFDV2 16 A=A/B SINGLE FLOATING
VFDV3 17 C=A/B SINGLE FLOATING
VDFAD2 20 A=A+B DOUBLE FLOATING
VDFAD3 21 C=A+B DOUBLE FLOATING
VDFSB2 22 A=A-B DOUBLE FLOATING
VDFSB3 23 C=A-B DOUBLE FLOATING
VDFMP2 24 A=A*B DOUBLE FLOATING
VDFMP3 25 C=A*B DOUBLE FLOATING
VDFDV2 26 A=A/B DOUBLE FLOATING
VDFDV3 27 C=A/B DOUBLE FLOATING
VTFAD2 30 A=A+B TRIPLE FLOATING
VTFAD3 31 C=A+B TRIPLE FLOATING
VTFSB2 32 A=A-B TRIPLE FLOATING
VTFSB3 33 C=A-B TRIPLE FLOATING
VTFMP2 34 A=A*B TRIPLE FLOATING
VTFMP3 35 C=A*B TRIPLE FLOATING
VTFDV2 36 A=A/B TRIPLE FLOATING
VTFDV3 37 C=A/B TRIPLE FLOATING

VCAD?2 40 A=A+B SINGLE COMPLEX

Page 92

VCAD3 41 C=A+B SINGLE COMPLEX
- VCSB2 42 A=A-B SINGLE COMPLEX
VCSB3 43 C=A-B SINGLE COMPLEX
- VCMP2 44 A=A*B SINGLE COMPLEX
VCMP3 45 C=A*B SINGLE COMPLEX
VCDV?2 46 A=A/B SINGLE COMPLEX
VCDV3 47 C=A/B SINGLE COMPLEX
VDCAD2 50 A=A+B DOUBLE COMPLEX
VDCAD3 51 C=A+B DOUBLE COMPLEX
VDCSB2 52 - A=A-B DOUBLE COMPLEX
VDCSB3 53 C=A-B DOUBLE COMPLEX
VDCMP2 54 A=A*B DOUBLE COMPLEX
VDCMP3 55 C=A*B DOUBLE COMPLEX
VDCDV2 56 A=A/B DOUBLE COMPLEX
VvDCDV3 57 C=A/B DOUBLE COMPLEX
VTCAD2 60 A=A+B TRIPLE COMPLEX
VTCAD3 61 C=A+B TRIPLE COMPLEX
YTCSB2 62 A=A-B TRIPLE COMPLEX
VTCSB3 63 C=A-B TRIPLE COMPLEX
VTCMP2 64 A=A*B TRIPLE COMPLEX
VTCMP3 65 C=A*B TRIPLE COMPLEX
VTCDV2 66 A=A/B TRIPLE COMPLEX
VTCDV3 67 C=A/B TRIPLE COMPLEX

"Note that E+3 or E+5 may be zero, meaning

operand 1isn't really a vector at all. It is,
scalar. The microcode will optimize these cases.
Note that the two operand instruction

read-pause-write.

| The following piece of pseudo code

' .ENTER HERE FOR VFMP3

VFMP3: MOVEI C,@6(E) ;ADDR OF VECTOR C
MOVEI DC,R7(E) :DELTA C
JRST

VFMPA

;ENTER HERE FOR VFMP2

that the
instead, a

is not

documents the
algorithm used by the microcode for VFMP2 and VFMP3:

VFMP2: MOVEI C,Q2(E) ;VECTOR C SAME AS VECTOR A
MOVEI DC,@3(E)
VFMPA: MOVEI A,Q2(E) ;ADDR OF VECTOR A
: MOVEI DA,Q3(E) ;:DELTA A
MOVEI B,Q@4(E) ;ADDR OF VECTOR B
MOVEI DB,R@5(E) ;DELTA B
MOVEI N,QL(E) ; NUMBER OF ITEMS
JUMPE DB, VFMPC +SCALAR B?
- JUMPN DA,VFMPB : SCALAR A?
EXCH A,B ‘ ; SWAP THEM
MOVE DA,DB

+sHERE IF VECTOR B IS ACTUALLY A SCALAR
VFMPC: MOVE X, (B) :PICK UP SCALAR

Page 93

VFMPD: MOVE T1, (A) +MULTIPLY
FMP T1,X
MOVEM T1,(C)
ADD A,DA :STEP TO NEXT ITEM
ADD C,DC
SOJN N, VFMPD : LOOP
JRST DONE
:HERE IF DA AND DB BOTH NON-0
VFMPB: MOVE T1,(A) :MULTIPLY
FMP T1,(B)
MOVEM T1, (C)
ADD A,DA :STEP TO NEXT ITEM
ADD B, DB
ADD C,DC
SOJN N, VFMPB ; LOOP

JRST DONE

2.3 v{ADD,MUL, {F,DF,TF,C,DC,TC} {AD,MP}}

Compute the sum (or product) of all
vector and store the result in AC.
argument block is as follows:

E+0/ BYTE (~D9)202(4)AC(~D19)FUNC
+1/ number of. items
+2/ addr of vector
+3/ delta item

Page 94

the items 1in a
The format of the

Each of these instructions 1s a function of EXTEND 202:

Name FUNC Op Datum

VADD 0 + INTEGER

VMUL 1 * INTEGER

VFAD 2 + SINGLE FLOATING
VFMP 3 * SINGLE FLOATING
VDFAD 4 + DOUBLE FLOATING
VDFMP 5 * DOUBLE FLOATING
VTFAD 6 + TRIPLE FLOATING
VTFMP 7 * TRIPLE FLOATING
VCAD 10 + SINGLE COMPLEX

VCMP 11 * SINGLE COMPLEX

VDCAD 12 + DOUBLE COMPLEX

VDCMP 13 * DOUBLE COMPLEX

VTCAD 14 + TRIPLE COMPLEX

VTCMP 15 *

TRIPLE COMPLEX’

Example: Pseudo code for VFAD:

VFAD: MOVEI N,@l(E)
MOVEI A,Q2(E)
MOVEI DA,RQR3(E)

SETZ S,
LOOP: FAD S, (a)
ADD A,DA
SOJN N, LOOP
LDB AC, [POINT 4,0(E),14]

MOVEM S, (AC) -

Page 95

2.4 {-,D,T}POLY

Evaluate a polynomial (single, double, or triple
precision floating point).

Y = CO + CL*X + C2*X**2 + C3*X**3 + ..,

E+0/ BYTE (~D9)OPCODE(4)AC(~D19)0
+1/ number of items

+2/ addr of vector

+3/ delta item

The value of X is taken from the AC. The polynomial is
computed using a vector of coeffiecients. The result is
placed back in the AC.

Name EXTEND
POLY 203
DPOLY 204
TPOLY 205

Example: Pseudo code for POLY:

POLY: MOVEI N,Ql(E)
MOVEI A,Q2(E)
MOVEI DA,Q3(E)

LDB AC, [POINT ¢,0(E),14]

MOVE X, (AC)

SETZ Y,

FMOVEI 2Z,1.0/40000 ;2=1.0
LOOP: MOVE T1,(A)

FMP T1,Z

ADD Y,T1

FMP Z,X

ADD - A,DA

SOJG N, LOOP
MOVEM Y, (AC)

Page 96

2.5 {-,F,DF,TF,C,DC,TC}MAT

Multiply matrix A by matrix B according to the rules of
linear algebra. Place the result in matrix C (C=A*B).

Note:
number of rows in mat B

number of rows in mat C
number of cols in mat C

number of cols in mat A
number of rows in mat A
number of cols in mat B

o

Each matrix can be stored in either row major order or
column major order.

The format of the afgument block is as follows:

E+0/ BYTE (~D9)OPCODE("~D23)0
+1/ addr of matrix A

+2/ delta col A

+3/ delta row A

+4/ addr of matrix B

+5/ delta col B
+6/ delta row B

- +7/ addr of matrix C

- +10/ delta col C
+11/ delta row C
+12/ cols in A, rows in B
+13/ rows in A, rows in C
+14/ cols in B, cols in C

Name EXTEND Datum

MAT 206 INTEGER

FMAT 207 SINGLE FLOATING
DFMAT 210 DOUBLE FLOATING
TFMAT 211 TRIPLE FLOATING
CMAT 212 SINGLE COMPLEX
DCMAT 213 DOUBLE COMPLEX
TCMAT 214 PRIPLE COMPLEX

The following piece of pseudo code uses 15 registers.
It documents the algorithm that the microcode would use to
implement FMAT. DFMAT, on the other hand, would require 17
registers. TFMAT would require 19. Etc.

The example, however, should not be taken literally.
When implemented in microcode, we would use additional
" registers. For example, E+3 would be loaded into a register
just 1like E+2 is loaded into DAC. E+3 would not be fetched
from core each time it was needed. : '

: ENTER
FMAT:

; START
FMAT3:

;s START
FMAT2:

; START
- FMAT1:

FMAT6:

DONE

Page 97

S=0 : SUM
T1=1 s TEMPS (USED ONLY DURING RESTART)
T2=T1+1 ,
T3=T2+1
CO=T1 :START OF COL IN C (OUTTER LOOP)
CI=T2 ; CURRENT ITEM IN C -(INNER LOOP)
BO=4 +START OF COL IN B (OQUTTER LOOP)
BI=T3 :CURRENT ITEM IN B (INNER LOOP)
AO=5 +START OF ROW IN A (OUTTER LOOP)
Al=6 +CURRENT ITEM IN A (INNER LOOP)
K=7 :COUNT OF MULTIPLYS :
KO=10 ; COUNT OF COLS LEFT IN C (OUTTER LOOP)
KM=11 +COUNT OF ROWS LEFT IN C (MIDDLE LOOP)
KI=12 +COUNT OF ROWS LEFT IN B (INNER LOOP)
DAC=13 ;DELTA A COL (E+2)
DBR=14 ;DELTA B ROW (E+6)
X=15 :CURRENT ITEM
- E=16 ;EFFECTIVE ADDR
HERE
MOVEI DAC,@2(E) ;DELTA A COL
MOVEI DBR,26(E) ;DELTA B ROW
SKIPE K, .USK : RESTART?
JRST FMATS ; YES
MOVEI BO,Q4(E) ;ADDR OF 1ST COL IN B
MOVEI CO,R7(E) :ADDR OF 1ST COL IN C
MOVEI KO,RQ14(E) ;COLS IN B, COLS IN C
OF OUTTER LOOP:
MOVEI AO,Q1(E) +ADDR OF 1ST ROW IN A
MOVE CI,CO s START OF COL IN C
MOVEI KM,Q13(E) ;ROWS IN A, ROWS IN C
OF MIDDLE LOOP:
MOVE AI,AO ;START. OF ROW IN A
MOVE BI,BO ;START OF COL IN B
MOVEI KI,Q12(E) ;COLS IN A, ROWS IN B
SETZ S,
OF INNER LOOP:
BLNE n,m : INTERRUPT PENDING?
JRST FMAT4 ; YES
MOVE X, (AI) ;GET ITEM- FROM A
FMP X, (BI) +:TIMES ITEM FROM B
FAD S,X ;ADD TO SUM
ADDI K,1l ; BUMP COUNT
ADD AI,DAC ;NEXT ITEM IN ROW A
ADD BI,DBR +NEXT ITEM IN COL B
SOJN KI,FMATL : LOOP
MOVEM s, (cr1) ; STORE SUM IN C
ADDI AO,Q3(E) :NEXT ROW IN A
ADDI CI,Q11(E) :NEXT ROW IN C
SOJN KM, FMAT?2 : LOOP
ADDI BO,@5(E) :NEXT COL IN B
ADDI CO,Q10(E) ;s NEXT COL IN C
SOJN KO, FMAT3 : LOOP
JRST

Page 98

2 T

:HERE IF INTERRUPT (OR PAGE FAULT)

FMAT4: MOVEM S, .USK+1 ; SAVE SUM
SKIPE X, TRAPS ;ANY TRAPS SO FAR?
IORM X, .JBTRP ;YES, STORE THEM
MOVEM K, .USK ; SAVE COUNT

JRST FOO ;GO SERVICE INTERRUPT

;HERE IF INSTRUCTION IS RESTARTED

FMAT1-1 to "SETZB S, (CI)".
fault is going to occur, it does so during a favorable

page
window.

