NEUSLETTER FOR AN-100 USER‘S GROUF Produced by Lefford F. Lowdes
416 Long Pond Road
1 QCTOBER 1979 Nusber 2.4 Rochester, New York 148112

DISCUSSION OF ANOS (TH) HONITOR, PART 1
by Peter A. Jacobson
The Alpha Nicro systes nonitor {SYSTEM.MONL1,41) is losically {ivided -

into seven modules. These modules {in the order in which they fall in seaory) -
are: -

SYSMON - base sonitor

TRHSER - terninal service routines

FILSER - fiile service roulines

FILERR - file error message routines

EXEC - executive program module

DSKSER - disk driver routines for device DSKn:
INITIA - the systen initialization routine

SYSHON and EXEC are my awn nases for those noduleé. The following
discussion of SYSHON reflects the monitor as of the 4.2 release.

The thirty-one 16 bit words addressed from 0 to 76 octal mre reserved
locations as defined in the UD-14 Progranmer’s Reference Manual that comes with
avery AM-100 (TH) board. A brief sunuary of these word locations and their
functions follow (ihe reader is advised to refer to the manual for @ Tull
description of the definitions}:

HEX OCTAL FUNCTIDN

00-10 00-20 RO-R5, 5P, PC, and PS are saved or fetched for halt or power up
{not inplemenied on the AM-100?

The following locations contain the value that is placed in PC when the
described event occurse

i2 22 buss arrar

14 24 nonvectored interrupt powerfail

14 264 - power up/halt gption power restore

18 30 parity errop

14 32 reserved op code

1€ 34 illegal op code farmat :

iE 3é XCT (execute single instyruction) error
20 40 XCT trap

22 42 , SVCA table {see note 1 below)

24 44 5VC3

24 44 BVCE

28 50 vectored interrupt table (see note 2 below)
24 a2 nonvectored interrupt

2C o4 BFT (breakpoint) trap

2E a6 - 170 priarily mask

30-38 £0-70 floating point operation sterage
Jh-3C 72-74 net used

3JE 76 fioating point error PC

Note 11 content of octal 42 plus twice the value of the wrgument is placed in
PL. The content of the word thus addressed by PC is added to PC to gat the
final destination address. .

Note 2: content of octal 50 plus the device code is placed in PL. The content
of the word addressed by PC is added to PL to get the final destination address.

Once the monitor is loaded, either by the disk controller board”s PROM
routine, HONTST.PRG, or a booistrap loader (eg HWKLOD, WUNGLOD, etc.), a "CLR PC"
is executed which sets the progran counter to semery location 0. Initially that
location contains the instruction "JHP BH31572", which in the 4.2 release of the
Mmanitor, is the address of the initialization routine, INITIA, which will be
discussed later.

In that there are no SVCC‘s currently implemented on the sysiem,
location 46 octal {the SVCC PL) contains zero. Therefare, if an SVIC ever jeis

called, the program counter will be set to location 0. Afier the first clach
interrupt, location 0 no longer contains the JHP instruction. Fart of the joh
scheduler’s task is to update the arrow display for the DYSTAT program. This is
done by moving octal 15 io the semory location contained in the JOBDYS word of
gach job‘s JCB. If DYSTAT is noi running on ihe sysienm, the JOBDYS address is O
and the original JHP imstruction gets nodified into an LEA R4,BR3. Uhen an SVCL
ig executed the AN-100 starts executing garbage and the system crashes.

The next section of the monitor, starting ai octal 100 is the gsysten
cossunication ares as described in appendix B of the "ANOS MDNITOR CALLS MANUAL".
In addition to that description, ihe following information is known aboul
gselected words in that area: :

SYSTEM - if bit 8 is set, the system is running from a cariridge disk.

DEVTBL - paints to a contiguous area of mesmory. The table is built by JOBG
during systea initialization. Each eairy bas four words:
Word 0 - device status (odd byte) and drive number (even byte)
status byte: :
bit 0 is always set so that word 0 is never zero
bit 1 set ==> sharable
bit 2 set ==> non-sharable device is assigned (set by ABSIGN)
bit 3 set ==> same as bit 2, but it is not known how it is set
bit 4 set == nounted
Nord 1 ~ device nase (packed RADSO)
Yord 2 - JCB address if device is assigned. If address is odd, device
is assigned to "COWPUTER B"
Word 3 - device bitmap address {(if 0, device is noi file stiucbured)
address inserted here by BITHAP during system initializatlion
Last word of ithe table is zero

H

CLKRUE, SCNQUE, and RUNGUE are discussed later with the job scheduler.
DRVTRK - the table initially contains -17s.

Following the system conmunication area is ihe vectovred interrupt (I/0)
.table and an illegal interrupt trap routine. There arz eight entries in the
: tablg, uhich_initially are oftsets to the trap routine. o '

The internal stack is 100 octal words in size and is used s @ worl
stack by the job scheduler.