This will

insure

FMATS5: MOVEI KI,@l2(E) ;COLS IN A, ROWS IN B

MOVEI KM,@13(E) ;ROWS IN A, ROWS IN C

MOVEI KO,@Q14(E) :COLS IN B, COLS IN C

MOVE T2,K ; COUNT

SETZM .USK ; RESET COUNT

IDIV T2,KI ; T3=ROW NUMBER IN B

MOVE T1,T2 : ITEM NUMBER IN C

IDIV - T1l,KM ;T1=COL NUMBER IN C

s T2=ROW NUMBER IN C

SUB KI,T3 ;ROWS LEFT IN B

SUB KM, T2 ;ROWS LEFT IN C

SUB KO, T1 ;COLS LEFT IN C

MOVE AOQ,T2 ; ROW NUMBER IN A

IMULI AO,@Q3(E) ; OFFSET

ADDI AO,Q1(E) ; ADDR :

MOVE AI,T3 ;COL NUMBER IN A

IMUL AI,DAC s OFFSET

ADD AI,AO : ADDR

MOVE BO, Tl ;COL NUMBER IN B

IMULI BO,@5(E) ; OFFSET

ADDI BO,@4(E) - s ADDR

1 MOVE BI,T3 ;ROW NUMBER IN B

IMUL BI,DBR :OFFSET

ADD BI,BO ; ADDR

:MOVE Co,T1 .+COL NUMBER IN C

IMULI CO,RQ1l0(E) ; OFFSET

ADDI CO,Q@7(E) ; ADDR

:MOVE C1,T2 :ROW NUMBER IN C

IMULI CI,@lLl(E) ; OFFSET

ADD CI,CO ;ADDR

MOVE X, .JBTRP :RESTORE TRAPS

MOVEM X, TRAPS

MOVE S, .USK+1 :GET SUM BACK

JRST FMAT6 :CONTINUE

Note that instead of using .USK+l to store the sum,

could use O0(CI) instead. This would work just fine in the
case of an interrupt. But wouldn't work as well in the case
of a page fault (as the reference to 0(CI) might cause a
second page fault). This problem with the page
can be corrected, however, by changing the instruction at

that 1if

Page 99

Regardless, the .USK+1l approach is deemed better than
the O0(CI) approach. Its slightly faster and its less of a
kludge.

Note the manner in which traps are handled. When an
overflow occurs the instruction does not abort. It is not
until the conclusion of the instruction that the microcode
tests whether or not the user 1is enabled to trap this
overflow. Even if the instruction 1is interrupted and
restarted, the existence of the overflow condition will not
cause a trap until the instruction comes to full completion.

Note the manner in which TRAPS is reloaded from .JBTRP.
If. the bit is on in .JBTRP, we make no attempt to decipher
whether it was this instruction that lit the bit. It 1is
assumed that the user will clear the bit in .JBTRP each time
the trap occurs.

Page 100

3.0 PART III: STRING ARITHMETIC

The "String Arithmetic Option" provides a wide variety
of EXTEND instructions to perform arithmetic operations upon
strings of digits.

All of the strings take the following format:

! i ! !

pmmm o o —— e e +
! ! 2nd digit ! cee ! Nth digit !
+ fmm e ———— + e +

Note that it takes N+1 bytes to represent an N digit signed
number.

All of the instructions take their arguments in the
form of a type 5 byte pointer. The BP points to the sign
byte. Therefore the C field contains a count of the digits
(it contains N not N+1). Example: The string

FOO: ASCII "+0047"
would be represented by the byte pointer:

POINTR 8,F00,7,4

Note that the string doesn't necessarily have to Dbe
ASCII, and doesn't necessarily have to be base ten. Any
arbitrary number system can be used: any radix, and any
character set. To define a number system you must code a
- four word parameter block known as the NSB (Number System
Block). The format of the NSB is as follows:

NSB+0/ radix
+1/ ~character code for "O"
+2/ character code for "+"
+3/ character code for "-"

Note that each of these words is interpreted as an
indirect word (see section 1.3). Thus you always have a
choice: vyou can specify the actual value or you can specify
a pointer to the value.

Note that by merely specifing three characters ("0",
"+" and "-") you have completely defined the character set.
These are the only three characters needed to perform
arithmetic.

Note that a string is considered negative if the sign
byte is anything other than "+", It doesn't necessarily
have to be "-". 1If, however, the machine generates a minus
sign, it will use the specified value of "-",

Page 101
Note that hexadecimal cannot be represented. The
sixteen possible digits are not consecutive character codes.

BCD can be represented by specifying the byte size as
4, the radix as ~D10, and "0" as ~DO.

One of the most popular techniques, however, is to set
the byte size to ~D32, the radix to ~D10**9, and "0" to ~DO.

Note that any character outside the range "0" to

"0"+radix-1 is regarded as a zero. Thus spaces are taken as
zeros.

3.1 Unsigned Arithemetic

If NSB+3 is equal to NSB+2 ("-" is equal to "+") then
the string 1is taken to be "unsigned". This is not to say
that the sign byte does not exist. You must, as always,

allocate space for the sign byte. The value of the sign
byte, however, is totally ignored. The string 'is always
considered positive.

In practice, the tendency is to specify a byte pointer
that points to the last byte of the previous field. This is
a "ficticious sign byte". The ficticious byte 1is never
referenced.

Page 102

3.2 S{ADD,SUB,MUL,DIV}{2,3}

These 1instructions are used to perfofm arithmetic
operations upon strings of digits. Strings can be added,
subtracted, multiplied, or divided. ‘

The instructions are 1implemented as functions 100
through 107 of EXTEND. Some of the functions have two
operands (known as operand A and operand B). Some of the
functions have three operands (known as A, B, and C).

Code Name Function

100 SADD2 A=A+B

101 SADD3 C=A+B

102 SSUB2 A=A-B

103 SSUB3 C=A-B

104 SMUL?2 A=A*B *

105 SMUL3 C=A*B

106 SDIV2 A=A/B *

107 SDIV3 C=A/B *

* = To complete these instructions the microcode will

require scratch space. This space will be allocated on the
stack. The stack pointer is specified by the AC field (bits
11-14 of E+0).

The format of the argument block for these instructions
is as follows: "

E+0/ BYTE (~D9)OPCODE(4)AC(~D19)NSB
+1/ addr of BP A
+2/ addr of BP B _
- +3/ addr of BP C ;included only if 3 operands

Note that all 3 byte pointers must be type 5 byte
pointers. Note that type 5 byte pointers are two words
long. Note that the argument block does not contain the
byte pointers themselves but rather the addresses where the
byte pointers can be found. This results in a savings
provided that each string is referenced at least twice. 1In
a typical program the average number of references per
variable is significantly greater than two.

Note that the byte pointers are not incremented,
decremented, or altered in any way by these instructions.

When substracting one unsigned string from another, an
overflow trap will occur if the result 1is negative.
Unsigned strings are not allowed to be negative.

Page 103

Example: Consider the string X whoose value is
"+0023". We wish to evaluate the expression "Y=(X+3)*47",
This could be coded as follows:

EXTEND OP1
EXTEND OP2

e e o

OP1l: SADD3 MYNSB

BPX

BP3

BPY
OP2: SMUL?2 P,MYNSB

BPY

BP47
BPX: POINTR 8,X,7,4
BPY: POINTR 8,Y,7,4
BP3: POINTR 8,LIT3,7,1
BP47: POINTR 8,LIT47,7,2
X: ASCII "+0023"
Y BLOCK 2
LIT3: ASCII "+3"
LIT47: ASCII "+47"
MYNSB: ~DI10

"0"

Z @MYPLUS

MYPLUS: "+"

Page 104

The following piece of pseudo code 1is intended to

document the

algorithm used by the microcode for the

instructions SSUB2, SADD2, SSUB3, and SADD3:

;ENTER HERE FOR

SSUB2: MOVEIA

SADD2: SETZ
MOVEI
MOVE
MOVEI
DMOVE
JRST

; ENTER HERE FOR
SSUB3: MOVEIA
SADD3: SETZ
MOVEI
MOVE
MOVEI
MOVEI
MOVE
. MOVEI
SADD: MOVEI
' MOVE
MOVEI
s EA
MOVEI
MOVEI-
CAMN
JRST
LDB
CAME
TRO
LDB
CAME
TRC
SADDA: MOVEI
MOVEI
EA
; LDBX
EA
TRNU
TRCA
TRNN
JRST

SSUB2 AND SADD2

F,F.MB ; FLAG SUBTRACTION

F, : FLAG ADDITION

T1,Q1(E) :GET BP A

Al,0(T1)

A2,@1(Tl1)

Cl,Al :BP C IS SAME AS BP A

SADD

SSUB3 AND SADD3

F,F.MB : FLAG SUBTRACTION

F, : FLAG ADDITION

T1,Q1(E) ;GET BP A

Al,0(T1)

A2,@1(T1)

T1,Q3(E) ;GET BP C

Cl,0(T1)

C2,@1(T1)

T1,@2(E) :GET BP B

B1,0(T1)

B2,@1(T1) ‘

E2,0(E) ; PERFORMED BY EXTEND'S DISPATCH
CP,@Q2(E2) ; CHARACTER FOR "PLUS"
CM,@3(E2) : CHARACTER FOR "MINUS"

CP,CM ;UNSIGNED? - '

SADDA : YES

T1,Al ;IS STRING A NEGATIVE?

T1,CP ‘ :

F,F.MA ; YES

T1,B1 ;IS STRING B NEGATIVE?

T1,CP

F,F.MB ;: YES

‘R,Q0(E2) ;RADIX

CZ,Q1(E2) ; CHARACTER FOR "ZERO"

KA,Al °COUNT OF DIGITS IN STRING A
KA, [POINT ~D19,Al1,37] ; ANOTHER WAY -

KB, Bl : COUNT OF DIGITS IN STRING B
F,F.MA+F.MB ;BOTH STRINGS NEGATIVE?
F,F.MA+F.MB+F.MC ;YES, THEN C WILL BE NEGATIVE
F,F.MA+F.MB :JUST ONE STRING NEGATIVE?
SADDJ :

;HERE IF JUST ONE STRING IS NEGATIVE
; FIND WHICH NUMBER IS BIGGER

CAMN
JRST
CAML
JRST
EXCH
EXCH
EXCH

KA,KB ; BOTH STRINGS SAME LENGTH?

SADDE : YES

KA ,KB ;WHICH STRING IS LONGER?

SADDB ; STRING A IS LONGER

KA,KB :STRING B IS LONGER, EXCHANGE THEM
Al,Bl

A2,B2

Page 105

. TRC F,F.MA+F.MB
:HERE WHEN STRING A IS THE LONGER STRING
SADDB: SUB KA,KB ; DIFFERENCE OF LENGTHS
:WE EXPECT THAT STRING A WILL HAVE LEADING ZEROS (KA OF THEM)
SADDC: ILDB T1,Al :GET NEXT DIGIT FROM STRING A
SUB T1,CZ :IS IT ZERO? (I.E. NOT A DIGIT)
SKIPL Tl
CAML T1,R
CAIA
JUMPN T1,SADDG
SOJN KA, SADDC : YES, LOOP

s HERE WHEN BOTH STRINGS ARE SAME LENGTH.
sCHECK WHICH STRING HAS LARGER VALUE.