The SVCA and SVCB offset tables are the next area in the aonitor. The
gxecution of aw SVCA is described in the ¥D14 manual. There are no undocuaented
5YCA“s, howaver, there appears to be an error in those copies of S5YS.MAL that I
-have seen. The BNKSWP call is defined as an SVCA 44, but its table entry in the
moiiitor makes it an SVUCA 485.

SVEB‘s are processed with a routine which follows their offset table.
This routine decodes the PSI following the SVCB opcode and places the address
of the first argument in R4 and the address of the second argusent in R3. The
Tunciion code is placed in RO and the PC address is adjustied up to three vords
past the SYCB. The offset table is entered with a TGALL B9, which containsg
twice the value of the SVCB argusent. If the SVUCB uses an exira argument, as
BVCE O, function code octal 14 (DSKALC through DSKLTH) does, it is the = -
respon51b111ty of the final destination routxne to adjust PC pasl this uord. e
There are no undocumented SVCB’s. =

The monitor error trap routines follow the SVCH processing module. The
first of these is the ubiquitous "BUSS ERROR - PC numn". The error coniroel
_intercept words of the JCB are first tested for user errar recovery. If these
words are null {(they are always reset to null by EXIT - SVCA 11), 2 system errenr
message is generated. A "BUSS ERROR" is reported for buss, breakpoint, and '
floating point errors. There are no SVCA © or SYCA 1 calls defined, and they

are irapped out, however, they will be erroneously reported as "7?5VCA 1 CALLED"
or "?T?S5VCA 2 CALLED™.

The queue system routines and the initial twenty gqueue blocks fors the
next section of the monitor. The gueue calls are fully described in chaptler
five of the "AMOS MONITOR CALLS MANUAL". No test is made by any queue call to
deternine if there are any queue blocks available. If a particular systenm
installation nakes heavy use of the gueue sysigm, it is recomsended ihat QFREE
be tested before 2 queue call is executed.

The job scheduler follows the queus systes. It is entersd whensver a
nonvectored interrupt (I1) is generated. This interrupt is the line clock, The
Job scheduler first executes a SAVE (PS and PC were pushed on the stack when ihe
interrupt occured), switches over to the internal stack, and then incremenis

g

TIME. CLKAUE entries are processed every clock tick by first picking up the
address of CLKBUE which links ta the first queue entry o be processed and the
first word of the queue entry iinks {5 the next, stc. The second word of the
queue eniry contains the address of the routine to be executed and the reaaining
5ix words can be used for the routine’s datz {after the routine is called, R3
will contain the addvess of the third word of the queue entry). The routine
must exit with an RTN. If the "V™ bit (overflow bit in the status information)
is sei {via an LCC 2 or other aperation which sets this bit) on return from the
routine, the entry is deleied from the CLKQUE by returning the gqueue block to
the OFREE lisi and relinking the rest of the gqueue. The next entry is protessed
by picking up its link from the previous enlry. Examples of CLKBUE entries are
the SLEEP c¢all {see below), HLDTIM, and DYSTAT (which is mpever descheduled}.
CLKQUE entries are sdded with a QINS call and placing the address of the roubine
in the second word of ihe queue black.

When the end of the CLKQUE is reached, the initial entry will be
processed. The last entry is two words long; the first contains the link ta
SCNGUE and the second contains the address of an RTN instruction (allowing
sinulation of an actual routine). - '

SCNQUE entries are processed by the same routine that handles LLHQUE
entries and the format is identical. The Job scheduler does not make 2
distinction between ihanm at this point. When the end of the SCNQUE is reached,
its link points to the RUNQUE.

The RUNQUE is five words in length; its initial entries are as Tollows:

RUNQUE: WORD RUNBUE+4 y link to current job’s run address
WORD 1004 address of a RTN instruction

’

y
VORD RUNBUE y link to next job’s run address
WORD 0 r last link
HORD 2474 r end of the job scheduler

The RTN instruction (RUNQUE+2) will alvays be executed when Lhe RUNQUE
1s eniered (this provides for an initial simulation of a CLKBUE or SCNQUE entiry).,

If any jobs are scheduled (see JRUN for scheduling information) the first RUNOBUE

word will contain the address of the fourth word of the currently scheduled
Job’s” JOBRND. This address is the run address for the job when it gets
scheduled and will be either the entry point of the job context switching

routine or the job priority tiser routine. If the address is the first one, the
Job’s SP is restored fros JDBRRd+14, the job’s priority is copied into the timer
word znd incremented ({o insure the job doesn’t get 45535 ticks of CPU tinel,
JOBLUR is updated, the address of the priority timer voutine is placed in the
fourth word of JOBRNR, the DYSTAT arrow is sent, and wmenory bank switching (if
active) is carried out. An RRTT then sends the Job off to continue whatever it
was doing before being interrupted.