SADDE: ILDBW T1,Al ;GET NEXT DIGIT FROM STRING A
JRST SADDG ; STRING EXHAUSTED
SUB T1,C2 ; LEGAL DIGIT?
SKIPL Tl
CAML T1l,R
SETZ T1, ;NO, MUST BE SPACE
ILDB T2,B1 : ;GET NEXT DIGIT FROM STRING B
SUB T2,R ; LEGAL DIGIT?
SKIPL T2
CAML T2,R
SETZ2 T2, ;NO, MUST BE SPACE
CAMN T1,T2 ;s SAME?
JRST SADDE ; YES, KEEP LOOKING
; SEARCH ENDS UPON FINDING FIRST DIFFERENCE
CAML T1,T2 ;WHICH IS BIGGER?
JRST SADDI TA
EXCH Al,Bl1 ;B, EXCHANGE THEM
EXCH A2,B2
TRC F,F.MA+F . MB
;HERE WHEN STRING A HAS THE BIGGER VALUE
SADDI: DECBP Bl ;s BACK UP
SADDG: DECBP Al
EA KA, Al . ;GET COUNT BACK
EA KB,Bl

;HERE WHEN THERE ‘IS AT MOST ONE STRING WHICH IS NEGATIVE.
;IF THERE IS, IN FACT, A NEGATIVE STRING THEN IT IS KNOWN THAT
;STRING A HAS THE LARGER MAGNITUDE. S
SADDJ: EA KC,C1 ; COUNT OF DIGITS IN STRING C
ADJBP KA,Al ;SKIP TO END OF STRING
ADJBP KB,Bl
ADJBP KC,Cl1

SETZ c, ; INITIAL VALUE OF CARRY

LOOP: JUMPE KA,LOOP3 ;BRANCH IF STRING A IS EXHAUSTED
LDB T1l,Al ;GET NEXT DIGIT FROM STRING A
DECBP Al ;BACK UP :
SOS KA
SUB T1,CZ ; LEGAL DIGIT?
SKIPL Tl :

CAML T1,R

LOOP3:

LOOP4:

LOOP1:

LOOP2:
LOOP6:

LOOP5:

UNSIGN:

; DONE

SETZ
JUMPE
LDB
DECBP

-SOS

SUB
SKIPL
CAML
SETZ
TRNE
MOVNS
ADD
ADD
JUMPL
CAML
MOVEIA
MOVEIA
SUB
JRST
ADD
SETO
JUMPN
SKIPE
TRO
JRST
ADD
DPB
DECBP
SOJN
JUMPN
JUMPN
CAMN
JRST
TRZN
SKIPA
MOVE
DPB
SKIPL
TRNE
MOVEI
ASH

T1,

KB, LOOP4
T2,B1

Bl

KB
T2,CZ

T2

T2,R

T2,
F,F.MA+F.MB
T2

T1,C
T1,T2
T1,LOOP1
T1,R

c,1

C,0

T1,R
LOOP?2
T1,R

C,
KC, LOOP6
T1
F,F.OVR
LOOP5
T1,CZ
T1,Cl

c1

KC, LOOP
KA, LOOP
KB, LOOP
CP,CM
UNSIGN
F,F.MA+F.MC
T1,CP
T1,CM
T1,Cl

-

F,F.MA+F.OVR

c,1
C,”D31

Page 106

;NO, MUST BE SPACE

:BRANCH IF STRING B IS EXHAUSTED
;GET NEXT DIGIT FROM STRING B

; BACK UP

; LEGAL DIGIT?

:NO, MUST BE SPACE

;ONE STRING NEGATIVE?
+YES, SUBTRACT B FROM A
:ADD CARRY

;ADD THE TWO DIGITS
+BRANCH IF BORROW OUT

: CARRY OUT?

;s YES

: NO

; YES

; BORROW OUT

+ BRANCH UNLESS C EXHAUSTED
;s OVERFLOW?
: YES

; CONVERT TO CHARACTER CODE
; STORE DIGIT

; BACK UP

; LOOP

:UNSIGNED?

: YES

: IS SIGN NEGATIVE?
; POSITIVE

; NEGATIVE

; STORE SIGN

; OVERFLOW?

;UNSIGNED SUBTRACT OVERFLOW?

: YES
+LIGHT OVERFLOW IF CARRY

Page 107

3.3 ASMOVE - Arithmetic String MOVE (EXTEND 110)
The format of the argument block is:
E+0/ BYTE (~D9)110(4)0(~D19)NSB

+1/ - addr of BP A
+2/ addr of BP B

String B is moved to string A.
In the process of moving it, the string gets

"normalized" (i.e. "spaces" are converted to true zeroes,
and the sign byte is set to either true minus or true plus).

Page 108

3.4 CNS - Convert Number System (EXTEND 111)
The format of the argumentvblock is:

E+0/ BYTE (~D9)111(4)0(~D19)NSBA
+1/ addr of BP A -
+2/ addr of BP B
+3/ NSBB

This instruction is exactly like ASMOVE except that it
has two number system blocks. In the process of moving the
string, it is converted from one number system to another.
NSBA is used for string A, NSBB is used for string B.

Note that word 0 of NSBB is ignored (the radix). This
instruction cannot be used to convert radixs, just character
sets.

An overflow will result 1f an attempt 1is made to
convert a signed negative number into an unsigned number.

This instruction 1is equivalent to IBM's PACK and
UNPACK.

Page 109

3.5 Asc{-,L,E,LE,A,GE,N,G}

Arithmetic String Compare (EXTEND 112). The format of
the argument block is:

E+0/ BYTE (~D9)112(4)AC(~D19)NSB
+1/ addr of BP A
+2/ addr of BP B

Compare string A with string B. Depending upon the result,
the EXTEND instruction may skip.

Note that the AC field is decoded as an extension to
the op-code:

AC Name Function

0 ASC never skip

1 ASCL skip if A<B

2 ASCE skip if A=B

3 ASCLE skip if A<=B
4 ASCA always skip
5 ASCGE skip if A>=B
6 ASCN skip i1f A<>B
7 ASCG skip if A>B

Page 110
3.6 CTB - Convert To Binary (EXTEND 113)

E+0/ BYTE (~D9)113(4)AC(~D19)NSB
+1/ addr of BP ‘

The numeric string is converted to a binary integer
which 1is placed in the AC. If the resulting number is
outside the range -2**31 to +2**31-1 then an overflow will
result. :

3.7 CFB - Convert From Binary (EXTEND 114)

E+0/ BYTE (~D9)114(4)AC{(~D19)NSB
+1/ addr of BP

The binary integer in AC is converted to a numeric
string.

Page 111

4.0 PART IV: THE STACK OPTION

The stack instructions are considered to be an option
to the basic machine.

The vast majority of these instructions begin with the
letter "K" or "P", Those that begin with "K" are EOP's.
They deal exclusively with 1items already on the stack.
Those that begin with "P", however, are not EOP's. The
operands for these instructions are not necessarily on the
stack (at least not when the instruction begins).

Not all the EOP's occur in the same group (see section
1.10.16). As a rule of thumb (there are exceptions): Bits
22-24 of the group number tell you how many words are popped
off the stack at the beginning of the ‘instruction. Bits
25-27 of the group number tell you how many words are pushed
back onto the stack at the conclusion of the instruction.

In the following discussion we shall often refer to

items "KO" and "K1". By KO we mean the top item on the
stack. By K1 we refer to the second item on the stack. The
term "item" should not be confused with "word". KO, for

example, does not mean the top word, it's the top item.
Each 1item consists of one or more words. When dealing with
triple precision complex numbers, for example, each item is
six words long.

Page 112

4.1 K{ADD,SUB,BUS,MUL,DIV,VID,MOD,DOM}

These instructions pop two integers off the stack,
perform an arithmetic operation wupon them, and push the
result back onto the stack. The KADD instruction, for
example, adds the top two integers on the stack.

Name Group Func What
KADD 21 6 . K1+KO0
KSUB 21 7 K1-KO0
KMUL 21 10 K1*KO0
KDIV 21 11 - K1/KO0
KBUS 21 12 KO-K1
KVID 21 13 KO/K1
KMOD 21 14 remainder K1/KO0

KDOM 21 15 remainder KO0/K1

Example: The following piece of code computes the
expression "Y=3*(X+1)-4*(2-1)":

PUSHI
PUSH
PUSHI
. KADD
KMUL
PUSHI
PUSH
PUSHI
KSUB
KMUL
KSUB
POP

[ESES 56 W

N W W N N N N N N N NN

wwYw'y'o'd'd vy 'y o o
]

Page 113

4.2 K{F,DF,TF,C,DC,TC}{AD,SB,BS,MP,DV,VD}

These instructions perform floating point operations
upon items on the stack. They pop two items off the stack,
perform an operation, and push the result back onto the
stack. :

Name Group Func What Datum

KFAD 21 0 K1+K0 SINGLE FLOATING
KFSB 21 1 K1-K0 SINGLE FLOATING
KFMP 21 2 K1*K0 SINGLE FLOATING
KFDV 21 3 K1/K0 SINGLE FLOATING
KFBS 21 4 K0-K1 SINGLE FLOATING
KFVD 21 5 KO/K1 SINGLE FLOATING
KDFAD 42 0 K1+KO0 DOUBLE FLOATING
KDFSB 42 1 K1-KO0 DOUBLE FLOATING
KDFMP 42 2 K1*K0 DOUBLE FLOATING
KDFDV 42 3 K1/K0 DOUBLE FLOATING
KDFBS 42 4 KO0-K1 DOUBLE FLOATING
KDFVD 42 5 K0/K1 DOUBLE FLOATING
KTFAD 63 0 K1+KO0 TRIPLE FLOATING
KTFSB 63 1 K1-KO0 TRIPLE FLOATING
KTFMP 63 2 K1*K0 TRIPLE FLOATING
KTFDV 63 3 K1/KO0 TRIPLE FLOATING
KTFBS 63 4 K0-K1 TRIPLE FLOATING
KTFVD 63 5 K0/K1 TRIPLE FLOATING
KCAD 42 6 K1+KO0 SINGLE COMPLEX

KCSB 42 7 K1-KO SINGLE COMPLEX

KCMP 42 10 K1*K0 SINGLE COMPLEX

KCDV 42 11 K1/K0 SINGLE COMPLEX

KCBS 42 12 K0-K1 SINGLE COMPLEX

KCVD 42 13 K0/K1 SINGLE COMPLEX

KDCAD 76 0 K1+KO0 DOUBLE COMPLEX

KDCSB 76 1 K1-KO0 DOUBLE COMPLEX

KDCMP 76 2 K1*K0 DOUBLE COMPLEX

KDCDV 76 3 K1/KO DOUBLE COMPLEX

KDCBS 76 4 K0-K1. DOUBLE COMPLEX

KDCVD 76 5 K0/K1 DOUBLE COMPLEX

KTCAD 77 0 K1+KO0 TRIPLE COMPLEX

KTCSB 77 1 K1-KO TRIPLE COMPLEX

KTCMP 77 2 K1*KO0 TRIPLE COMPLEX

KTCDV 77 3 K1/K0 TRIPLE COMPLEX

KTCBS 77 4 KO0-K1 TRIPLE COMPLEX

KTCVD 77 5 K0/K1 TRIPLE COMPLEX

Page 114

4.3 {D,T,Q,H}{PUSH,POP}

These 1instructions push and pop a doubleword,
tripleword, quadword, or hexword (respectively):

Name Opcode Words

DPUSH 424 2
TPUSH 425 3
QPUSH 414 4
HPUSH 416 6
DPOP 426 2
TPOP 427 3
QPOP 415 4

6

HPOP 741

Example: The following piece of code computes the
expression "Y=X*2Z" using double precision floating point:

DPUSH P,
DPUSH P,
KDFMP P,
DPOP P,

<N X

Page 115

4.4 FPUSHI - Floating PUSH Immediate (opcode 320)

E is shifted 14 bits to the left and the result |is
pushed onto the stack. Thus the instruction "FPUSHI P,X" is
equivalent to the sequence:

FMOVEI T1,X
PUSH p,Tl

4.5

Name
PADD
PADDI
PSUB

PSUBI

PMUL
PMULI
PDIV
PDIVI

PUSH
KSUB

Example:
expression from

PUSH
PADDI
PMULI
PUSH
PSUBI
PMULI
KSUB
POP

Page 116

P{ADD,SUB,MUL,DIV}[1I]

Function
K0=K0+C(E)
KO=K0+E
K0=K0-C(E)
K0=K0-E
K0=K0*C(E)
KO=K0O*E
K0=K0/C(E)
K0=K0/E

The instruction "PSUB P,X", for example, is equivalent
to the sequence:

P,X
P,

The following code will recompute the
section 4.1l: Y=3*(X+1)-4*(2Z-1)

P,X

‘s 'yu 'y 'u
=N W

N N N N N o ww

o

Note how much shorter this version is.

Page 117

4.6 PF{AD,SB,MP,DV}[1I]

These instructions are similar to the previous group
except that they use single precision reals instead of
integers.

Name Opcode Function
PFAD 450 K0=K0+C(E)
PFADI 451 K0=K0+E
PFSB 474 K0=K0-C(E)
PFSBI 475 K0=K0-E
PFMP 700 K0=K0*C(E)
PFMPI 701 K0=KO*E
PFDV 704 K0=K0/C(E)
PFDVI 705 K0=K0/E

Example: The instruction "PFADI P,X" is equivalent to
the sequence:

FPUSHI P,X
KFAD P,

Page 118

4.7 PADDM - Popping ADD To Memory (opcode 462)

Pop a word off the stack and add it to C(E) (i.e.
C(E)=C(E)+K0). Thus the instruction "PADDM P,X" is
equivalent to the sequence:

| POP P, Tl
ADDM T1,X

Note that the instruction uses read-pause-write,

4,8 PFADM - Popping Floating Add To Memory (opcode 503)

This instruction is similar to PADDM except that it
uses floating point.

4.9 PUSHZ (opcode 431)

If E is positive, push E words of zeros onto the stack.
If E is negative, PUSHZ is the same as ADJSP.

Page 119

4.10 PLDB - Popping LoaD Byte (opcode 420)
Load a byte and push it onto the stack.

Example: The instruction "PLDB P,X" is equivalent
the sequence: :

LDB T1,X
PUSH P,Tl

4.11 PDPB - Popping DePosit Byte (opcode 421)
Pop a word off the stack and do a deposit byte.

Example: The instruction "PDPB P,X" is equivalent
the sequence:

POP P,T1
DPB T1l,X

to

to

Page 120

4.12 PMOVEM - Popping MOVE To Memory (opcode 247)

Store the top word of the stack at the location
specified by E. Do not pop the word off the stack. The
word remains on the top of the stack and the stack pointer
is not changed. o .

Example:

PMOVEM AC,E

is equivalent to:

MOVE Tl,O(AC)
MOVEM T1,E

Page 121

4.13 PUPJ (EOP 11-3)
This instruction is a cross between a PUSHJ and a POPJ.

The top word on the stack is interpreted as the address
of a subroutine. POP the address off the stack and PUSHJ to

it. The net effect is that the PC is exchanged with the top
word on the stack.

This instruction 1is quite wuseful when implementing
coroutines.

Page 122

4.14 K{-,D,T}SKP{-,L,E,LE,A,GE,N,G}

Pop one, two, or three words off the stack and
depending on their value:

Name ~EOP Words Skip if
KSKP 10-0 1 never
KSKPL 10-1 -1 K0<0
KSKPE 10-2 1 K0=0
KSKPLE 10-3 1 K0<=0
KSKPA 10-4 1 always
KSKPGE 10-5 1 K0>=0
KSKPN 10-6 1 K0<>0
KSKPG 10-7 1 K0>0
KDSKP 20-0 2 never
KDSKPL 20-1° 2 K0<0
KDSKPE 20-2 2 K0=0
KDSKPLE 20-3 2 K0<=0
KDSKPA 20-4 2 always
KDSKPGE 20-5 2 K0>=0
KDSKPN 20-6 2 K0<>0
KDSKPG 20-7 2 K0>0
KTSKP 30-0 3 never
KTSKPL 30-1 3 K0<0
KTSKPE 30-2 3 K0=0
KTSKPLE 30-3 3 K0<=0
KTSKPA 30-4 3 always
KTSKPGE 30-5 3 K0>=0
KTSKPN 30-6 3 K0<>0
KTSKPG 30-7 3 K0>0

Note that KSKP, KDSKP, and KTSKP are not no-ops.
pop words off the stack. ' : ‘

skip

They

Page 123

4.15 K{Q,H}SKP{-,E,A, N}

Pop four or six words off the stack and skip depending
on their value:

Name EOP Words Skip if
KQSKP 40-0 4 never
KQSKPE 40-1 4 K0=0
KQSKPA 40-2 4 always
KQSKPN 40-2 4 K0<>0
KHSKP 60-0 6 never
KHSKPE 60-1 6 K0=0
KHSKPA 60-2 6 always
KHSKPN 60-2 6 K0<>0

Note that K{Q,H}SKP{L,LE,G,GE} are not supported.
These concepts are not meaningful for complex numbers.

Page 124

4.16 ,Stack Boolean

The stack option supports all 16 of the boolean
functions: . ‘ <

K0=0011
Name EOP K1=0101
KSETZ 21-20 0000
KAND 21-21 0001
KANDC1l 21-22 0010

KSETO 21-23 0011
KANDCO 21-24 0100
KSET1 21-25 0101
KXOR 21-26 0110
KOR 21-27 0111
KNOR 21-30 1000
KEQV 21-31 1001
KSETC1 21-32 1010
KORC1 21-33 1011
KSETCO 21-34 1100
KORCO 21-35 1101
KNAND 21-36 1110
KSETO 21-37 1111

4.17

Negate the top item on the stack:

Name
KNEG
KDNEG
KTNEG
KCNEG
KDCNEG
KTCNEG

EOP

11-0
22-0
33-0
22-1
44-0
66-0

kK{-,D,T,C,DC,TC}NEG

triple

complex single
complex double
complex triple

Page

125

4.18 Stack Conversions

The stack option supports

Page 126

12 instructions for

converting data types: K{I,F,DF,TF}{I,F,DF,TF}. Any of the
four supported data types can be converted to any of the

other types.

Supported Types:

I - Integer

F - Floating (single precision)
~ DF - Double Floating

TF - Triple Floating

Example: the instruction KDFI
precision floating point to integer.

Name EOP Notes
KIF 11-1

KIDF 12-0

KITF 13-0

KFI 11-2 *

_KFDF 12-1

KFTF 13-1

KDFI 21-16 *

KDFF 21-17 rounded
KDFTF 23-0

KTFI 31-0 *

KTFF 31-1 rounded
KTFDF 32-0 rounded

* = Sets one of the overflow bits
conversion is not possible.

converts from double

and/or traps 1if the

Note that double integers are not supported by any

stack instruction.

Page 127

4,19 SWAP (EOP Group 73)
This class of instruction takes up an entire EOP group.
Bits 30-37 are decoded as follows:

1313 31313 3!
1011 31415 71!
bbb ——— +
10 N 10! M !
fmdmmmmm bt —————+

The purpose of this instruction is to swap the top two
items on the stack. The top item on the stack is taken as
being N words long. The next item is taken as being M words
long.

Note that if either N or M is zero, the instruction 1is
a no-op.

Note that bits 30 and 34 are ignored. The largest item
you can swap is 7 words long. This instruction is difficult
to implement in microcode, and we deliberately wish to
restrict the size of the largest item. In practice, we
believe the largest item will be six words long (a complex
tripleword).

Page 128

4.20 KILL (EOP Group 72)
This class of instruction takes up an entire EOP group.

Bits 30-37 are decoded as follows:

This instruction is similar to SWAP. The top item on
the stack 1is taken as being N words long. The second item
is taken as being M words long. The purpose of the
instruction is to delete the second item from the stack.

Note that if M=0, the instruction is a no-op. If N=0,
the instruction is equivalent to "ADJSP P,-M".

Among other things, this instruction is wused to take
the 1imaginary part of a complex number (deleting the real
part).

Page 129

5.0 APPENDIXS
5.1 Effective Address Calculation

The microcode uses 4 reglsters to compute the effective
address: IR, E, MA, and MB. The algorithm is as follows:

BEGIN: :ENTER HERE WITH THE INSTRUCTION IN IR AND THE ADDRESS
s THAT THE INSTRUCTION WAS FETCHED FROM IN MA

IF IR(15)=1 GOTO MODEl
E(16:37)=IR(16:37)
E(0:15)=0

GOTO EXIT

MODEl: E(23:37)=IR(23:37)
‘E(0:22)=IR(23)
IF IR(17:22)=0 GOTO NOX
IF IR(17:22)=17 GOTO RELX
E=E+MEMORY (IR(17:22))

GOTO NOX
RELX: E=E+MA
NOX: IF IR(16)=0 GOTO EXIT
I: MA=E

MB=MEMORY (MA)

IF MB(0)=1 GOTO IMODEl
E=MB

GOTO EXIT

IMODEl: E(12:37)=MB(12:37)
E(0:11)=MB(12)
IF MB(2:5)=0 GOTO INOX1
IF MB(2:5)=17 GOTO IRELX1
E=E+MEMORY(IR(2:5))
GOTO INOX1

IRELX1l: E=E+MA :

INOXl: IF MB(6:11)=0 GOTO INOX2
IF MB(6:11)=17 GOTO IRELX2
E=E+MEMORY(IR(6:11))

GOTO INOX2

IRELX2: E=E+MA
INOX2: IF MB(l)=1 GOTO I

EXIT: ; THE EFFECTIVE VIRTUAL ADDRESS IS NOW IN REGISTER E

Page 130

5.2 Statistics

The single most important aspect of any machine is the
method of calculating the effective address. Before
settling upon the current scheme we did a fair amount of
analysis of existing PDP10 programs. The survey presented
here is one conducted upon the first K of FILFND (to be
precise, the first 1039 1instructions in 701 FILFND). We
believe this to be a representative sample.

Each of the 1039 instructions was divided into one of
32 categories (numbered in octal from 0 to 37). The first
digit of the category number summarises the I and X fields
of the instruction:

Code Means

0 No index register, not indirect
1 Index register only '

2 Indirect only

3 Both index and indirect

The second digit of the category number summarises the Y
field: -

Code Y field contained

0 An AC number

1 An unrelocated expression (absolute)

2 An address in the LOWSEG

3 An address in the HISEG which is "close" (within
2%%12) '

4 An address in the HISEG which is "far" (outside

S 2%*12) ’

5 An address in the HISEG which is external (don't
know how close) :

6 The Y field is ignored (e.g. SETZ)

7

The address of a literal

Thus codes 0-1‘' are absolute. Codes 2-5 and 7 are
relocatable.

Of the 32 categories, only 10 were actually observed to
occur:

Type Refs Percent
00 149 14%
01 118 11%
02 46 4%
03 231 22%
05 202 19%
06 45 4%
07 7 1%
11 210 20%

Page 131

12 30 3%
33 1 0%
1039

Of the 1039 instructions, 798 had a zero in the first
digit. I.E. 77% are neither indexed nor indirect.

Of these 798, 486 were relocatable (61%)
Of these 486, 46 were in the LOWSEG (9%)

Note that FILFND 1is only 6416 octal words big
(including literals). Thus all PC relative references are
close (i.e. within plus or minus 2**12). There were no
type 2?4 references at all. FILFND is considered a large
module. '

Of the 202 references to HISEG externals, there were
only 83 externals involved. I.E. There are 2.43 references
to each one. This should cut down on the number of links.

Of the 46 unindexed references to the lowseg, there
were only 22 lowseg locations involved (2.09 references to
each location).

Of the 30 indexed references to the lowseg, only 18
links are required. There are 1.67 references to each link.
This ratio is different from that for wunindexed lowseg
references because there would have to be a seperate link
each time a different index AC is used.

Of these indexed references to the lowseg, there are 15
references to the JBT tables (half the type 12 references).
These 15 references require 11 links (61% of the type 12
links). A large portion of these links could be avoided if
the JBT items were moved to the PDB. That 1is to say you
can't fit all the JBT tables 1in the lowest 2**12 words
memory, but you can indeed fit all of JBTPDB. References to
these data items would then take two words each (one
instruction to reference JBTPDB, and one instruction to
reference the data item itself). Two words isn't very good
but the other approach isn't much better. It too takes
about two words (one for the instruction that references the
JBT table, and one for the link). Few of the 1links are
shared, each reference needs a link of its own.

Of the 83 links to hiseg externals, 13 are to "literal
byte pointers™ (22 references to 13 links). By "literal
byte pointer" we mean items like UNYK4S. The main reason
these byte pointers were coded as globals in COMMOD instead
of making them into local literals was to save typing. On
the new machine, however, it might be better to keep them as
local literals. One way or another you're going to tie up a

Page 132

word of memory: either for the local literal or for the
link to the external. Given a choice, the local literal |is
better because it executes faster. We assume there will be
a mechanism for intermodule literal pools. A literal in one
module could be shared by another module if the other module
was close. If the other module were not close, LINK would
build two copies of the literal (one for each module). Alot
of typing could be saved if these global literals could be
referenced by name. '

Of the 202 references to hiseg externals (type 05), 33
of them were to CPOPJl. All of these references would be
eliminated by the proposed change to the POPJ instruction.

Notes:

1. FILFND does not have a lowseg so all lowseg items are
external. These are counted as type 02 not type 05.

2. References to .CP??? are counted as lowseg references
despite the fact that the address involved is above 400000.
The address is, however, below MONORG.

3. All literals are counted as "close". FILFND is smaller
than 2**12 words so there would be plenty of room for the
literals. There was exactly one reference to each literal.

4. We have assumed all externals are far but this isn't
necessarily true. Some might reference a close module.

5. The number of references to each link would no doubt
increase if a larger sample were taken. 1039 instructions,
however, isn't shabby.

6. References to links appear to be fairly localized. A
given page of 1listing might have numerous references to a
particular link, where as the entire remainder of the module
might have few if any.

7. It would be interesting to do a study to find out which
types are executed most frequently.

Conclusions:

~These conclusions are based on the existing code and do not
assume the usage of any of the new instructions:

1. If the entire monitor (HISEG and LOWSEG) were loaded in
the first 2**18 of memory (as it was in 701) then the only
reference types that require links are 12 and 33. There
would be 31 references to 19 1links. The monitor would
increase in size by 19 words per 1039 instructions (1.8%).

Page 133

But because the word size is smaller, the net number of bits
would actually decrease by 9.5%. ‘

2. If the monitor's HISEG were made position independent
and placed above 2**18 then reference types 05, 12, and 33
would require links. There would be 233 references to 102
links. The monitor size would increase by 102 words per
1039, or 9.8%. The size in bits, however, would decrease by
2.4%. ,

3. (The worst case) If both the monitor's HISEG and LOWSEG
were loaded above 2**18, then reference types 02, 05, 12 and
33 would require links. There would be 279 references to
124 links. The monitor size would increase by 124 words per
1039, or 11.9%. The size in bits, however, would decrease
by 0.5%.

Page 134

5.3 Alternatives

The single most important aspect of any machine is the
method of calculating the. effective address. Before
settling upon the current scheme, many alternatives were
considered. Each has its own trade offs. Some schemes are
particularly good for certain types of addressing, but not
so good for others. The goal is to find a scheme that works
fairly well for all the common addressing modes.

There are many objections to the scheme we have chosen.
We shall discuss two of them:

5.3.1

. The first drawback of the current scheme 1is that it
can't index into an array whoose position is PC relative.
Rather, it can do the index but a link word is required.

At first glance this seems 1like a serious drawback.
The more we ' think about it, however, the less serious it
seems.

Consider the alternatives: Instead of using .AC 17 for
position independent addressing we could have invented a new
bits:

11111112 212 3!

15161710 314 71

ot —————— e ————————— e +

I1IR!II! X ! Y o

ot m————— e e +
1

~
1
!
+-- new bit

The new bit, iff on, 1indicates position independent
addressing. The current PC (or MA) 1is added to the
effective address. The cost of this bit, however, |is
enormous. It chops the Y field from 13 bits to 12 bits (a
12 bit Y field means a relative address of plus or minus
2**%11) .

One bit may not sound like much but this particular bit
is a crucial one. The size of the average REL file is
somewhere between 2**11 and 2**12. Rather: files larger
than 2**12 are quite rare but files larger than 2**1l are
common. :

Page 135

Moreover, we do not expect that the need for position
independent indexing will be a great one:

It is expected that only subroutines will use position
independent addressing. The main program will be loaded in
the lowest 2**18 of memory. Subroutines will be loaded
above 2**18, Subroutines will wuse position independent
addressing, the main program will not.

It is also expected that very few subroutines will have
arrays of their own. Most subroutines will have arrays
passed to them as arguments (actually only the address of
the array is passed). Thus the subroutine can't do normal
indexing anyway. Position 1independent indexing 1is not
needed.

There are, however, a few subroutines that do have
arrays of their own. But efficiency dictates that the array
should be allocated on the stack:

Consider a program with X subroutines. Assume that the
branching factor is N (i.e. that the typical subroutine
calls N other subroutines). The value of N varies greatly
but is typically greater than 2. At any given instant only
LOGn(X) subroutines are active (LOG base N.of X). If the
program allocates the arrays statically, then the amount of
space used is Y*X (where Y is the average array space per
subroutine). If, however, the arrays are allocated
dynamically then the amount of space used is Y*LOGn(X).
This can result is a tremendous savings in space. Thus it
is expected that most subroutines will allocate their arrays
dynamically (this also means that the size of the array can
be passed to the subroutine as an argument. The subroutine
doesn't have to reserve extra space for the worst possible
case). Given that the arrays are allocated dynamically, the
subroutine cannot do normal indexing. The ability to do PC
relative indexing would not be of any help.

"Own variables” are the one exception to this rule.
Own variables are those variables belonging to a subroutine
which are preserved from one invocation to the next.

Clearly own variables cannot be allocated on the stack.
But own variables are fairly rare and own arrays are even
rarer.

5.3.2

The second drawback of the current effective - address
scheme 1is that we "loose" a register (register 17). The
loss is a serious one. We are not proud of it.

Page 136

May we point out, however, that even the PDP10 looses a
register when it does position independent addressing.
Consider the following PDP10 program (a typical case):

MOVSI T1,(JRST (X))

Jsp X,T1
PHASE 0
FOO: .
JRST FOO(X)
DEPHASE

Register X is dedicated for the soul purpose of
position independent addressing. It cannot be used for
anything else. It is effectively lost.

Note that on the new machine, however, we don't loose
the register completely. Its just that we can't use it for
indexing. 1It's still available for all other uses. '

Moreover, consider the dilemma faced by DDT. On the
PDP10 DDT tries to type out the instruction:

JRST n(X)
DDT does not know what value register X will have when the
instruction 1is ultimately executed. Therefore DDT can't
type the symbolic name of the location being referenced.

On the new machine, however, DDT knows exactly what 1is
meant by

JRST n{(17)
The usage of register 17 is precisely defined by the

hardware and DDT knows this. . DDT can therefore convert to a
symbolic name. :

OPCODE List

The following is a list of opcode assignments (sorted
by number).

Note: In cases where several mneumonics are listed for the
same opcode, the one which is listed first is the prefered
name.

Opcode PDP10 New Machine (if different than PDP10)

000 illegal

1-30 LUUO

031 LUUO XOP (exec only)
032 LUUO UMAP (exec only)
033 LUUO MAP (exec only)
034 LUUO PHYLDB (exec only)
035 LUUO PHYDPB (exec only)
036 LUUO ULDB (exec only)
037 LUUO UDPB (exec only)
40-77 MUUO ’

100 UJEN IDV

101 - IDVI

102 GFAD TFAD

103 GFSB TFSB

104 JSYS LDBX

105 ADJSP

106 GFMP TFMP

107 GFDV TFDV

110 DFAD

111 DFSB

112 DFMP

113 DFDV

114 DADD

115 DSUB

116 DMUL

117 DDIV

120 DMOVE

121 DMOVN

122 FIX

123 EXTEND EA

124 DMOVEM

125 DMOVNM

126 FIXR

127 FLTR FLT,FLTR

130 UFA TMOVE

131 ~ DFN TMOVEM

132 FSC

133 IBP+ADJBP

134 ILDB

135 LDB

136 IDPB

137 DPB

140 FAD BUS

OPCODE LIST (SORTED BY NUMBER)

141 FADL BUSI

142 FADM BUSM

143 FADB BUSB

144 FADR FAD,FADR
145 FADRI FADI,FADRI
146 FADRM FADM, FADRM
147 FADRB FADB, FADRB
150 FSB IVID

151 FSBL IVIDI

152 FSBM IVIDM

153 FSBB IVIDB

154 FSBR " FSB,FSBR
155 FSBRI~ FSBI,FSBRI
156 FSBRM FSBM, FSBRM
157 FSBRB FSBB, FSBRB
160 FMP PADD

161 FMPL PADDI

162 FMPM PSUB

163 FMPB PSUBI

164 FMPR FMP, FMPR
165 FMPRI FMPI , FMPRI
166 FMPRM FMPM, FMPRM
167 FMPRB FMPB, FMPRB
170 FDV PMUL

171 FDVL PMULI

172 FDVM PDIV

173 FDVB PDIVI

174 FDVR. FDV,FDVR
175 FDVRI FDVI,FDVRI
176 FDVRM FDVM, FDVRM
177 FDVRB FDVB, FDVRB
200 MOVE MOVE, SETM, SETMB
201 MOVEI MOVEI,SETMI,SETZ,SETZI
202 MOVEM MOVEM, SETAM, SETAB
203 MOVES MOVES, SKIP,HLLS, HRRS
204 MOVS

205 MOVSI

206 MOVSM

207 MOVSS a

210 MOVN

211 MOVNI

212 MOVNM

213 MOVNS

214 MOVM

215 MOVMI

216 MOVMM

217 MOVMS

220 IMUL

221 IMULI

222 IMULM

223 IMULB

224 MUL

225 MULI

226 MULM

OPCODE LIST (SORTED BY NUMBER)

227
230
231
232
233
234
235
236
237
240
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277
300

301
302
303
304

305
306
307
310
311
312

MULB
IDIV
IDIVI
IDIVM
IDIVB
DIV
DIVI
DIVM
DIVB
ASH
ROT
LSH
JFFO
ASHC
ROTC
LSHC

EXCH
BLT
AOBJP
AOBJN
JRST
JFCL
XCT
MAP
PUSHJ
PUSH
POP
POPJ
JSR
JSP
JSA
JRA
ADD
ADDI
ADDM
ADDB
SUB
SUBI
SUBM
SUBB
CAI

CAIL
CAIE
CAILE
CAIA

CAIGE
CAIN
CAIG
CAaM
CAML
CAME

IDIVM, IDVM

PMOVEM

DPBI

AOBJGE, AOBJP
AOBJL, AOBJN
(an ACOP)

BAOS (an ACOP)
(an ACOP)
ILDBA

ILDBW

CAI,TRN,TLN,TDN,TSN,JUMP,CAM, SETA,SETAI,SETMM, BLN, BRN
DSKP, TSKP, QSKP, HSKP,JFCL

CAIA,TRNA,TLNA,TDNA,TSNA,CAMA,BLNA,BRNA,
DSKPA, TSKPA, QSKPA, HSKPA

MOVEIA

OPCODE LIST (SORTED BY NUMBER)

313
314
315
316
317

320

321
322
323
324
325
326
327
330
331
332
333
334
335
336
337
340

- 341

342
343
344
345
346

- 347

350

- 351

352
353
354
355
356
357
360
361
362
363
364
365
- 366
367
370

371

372
373
374
375
376
377
400

CAMLE
CAMA
CAMGE
CAMN
CAMG
JUMP
JUMPL
JUMPE
JUMPLE
JUMPA
JUMPGE
JUMPN
JUMPG
SKIP
SKIPL
SKIPE
SKIPLE
SKIPA
SKIPGE
SKIPN
SKIPG
AOJ
AOJL
AOJE
AOJLE
AOJA
AOJGE
AOJN
AOJG
A0S
AOSL
AOSE
AOSLE
AOSA
AOSGE
AOSN
AOSG
soJ
SOJL
SOJE

SOJLE
SOJA

SOJGE
SOJN
S0JG
SOS
SOSL
SOSE
SOSLE

- SOSA

SOSGE
SOSN
SOSG
SETZ

PUSHI

FPUSHI

‘ILDBL

IDPBA
SKIPL,DSKPL, TSKPL,QSKPL,HSKPL

SKIPGE, DSKPGE, TSKPGE, QSKPGE , HSKPGE

EOP

OPCODE LIST

401
402
403
404
405
406
407
410
411
412
413
414
415
416
417
420
421
422
423
424
425
426
427
430
431
432
433
434
435
436
437
440
441
442
443
444
445
446
447
450
451
452
453
454
455
456
457
460
461
462
463
464
465
466

SETZI
SETZM
SETZB
AND
ANDI
ANDM
ANDB
ANDCA
ANDCAI
ANDCAM
ANDCAB
SETM
SETMI

SETMM

SETMB
ANDCM
ANDCMI

- ANDCMM
ANDCMB'

SETA
SETAI
SETAM
SETAB
XOR
XORI
XORM
XORB
OR

ORI
ORM
ORB
ANDCB
ANDCBI
ANDCBM
ANDCBB
EQV
EQVI
EQVM
EQVB
SETCA
SETCAI
SETCAM
SETCAB
ORCA
ORCAI

.ORCAM

ORCAB
SETCM
SETCMI
SETCMM
SETCMB
ORCM
ORCMI
ORCMM

(SORTED BY NUMBER)

FMOVEIL

QPUSH
QPOP
HPUSH
IDPBW
PLDB
PDPB

DPUSH
TPUSH
DPOP
TPOP
XOR, TDC
PUSHZ

OR,TDO
IDPBL

NOR, ANDCB

NORI , ANDCBI
NORM, ANDCBM
NORB, ANDCBB

PFAD
PFADI

PADDM

OPCODE LIST (SORTED BY NUMBER)

467 ORCMB

470 ORCB NAND, ORCB
471 ORCBI NANDI,ORCBI
472 ORCBM NANDM, ORCBM
473 ORCBB NANDB, ORCBB
474 . SETO PFSB
475 SETOI PFSBI
476 SETOM

477 SETOB-

500 HLL

501 HLLI

502 HLLM

503 HLLS PFADM
504 HRL

505 HRLI

506 HRLM

507 HRLS

510 HLLZ

511 HLLZI

512 HLLZM

513 HLLZS

514 HRLZ

515 HRLZ1I

516 HRLZM

517 HRLZS

520 HLLO

521 HLLOI

522 HLLOM

523 HLLOS

524 HRLO

525 HRLOI

526 HRLOM

527 HRLOS

530 HLLE

531 HLLEI

532 HLLEM

533 HLLES
' 534 HRLE

535 HRLEI

536 HRLEM

537 HRLES

540 HRR

541 HRRI

542 HRRM

543 HRRS LDBA
544 HLR

545 HLRI

546 HLRM

547 HLRS

550 HRRZ

551 HRRZI

552 HRRZM

553 HRRZS

554 HLRZ

OPCODE LIST (SORTED BY NUMBER)

555 HLRZI

556 HLRZM

557 HLRZS

560 HRRO

561 HRROI

562 HRROM

563 HRROS

564 HLRO

565 HLROI

566 HLROM

567 'HLROS

570 HRRE

571 HRREI

572 HRREM

573 HRRES

574 HLRE

575 HLREI

576 HLREM

577 HLRES

600 TRN TRU
601 TLN TLU
602 TRNE

603 TLNE

604 TRNA TRNU
605 TLNA TLNU
606 TRNN

607 TLNN

610 TDN TDU
611 TSN LDBW
612 TDNE -
613 TSNE

614 TDNA TDNU
615 TSNA LDBL
616 TDNN

617 TSNN

620 TRZ TRZ , ANDCMI
621 TLZ

622 TRZE

623 TLZE

624 TRZA

625 TLZA

626 TRZN

627 TLZN |
630 TDZ TDZ , ANDCM
631 TSZ

632 TDZE

633 TSZE

634 TDZA

635 TSZA

636 TDZN

637 TSZN

640 TRC TRC, XORI
641 TLC

642 TRCE

OPCODE LIST (SORTED BY NUMBER)

643 TLCE
644 TRCA
645 TLCA
646 ~ TRCN
647 TLCN
650 TDC DPBA
651 TSC :
652 TDCE
653 TSCE
654 TDCA
655 TSCA
656 TDCN
657 TSCN
660 TRO TRO, ORI
661 TLO
662 TROE
663 TLOE
- 664 TROA
665 TLOA
666 TRON
667 TLON
670 TDO DPBW
671 TSO
672 TDOE
673 TSOE
674 TDOA
675 TSOA
676 TDON
677 TSON ,
700 - PFMP
701 - PFMPI
702 - BLNE
703 - BRNE
704 - PFDV
705 - PFDVI
706 - BLNN
707 - BRNN
710 - BLZ-
711 - BRZ
712 - BLZE
713 - BRZE
714 - BLZA
715 - BRZA
716 - BLZN
717 - BRZN
720 - BLC
721 - BRC
722 - BLCE
723 - BRCE
724 - BLCA
725 - BRCA
726 - BLCN
727 - BRCN

730 - BLO

OPCODE LIST (SORTED BY NUMBER)

731 - BRO
732 - BLOE
733 - BROE
734 - BLOA
735 - BROA
736 - BLON
737 - BRON
740 - DPBL
741 - HPOP
742 - QMOVE
743 - QMOVEM
744 - HMOVE
745 - HMOVEM
746 - CAD
747 - CSB
750 - CMP
751 - CDV
752 - DCAD
753 - DCSB
754 - DCMP
755 - DCDV
756 - TCAD
757 - TCSB
760 - TCMP
761 - TCDV
762-776 - spare
777 illegal

Opcode 031: (XOP - Exec only)

AC Name
0 XJSR
1 XRET
2 XPCW
3 XDIS
4-17 spare

AC Name
0 JRST
1 PORTAL
2 DSKPE
3 DSKPLE

OPCODE LIST (SORTED BY NUMBER)

4 HALT
5 JSR

6 DSKPN
7 DSKPG
10 QSKPE
11 QSKPN
12 TSKPE
13 TSKPLE
14 HSKPE
15 HSKPN
16 TSKPN
17 TSKPG

Opcode 255:

AC Name

0 BAOS

1 BAOSL
2 BAOSE
3 BACOSLE
4 BAOSA
5 BAOSGE
6 BAOSN
7 BAOSG
10 BSOS
11 BSOSL
12 BSOSE
13 BSOSLE
14 BSOSA
15 BSOSGE
16 BSOSN
17 BSOSG

~Opcode 256:

>
(@]
Z
o
3
o

N WN O
w
(o
|

EXTEND

OPCODE LIST (SORTED BY NUMBER)

10 IBPA
11 IBPW
12 IBPL
13 DSETZM
14 TSETZM
15 QSETZM
16 HSETZM
17 spare

Opcode 400: (EOP)

Group Func Name

0 0 spare
0 1 DSETZ
0 2 TSETZ
0 3 QSETZ
0 4 HSETZ
0 5 spare
0 6 spare
0 7 NEG

0 10 DNEG
0 11 TNEG
0 12 CNEG
0 13 DCNEG
0 14 TCNEG
0 15-17 spare
0 20 CIDI

0 21 CIF

0 22 CIDF

0 23 CITF

0 24 CDII

0 25 CDIF

0 26 CDIDF
0 27 CDITF
0 30 CFI

0 31 CFDI

0 32 CFDF
0 33 CFTF

0 34 CDFI

0 35 CDFDI
0 36 CDFF

0 37 CDFTF
0 40 CTFI

0 41 CTFDI
0 42 CTFF

0 43 CTFDF
10 0 KSKP

10 1 KSKPL

10 2 KSKPE

OPCODE LIST (SORTED BY NUMBER)

10 3 KSKPLE
10 4 KSKPA
10 5 KSKPGE
10 6 KSKPN
10 7 KSKPG
11 0 KNEG
11 1 KIF
11 2 KFI
11 3 PUPJ
12 0 KIDF
12 1 KFDF
13 0 KITF
13 1 KFTF
20 0 KDSKP
20 1 KDSKPL
20 2 KDSKPE
20 3 KDSKPLE
20 4 KDSKPA
20 5 KDSKPGE
20 6 KDSKPN
20 7 KDSKPG
21 0 KFAD
21 1 KFSB
21 2 KFMP
21 3 KFDV
21 4 KFBS
21 5 KFVD
21 6 KADD
21 7 KSUB
21 10 KMUL
21 11 KDIV
21 12 KBUS
21 13 KVID
21 14 KMOD
21 15 KDOM
21 16 KDF1
21 17 KDFF
21 20 KSETZ
21 21 KAND
21 22 KANDC1
21 23 KSETO
21 24 KANDCO
21 25 KSET1
21 26 KXOR
21 27 KOR
21 30 KNOR
21 31 KEQV
21 32 KSETC1
21 33 KORC1
21 34 KSETCO
21 35 KORCO
21 36 KNAND
21 37 KSETO

22 0 ' KDNEG

OPCODE LIST (SORTED BY NUMBER)

22 1 KCNEG
23 0 KDFTF
30 0 KTSKP
30 1 KTSKPL
30 2 KTSKPE
30 3 KTSKPLE
30 4 KTSKPA
30 5 KTSKPGE
30 6 KTSKPN
30 7 KTSKPG
31 0 KTFI
31 1 KTFF
32 0 KTFDF
33 0 KTNEG
40 0 KQSKP
40 1 KQSKPE
40 2 KQSKPA
40 3 KQSKPN
42 0 KDFAD
42 1 KDFSB
42 2 KDFMP
42 3 KDFDV
42 4 KDFBS
42 5 KDFVD
42 6 KCAD
42 7 KCSB
42 10 KCMP
42 11 KCDV
42 12 KCBS
42 13 KCVD
44 0 KDCNEG
60 0 KHSKP
60 1 KHSKPE
60 2 KHSKPA
60 3 KHSKPN
63 0 KTFAD
63 1 KTFSB
63 2 KTFMP
63 3 KTFDV
63 4 KTFBS
63 5 KTFVD
66 0 KTCNEG
72 - KILL
73 - SWAP
74 - RST

75 - SAV

76 0 KDCAD
76 1 KDCSB
76 2 KDCMP
76 3 KDCDV
76 4 KDCBS
76 5 KDCVD
77 0 KTCAD
77 1 KTCSB

OPCODE LIST (SORTED BY NUMBER)

77
77
77
77

EXTEND:

KTCMP
KTCDV
KTCBS
KTCVD

G > W N

(Opcode 256-7)

SMOVE
BSMOVE
CONCAT
SRCHE
SRCHN
SPATE
SPATN
SCOMP
SCOMPL
SCOMPE
SCOMPLE
SCOMPA
SCOMPGE
SCOMPN
SCOMPG
SADD2
SADD3
SSUB2
SSUB3
SMUL2
SMUL3
SDIV2
SDIV3
ASMOVE
CNS

ASC
ASCL
ASCE
ASCLE
ASCA
ASCGE
ASCN
ASCG
CTB

CFB
VMOVE

. VADD2

VADD3

VSUB2

VSUB3
VMUL2

OPCODE

201-5

201-6

201-7

201-10
201-11
201-12
201-13
201-14
201-15
201-16
201-17
201-20
201-21
201-22
201-23
201-24
201-25
201-26
201-27
201-30
201-31
201-32
201-33
201-34
201-35
201-36
201-37
201-40
201-41
201-42
201-43
201-44
201-45
201-46
201-47
201-50
201-51
201-52
201-53
201-54
201-55
201-56
201-57
201-60
201-61
201-62
201-63
201-64
201-65
201-66
201-67
202-0

202-1

202-2

LIST (SORTED BY NUMBER)

VMUL3
VDIV2
VDIV3
VFAD2
VFAD3
VFSB2
VFSB3
VFMP2
VFMP3
VFDV2
VFDV3
VDFAD2
VDFAD3
VDFSB2
VDFSB3
VDFMP2
VDFMP3
VDFDV2
VDFDV3
VTFAD2
VTFAD3
VTFSB2
VTFSB3
VTFMP2
VTFMP3
VTFDV2
VTFDV3
VCAD?2
VCAD3
VCSB2
VCSB3
VCMP?2
VCMP3
VCDV2
VCDV3
VDCAD?2
VDCAD3
VDCSB2
VDCSB3
VDCMP2
VDCMP3
VDCDV2
VDCDV3
VTCAD2
VTCAD3
VTCSB2
VTCSB3
VTCMP?2
VTCMP3
VTCDV?2
VTCDV3
VADD
VMUL
VFAD

OPCODE

202-3
202-4
202-5
202-6
202-7
202-10
202-11
202-12
202-13
202-14
202-15
203
204
205
206
207
210
211
212
213
214

LIST (SORTED BY NUMBER)

VFMP
VDFAD
VDFMP
VTFAD
VTFMP
VCAD
VCMP
VDCAD
VDCMP
VTCAD
VTCMP
POLY

' DPOLY

TPOLY
MAT
FMAT
DFMAT
TFMAT
CMAT
DCMAT
TCMAT

The following is a list of opcode
by name).

ANDCAB
ANDCAI
ANDCAM
ANDCB
ANDCBB
ANDCBI
ANDCBM
ANDCM
ANDCMB
ANDCMI
ANDCMM
ANDI
ANDM
AOBJGE
AOBJL
AOBJN
AOBJP
AOJ
AOJA
AOJE
AOJG
AOJGE
AOJL
AOJLE
AOJN
AOS
AOSA
AOSE
AOSG
AOSGE
AOSL
AOSLE
AOSN
ASC
ASCA
ASCE
ASCG

New
OPCODE

270B10
273B10
271B10
272B10
133B10
105B10
404B10
407B10
410B10
413B10
411B10
412B10
440B10
443B10
441B10
442B10
630B10
423B10
620B10
422B10
405B10
406B10
252B10
253B10
253B10
252B10
340B10
344B10
342B10
347B10
345B10
341B10
343B10
346B10
350B10
354B10
352B10
357B10
355B10
351B10
353B10
356B10
112B10
ASC 4,
ASC 2,
ASC 7,

-~

OPCODE List

assignments

Page PDP10 OPCODE

Num

(if different from new

(sorted

machine)

56
44

14

14

16
16

109
109
109
109

420B10

421B10

OPCODE LIST (SORTED BY NAME)

ASCGE
ASCL
ASCLE
ASCN
ASH
ASHC
ASMOVE
BAOS
BAOSA
BAOSE
BAOSG
BAOSGE
BAOSL
BAOSLE
BAOSN
BBLT
BLC
BLCA
BLCE
BLCN
BLN
BLNA
BLNE
BLNN
BLO .
BLOA
BLOE
BLON
BLT
BLZ
BLZA
BLZE
BLZN
BRC
BRCA
BRCE
BRCN
BRN
BRNA
BRNE
BRNN
BRO
BROA
BROE
BRON
BRZ
BRZA
BRZE
BRZN
BSMOVE
BSOS
BSOSA
BSOSE
BSOSG

BAOS

ASC 5,
ASC 1,
ASC 3,
ASC 6,
240B10
244B10
110B10
255B10
BAOS

BAOS
BAOS
BAOS
BAOS
BAOS
XCT 4,
720B10
724B10
722B10
726B10
300B10
304B10
702B10
706B10
730B10
734B10
732B10
736B10
XCT 3,
710B10
714B10
712B10
716B10
721B10
725B10
723B10
727B10
300B10
304B10 «

OV W= U1
N N N W N NN

703B10

707B10
731B10
735B10
733B10
737B10
711B10
715B10
713B10
717B10
002B10
BAOS 10,
BAOS 14,
BAOS 12,

BAOS 17,

109
109
109
109

107
55
55
55
55
55
55
55
55
33
23
23
23
23
23
23
23
23
23
23
23
23
42
23
23

23

23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
73
55
55
55

55

OPCODE LIST (SORTED BY NAME)

BSOSGE
BSOSL
BSOSLE
BSOSN
BUS
BUSB
BUSI
BUSM
CAD
CAI
CAIA
CAIE
CAIG
CAIGE
CAIL
CAILE
CAIN
CAM
CAMA
CAME
CAMG
CAMGE
CAML
CAMLE
CAMN
CDFDI
CDFF
CDF1I
CDFTF
CDIDF
CDIF
CDII
CDITF
CcDv
CFB
CFDF
CFDI
CFI
CFTF
CIDF
CIDI
CIF
CITF
CMAT
CMP
CNEG
CNS
CONCAT
CSB
CTB
CTFDF
CTFDI
CTFF
CTFI

BAOS 15,
BAOS 11,
BAOS 13,
BAOS 16,

140B10
143B10
141B10
142B10
746B10
300B10
304B10
302B10
307B10
305B10
301B10
303B10
306B10
300B10
304B10
312B10
317B10
315B10
311B10
313B10
316B10

EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP

35
36
34
37
26
25
24
27

751B10
114B10

EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP

32
31
30

33 .

22
20
21
23

212B10
750B10

EOP

12

111B10
003B10
747B10
113B10

- EOP

EOP

43
41

EOP 42
EOP 40

55
55
55
55
28
28
28
28
63

14
14

71
71
71
71
71
71
71

71

110
71
71
71
71
71
71
71
71
96

69
108
74
63
110
71
71
71
71

310B10
314B10

OPCODE LIST (SORTED BY NAME)

DADD
DCAD
DCDV
DCMAT
DCMP
DCNEG
DCSB
DDIV
DECBP
DFAD
DFDV
DFMAT
DFMP
DFSB
DIV
DIVB
DIVI
DIVM
DMOVE
DMOVEM
DMOVN
DMOVNM
DMUL
DNEG
DPB
DPBA
DPBI
DPBL
DPBW
DPOLY
DPOP
DPUSH
DSETZ
DSETZM
DSKP
DSKPA
DSKPE
DSKPG
DSKPGE
DSKPL
DSKPLE
DSKPN
DSUB
EA

EOP
EQV
EQVB
EQVI
EQVM
EXCH
EXTEND
FAD
FADB
FADI

114B10
752B10
755B10
213B10
754B10
EOP 13
753B10
117B10
XCT 6,
110B10
113B10
210B10
112B10
111B10
234B10
237B10
235B10
236B10
120B10
124B10
121B10
125B10
116B10
EOP 10
137B10
650B10
251B10
740B10
670B10
204B10
426B10
424B10
EOP 1
XCT 13,
300B10
304B10
JRST 2,
JRST 7,
335B10 *
331B10
JRST 3,
JRST 6,
115B10
123B10
400B10
444B10
447B10
445B10
446B10
250B10
XCT 7,
144B10
147B10
145B10

44
63
63
96
63
69
63
44
57
62
62
96
62
62
44
44
44
44

44
69
52
52
54
52
52
95
114
114
68

67
67
67
67
67
67
67
67
44
27

34

72
62

62

62

123B10
140B10 -
143B10

OPCODE LIST (SORTED BY NAME)

FADM
FADR
FADRB
FADRI
FADRM
FDV
FDVB
FDVI
FDVM
FDVR
FDVRB
FDVRI
FDVRM
FIX
FIXR
FLT
FLTR
FMAT
FMOVEI
FMP
FMPB
FMPI
FMPM
FMPR
FMPRB
FMPRI
FMPRM
FPUSHI
FSB
FSBB
FSBI
FSBM
FSBR
FSBRB
FSBRI
FSBRM
FSC
 HALT
HLL
HLLE
HLLEI
HLLEM
HLLES
HLLI
HLLM
HLLO
HLLOI
HLLOM
HLLOS
HLLS
HLLZ
HLLZI
HLLZM
HLLZS

146B10
144B10
147B10
145B10
146B10
174B10
177B10
175B10
176B10
174B10
177B10
175B10
176B10
122B10
126B10
127B10
127B10
207B10
401B10
164B10
167B10

165B10
166B10

164B10
167B10
165B10
166B10
320B10

- 154B10

157B10
155B10
156B10
154B10
157B10
155B10
156B10
132B10
JRST 4

500B10 ..

530B10
531B10
532B10
533B10
501B10
502B10
520B10
521B10
522B10
523B10
203B10
510B10
511B10
512B10
513B10

~-

62
62
62
62
62
62
62
62
62
62
62
62
62

14

142B10

170B10
173B10

172B10

160B10
163B10

162B10

150B10
153B10

152B10

503B10

OPCODE LIST (SORTED BY NAME)

HLR 544B10

HLRE 574B10

HLREI 575B10

HLREM 576B10

HLRES 577B10

HLRI 545B10

HLRM 546B10

HLRO 564810

HLROI 565B10

HLROM 566B10

HLROS - 567B10

HLRS 547B10

HLRZ 554B10

HLRZI 555B10

HLRZM 556B10

HLRZS 557B10 :
HMOVE 744B10 65 -
HMOVEM 745B10 65 -
HPOP 741B10 114 -
HPUSH 416B10 114 -
HRL 504B10

HRLE 534B10

HRLEI 535B10

HRLEM 536B10

HRLES 537B10

HRLI 505B10

HRLM 506B10

HRLO 524B10

HRLOI 525B10

HRLOM 526B10

HRLOS 527B10

HRLS 507B10

HRLZ 514B10

HRLZI 515B10

HRLZM 516B10

HRLZS 517B10

HRR 540B10

HRRE 570B10

HRREI 571B10 *

HRREM 572B10

HRRES 573B10

HRRI 541B10

HRRM 542B10

HRRO 560B10

HRROI 561B10

HRROM 562B10

HRROS 563B10

- HRRS 203B10 14 543B10
HRRZ 550B10

HRRZI 551B10

HRRZM 552B10

HRRZS 553B10 _
HSETZ EOP 4 68 -

HSETZM XCT 16, 68 -

OPCODE LIST (SORTED BY NAME)

HSKP
HSKPA
HSKPE
HSKPGE
HSKPL
HSKPN
IBP
IBPA
IBPL
IBPW
IDIV
IDIVB
IDIVI
IDIVM
IDPB
IDPBA
IDPBL
IDPBW
IDV
IDVI
IDVM
ILDB
ILDBA
ILDBL
ILDBW
IMUL
IMULB
IMULI
IMULM
IVID
IVIDB
IVIDI
IVIDM
JFCL
JFFO
JRA
JRST
JSA
JSP
JSR
JUMP
JUMPA
. JUMPE
- JUMPG
JUMPGE
JUMPL
JUMPLE
JUMPN
KADD
KAND
KANDCO
KANDC1
KBUS
KCAD

300B10
304B10
JRST 14,
335B10
331B10
JRST 15,
133B10

XCT
XCT
XCT

10,
12,
11,

230B10
233B10
231B10
232B10
136B10
330B10
435B10
417B10

.100B10

101B10
232B10
134B10
257B10

"324B10

264B10
220B10
223B10
221B10
222B10
150B10
153B10
151B10
152B10
300B10
243B10
267B10
254B10
266B10
265B10 +

JRST 5

-

300B10
254B10
322B10
327B10
325B10
321B10
323B10
326B10

EOP
EOP
EOP
EOP
EOP
EOP

10406

10421

10424
10422
10412
21006

67
67
67
67
67
67

52
52
52

52
52
52
52
30
30
30
52
52
52
52

29
29
29
29
48

45

45
45
45
14
47

112

124
124
124
112
113

255B10

264B10
320B10

- OPCODE LIST {(SORTED BY NAME)

KCBS
KCDV
KCMP
KCNEG
KCSB
KCVD
KDCAD
KDCBS
KDCDV
KDCMP
KDCNEG
KDCSB
KDCVD
KDFAD
KDFBS
KDFDV
KDFF
KDFI
KDFMP
KDFSB
 KDFTF
KDFVD
KDIV
KDNEG
KDOM
KDSKP
KDSKPA
KDSKPE
KDSKPG
KDSKPGE
KDSKPL
KDSKPLE
KDSKPN
KEQV
KFAD
KFBS
KFDF

- RKFDV

KFI
KFMP
KFSB
KFTF
KFVD
KHSKP
KHSKPA
KHSKPE
KHSKPN
KIDF
KIF
KILL
KITF
KMOD
KMUL
KNAND

EOP
EOP
EOCP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP

- EOP

EOP
EOP
ECP
ECP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
ECP
ECP
EOP

‘EOP

EOP
EOP
ECP
EOP
EOP
EOP
EOP
EOP
EOP
EQOP
EOP
EQOP
EOP
EOP
EQOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP

21012
21011
21010
11001
21007
21013
37000
37004
37003
37002
22000
37001
37005
21000
21004
21003
10417
10416
21002
21001
11400
21005
10411
11000
10415
10000
10004
10002

10007

10005
10001
10003
10006
10431
10400
10404
5001

10403

4402
10402
10401
5401

10405

30000

30002
30001
30003
5000

4401

35000
5400

10414
10410
10436

113
113
113
125
113
113
113
113
113
113
125
113
113
113
113
113
126
126
113
113
126
113
112
125
112
122
122
122
122
122
122
122
122
124
113
113

126 .

113
126
113
113
126
113
122
122
122
122
126
126
128
126
112
112
124

OPCODE LIST (SORTED BY NAME)

KNEG
KNOR
KOR
KORCO
KORC1
KQSKP
KQSKPA
KQSKPE
KQSKPN
KSETO
KSET1
KSETCO
KSETC1
KSETO
KSETZ
KSKP

- KSKPA
KSKPE
KSKPG
KSKPGE
KSKPL
KSKPLE
KSKPN
KSUB
KTCAD
KTCBS
KTCDV
KTCMP
KTCNEG
KTCSB
KTCVD
KTFAD
KTFBS
KTFDF
KTFDV
KTFF
KTFI
KTFMP
KTFSB
KTFVD
KTNEG
KTSKP
KTSKPA
KTSKPE
KTSKPG
KTSKPGE
KTSKPL
KTSKPLE
KTSKPN
KVID
KXOR
LDB
LDBA
LDBL

EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP

"EOP

EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
EOP
ECP
EOP
EOP
EOP
EOP

4400

10430
10427
10435
10433
20000
20002
20001
20003
10423
10425
10434
10432
10437
10420
4000

4004

4002

4007

4005

4001

4003

4006

10407
37400
37404
37403
37402
33000
37401
37405
31400
31404
15000
31403
14401
14400

31402

31401
31405
15400
14000
14004
14002
14007
14005
14001
14003
14006
10413
10426

135B10
543B10
615B10

125
124
124
124
124
122
122
122
122
124
124
124
124
124
124
122
122
122
122
122
122
122
122
112
113
113
113
113
125
113
113
113
113
126
113
126
126
113
113
113

125

122
122
122
122
122
122
122
122
112
124
52

52

52

OPCODE LIST (SORTED BY NAME)

LDBW
LDBX
LSH
LSHC
MAP
MAT
MOVE
MOVEI
MOVEIA
MOVEM
MOVES
MOVM
MOVMI
MOVMM
MOVMS
MOVN
MOVNI
MOVNM
MOVNS
MOVS
MOVSI
MOVSM
MOVSS
MUL
‘MULB
MULI
MULM
NAND
NANDB
NANDI
NANDM
NEG
NOR
NORB
NORI
NORM
OR
ORB
ORCA
ORCAB
ORCAI
ORCAM
ORCB
ORCBB
ORCBI
ORCBM
ORCM
ORCMB
ORCMI
ORCMM
ORI
ORM
PADD
PADDI

611B10
104B10
242B10
246B10

033B10

206B10
200B10
201B10
310B10
202B10
203B10
214B10
215B10
216B10
217B10
210B10
211B10
212B10
213B10
204B10

205B10

206B10
207B10
224B10
227B10
225B10
226B10
470B10
473B10
471B10
472B10
EOP 7
440B10
443B10
441B10

442B10.

434B10
437B10
454B10
457B10
455B10
456B10
470B10
473B10
471B10
472B10
464B10

- 467B10

465B10
466B10
660B10
436B10
160B10
161B10

-

52
54

96
14
14
20
14
14

44
44
44
44
16
16
16
16

- 69

16
16
16
16

14

116
116

435B10

OPCODE LIST (SORTED BY NAME)

PADDM
PDIV
PDIVI
PDPB
PFAD
PFADI
PFADM
PFDV
PFDVI
PFMP
PFMPI
PFSB
PFSBI
PHYDPB
PHYLDB
PLDB
PMOVEM
PMUL
PMULI
POLY
POP
POPJ

PORTAL

PSAV
PSAVE
PSUB
PSUBI
PUPJ
PUSH
PUSHI
PUSHJ
PUSHZ
QMOVE
QMOVEM
QPOP
QPUSH
QSETZ
QSETZM
QSKP
QSKPA
QSKPE

QSKPGE

QSKPL
QSKPN
REST
ROT
ROTC
RST
'SADD2
SADD3
SAV
SAVE
SCOMP

SCOMPA

462B10
172B10
173B10
421B10
450B10
451B10
503810
704B10
705B10
700B10
701B10
474B10
475B10
035B10
034B10
420B10
247B10
170B10
171B10
203810
262B10
263B10
JRST 1,
EOP 40000
EOP 600000
162B10
163B10
EOP 4403
261B10
314B10
260B10
431B10
742B10
743B10
415B10
414B10
EOP 3

XCT 15,
300B10 *
304B10
JRST 10,
335810
331B10
JRST 11,
EOP 400000
241B10
245B10
EOP 36000
100810
101B10
EOP 36400
EOP 200000
010B10
014B10

118
116
116
119
117
117
118
117
117
117
117
117
117
59

59

119
120
116
116
95

43
78
37
40
116
116

121

20
45
118
65
65
114
114
68
68
67
67

67

67
67
67
39

36

102
102
35
38
77
77

OPCODE LIST (SORTED BY NAME)

SCOMPE
SCOMPG
SCOMPGE
' SCOMPL
SCOMPLE
SCOMPN
SDIV2
SDIV3
SETA
SETAB
SETAI
SETAM
SETCA
SETCAB
SETCAM
SETCM
SETCMB
SETCMI
SETCMM
SETM
SETMB
SETMI
SETMM
SETO
SETOB
SETOM
SETZ
SETZB
SETZI
SETZM
SKIP
SKIPA
SKIPE
SKIPG
SKIPGE
SKIPL
SKIPLE
SKIPN
SMOVE
SMUL?2
SMUL3
S0J
SOJA
SOJE
S0JG
SOJGE
SOJL
SOJLE
SOJN
SOS
SOosa
SOSE
SOSG
SOSGE

012B10
017B10
015B10
011B10

. 013B10

016B10
106B10
107B10
300B10
202B10
300B10
202B10
32001017777
453B10
452B10.
460B10
463B10
461B10
XCT 5,

200B10

200B10
201B10
300B10
20041017777
477B10
476B10
201B10
403B10
201B10
402B10
203B10
334B10
332B10
337B10
335B10
331B10
333B10
336B10
001B10 +
104B10
105B10
360B10
364B10
362B10
367B10
365810
361B10
363B10
366B10
370B10
374B10
372B10
377B10
375B10

77
77

77

77
77
77
102
102
14
14

.14

14
47

47
14
14
14
14
46

41

14

14
41
14

73

102

102

424B10
427B10
425B10
426B10

462B10
414B10
417B10
415B10
416B10

400B10

401B10
330B10

- ey

OPCODE LIST (SORTED BY NAME)

SOSL
SOSLE
SOSN
SPATE
SPATN
SRCHE

SRCHN

SSTEP
SSUB2
SSUB3
SUB
SUBB
SUBI

SUBM

SWAP
TCAD
TCDV
TCMAT
TCMP
TCNEG
TCSB
TDC
TDCA
TDCE
TDCN
TDN
TDNA
TDNE
TDNN

TDNU

TDO
TDOA
TDOE
TDON
TDU
TDZ
TDZA
TDZE
TDZN
TFAD
TFDV
TFMAT
TFMP
TFSB
TLC
TLCA
TLCE
TLCN
TLN
TLNA
TLNE
TLNN
TLNU
TLO

371B10
373B10
376B10
006B10
007B10
004B10
005B10
XCT 1,
102B10
103B10
274B10
277B10
275B10
276B10
EOP 35400
756B10
761B10
214B10
760B10
EOP 14
757B10
430B10
654B10
652B10
656B10
300B10
304B10
612B10
616B10
614B10
434B10
674B10
672810
676B10
610B10
630B10
634B10
632B10

636B10

102B10
107B10
211B10
106B10
103B10
641B10
645B10
643B10
647B10

-300B10

304B10
603B10
607B10

- 605B10

661B10

76
76
75
75
25
102
102

127
63
63
96
63
69
63
14
48
48
48
14
14
48
48
21
14
48

18

48
21

48
48
48
62
62
96
62
62
48
48
48
48
14
14
48
48
21
48

650B10

610B10
614B10

670B10

601B10
605810

OPCODE LIST (SORTED BY NAME) ‘ : T

TLOA 665B10 48 a

TLOE 663B10 48 3

TLON 667B10 48 ©

TLU 601B10 21 -

TLZ 621B10 48

TLZA 625B10 48

TLZE 623B10 48

TLZN 627B10 48

TMOVE 130B10 65 -

TMOVEM 131B10 65 -

TNEG EOP 11 69 -

TPOLY 205810 95 -

TPOP 427B10 114 -

TPUSH 425B10 114 -

TRC 640B10

TRCA 644B10 48

TRCE 642B10 48

TRCN 646B10 48

TRN 300B10 14 600B10

TRNA 304B10 14 604B10

TRNE 602B10 48

TRNN 606B10 48

TRNU 604B10 21 -

TRO 660B10

TROA 664B10 48

TROE 662B10 48

TRON 666B10 48 |

TRU 600B10 21 - . o
TRZ 620B10 RO o
TRZA 624B10 48 ‘ - S it
TRZE 622B10 48 = ; A ;
TRZN 626B10 48

TSC 651B10 48

TSCA 655B10 48

TSCE 653B10 48 o ~ T
TSCN 657B10 | 48 B | o
TSETZ EOP 2 68 .- e e
TSETZM XCT 14, - 68 - | e e
TSKP 300B10 * 67 - o L hEg
TSKPA 304B10 67 -

TSKPE JRST 12, 67 - 3
TSKPG JRST 17, 67 - , v
TSKPGE ~ 335B10 67 - | | TRN
TSKPL 331B10 67 - e
TSKPLE JRST 13, 67 - £
TSKPN JRST 16, 67 - gV
TSN 300810 14 611B10 fate
TSNA 304B10 14 615B10 %
TSNE 613B10 48 S
TSNN 617B10 48 £
TSO 671B10 48 g
TSOA 675B10 48 | F O
TSOE 673B10 48 | ~ = 3

TSON | 677B10 48

OPCODE LIST (SORTED BY NAME)

TSZ 631B10 48

TSZA 635B10 48
TSZE 633B10 48
TSZN 637B10 48
UDPB 037B10 58
ULDB 036B10 58
UMAP 032B10 31
VADD 202B10+0 94
VADD2 201B10+0 91
VADD3 - 201B10+1 91
YCAD 202B10+10 94
VCAD2 201B10+40 91
VCAD3 201B10+41 91
VCDV?2 201B10+46 91
VCDV3 201B10+47 91
VCMP 202B10+11 94
VCMP2 201B10+44 91
VCMP3 201B10+45 91
VCSB2 201B10+42 91
VCSB3 201B10+43 91
VDCAD 202B10+12 94
VDCAD2 . 201B10+50 91
VDCAD3 201B10+51 91
VDCDV?2 201B10+56 91
VDCDV3 201B10+57 . 91
VDCMP 202B10+13 94
VDCMP2 201B10+54 91
VDCMP3 201B10+55 91
VDCSB2 201B10+52 91
VDCSB3 201B10+53 91
VDFAD '202B10+4 94
VDFAD2 201B10+20 91
VDFAD3 201B10+21 91
VDFDV2 201B10+26 91
VDFDV3 201B10+27 91
VDFMP 202B10+5 94
VDFMP2 - 201B10+24 91
VDFMP3 201B10+25- 91
VDFSB2 201B10+22 91
VDFSB3 201B10+23 91
VDIV2 - 201B10+6 91
VDIV3 201B10+7 91
VFAD . 202B10+2 _ 94
VFAD?2 201B10+10 91
VFAD3 201B10+11 91
VFDV?2 201B10+16 91
VFDV3 201B10+17 91
VFMP 202B10+3 94
VFMP2 201B10+14 91
VFMP3 201B10+15 91
VFSB?2 201B10+12 91
VFSB3 201B10+13 91
VMOVE 200B10 87

VMUL 202B10+1 94

OPCODE LIST (SORTED BY NAME)

VMUL?2 201B10+4 91 - L ¥EGUI

- VMUL3 201B10+5 91 - s S
VSUB2 201B10+2 91 -

VSUB3 201B10+3 91 -

VTCAD 202B10+14 94 - -

VTCAD?2 201B10+60 91 -

YTCAD3 201B10+61 91 -

VTCDV2 201B10+66 91 -

VTCDV3 201B10+67 91 -

VTCMP 202B10+15 94 -

VTCMP2 201B10+64 91 - . Cooggr
VTCMP3 201B10+65 91 - , <y
YTCSB2 201B10+62 91 - : S
VTCSB3 201B10+63 91 - , CE
VTFAD 202B10+6 94 - , oL
VTFAD2 201B10+30 91 -

VTFAD3 201B10+31 91 -

VTFDV?2 201B10+36 91 -

VTFDV3 201B10+37 91 -

VTFMP 202B10+7 94 -

VTFMP2 201B10+34 91 -

VTFMP3 - 201B10+35 . 91 - e IinaFE o g
VTFSB2 201B10+32 91 - , g
VTFSB3 201B10+33 91 -) ' , L
XCT 256B10 47 , ; LT e D
XDIS XOP 3, 32 - L AL
XJSR Xop 0, 32 - \ S o :
XOP 031B10 18 - VA o
XOR 430B10 TR = Th,
XORB 433B10 ‘ ‘ PR o ¢
XORI 640B10 14 431B10 ; IR Ty
XORM 432B10 o , L ' R A
XPCW X0P 2, 32 -

XRET XOP 1, : - 32 -

INDEX

. ESK

. ESTNP
.ESTOP
.JBDAT
.JBMOD
.JBNBL
.JBTNP
.JBTOP
.JBTRP
.JBUNP
.JBUOP
.JBUUE
.JBUUO

.USK

BCD

CONCEAL
Code PSECT
Code Region
Data PSECT
Data Region
Delta

EPMP '
Effective Addr
"FLAGS

GAP
Indirect Word
JOBDAT

NSB

POINT
POINTR
Traps

UPMP

Z

.85

85
85
83

83
83
83
83
83
83
83
83

‘84

101
78
11

11

87
85

79

10

100
50
50
82
84
13