Uhen the priority timer routine is entered (either via an intevrupt or
JUAIT - see below), the tine counter word(JDBRNB+10) is decremented and, if noa~-
zero, the Job is allowed to continue. If the Job has used all its allatted time
and there are other jobs in the RUNQUE, a new job is scheduled (if no other jabs
are scheduled, the job is allowed to continue). Before scheduling the newxt job, . -
the current job‘s SP is saved, the context switching routine address is placed
in the job“s run address word, and the BYSTAT arrow is cleared, The 1link to the
next job is loaded from RUNRUE*4, This is somewhat oversinplified as the RUNQUE
linkage appears ip be circular, but that is the general idea.

The initial link defines the end of the RUNQUE. 1If all scheduled jobs
are conleted (and descheduled) within the clock tick (ar ne Jobs were sgheduled)
the last link is reached. This link is to a section of the Job shceduler that
insures interrupts are enabled (so anoiher clock interrupt will occur) and
executes an S0B 400 tines (presumably waiting for an interrupt). IT & clock
irterrupt does not occur after the 50B arjusent reaches 0, the processar is.
lacked and the SCNQUE entries are processed again.

After the job scheduler is the BNKSUP routine which will SUEP NEROPY
banks for the job in control of the CPU. The Job scheduier does not use this
tall, but rather, does it‘s owun swapping. BNKSWUP will not update the JOBBNE
ward in the JCB and if the bank argument passed in R1 does not exist, the job

will either be stuck here forever or return the Wrong or non-existant aenory
bank. : '

Although JUWAIT eccupies the next block of nemory, discussion of this

C3ll is postponed until after JRUN so that the scheduling of a job can be done
first. '

The JRUN call firsi locks the processor and then picks up the Tlag
argusent following the call {when the routine returns, the PC is adjusted past

+1
+ 4
o+ 1.
..“J'O
Li

H1A

this argument). If none of the flag argusent biis are set in the current JOBSTS
word, the routine veturns, If any bits are set, they are cleared from the
JOBSTS word (if the flag azrgument is zero, it is @ special case, and the bit
test is bypassed). The JOBRNG words are defined below to aid in the following
discussion on job scheduling. N

JOBRNQ {saven word block):

WORD ¢ - unknawn / aluays 0

WORD 1 - link to last scheduled job
WORD 2 = link to nexi scheduled job
WORD 3 - job’s run address

WORD 4 - priority counter

WORD 3 ~ job priority

WORD & - current SP

The link to the next scheduled job (JOIRNE+4) is tested and, if it is
nen-zero, ihe routine returns as the job is already scheduled. If the link is
zero, it is loaded with the link from the job currently in conirel of the [FU to
the next scheduled job. The link to the iast scheduled Job (JOBRNG+2) iz lomded
with the link to the job currently in control. Thus, the JOB references by RO
when a JRUN is executed is inserted between the job which executed ithe JRUN amd
the next scheduled job. Because the interrupis were disabled by the £all to
JRUN, the job will be the next one scheduled. Dbviously, a JRUN with RO
referencing its own job will accomplish nothing as the Jjob nust have been
sctheduled to execute the JRUN.

In the JUAIT call the flag argument is picked up, its bits are set in
the JOBSTS word, and PC is adjusted past the arqument. The JWAIT functions in
an opposite manner to JRUN. JWAIT links the job scheduled befare the one
referenced by RO to the job scheduled after it and clears the forward pointing
Link in JOBRNQ+4(RO0}. 1If the link was already tieared, JWAIT is exited as the
Job is already in a wait siate. The job’s 5P is saved in JUBRNR+14, the
internal stack address is loaded, the RUNBUE is indexed, the DYSTAT arrow is
cleared, and the next job is scheduled. JWAIT nay be called with RO refevencing
its own job; the caller should obviously provide a seans for the job %o be
rescheduled. :

The SCAN call follows JRUN and executes entries in the SCNEUE until the

link to the RUNBUE is reached.

The SLEEF call inserts a queue block into CLKGUE by loading RI with the
address of the CLKQUE and calling QINS. Part of the SLEEP code is a routine
which decresents the tick argument of the SLEEP call until it is 0; one
decrenent per clock tick. The address of this code is placed in the second word
of the queue block {the first word in the block is the link to the next CLKQUE
emtry}. The tick argusent is placed in the third word of the quaue block
(referenced by RI afier the call to the routine) and the job’s address is placed
in the fourth word. The job itself is placed in a wait state with "JUAIT J.5LP"
When the tick argumsent reaches zers, the job’s address is picked up from the
queue block and a "JRUN J.SLP" is executed, clearing the J.S5LP flag from the
Job’s JOBSTS word and rescheduling the job. '

For those programsers interested in naking use of the CLKOUE or the
SCNOUE the following remarks and example should prave helpful:

As described above, CLKRQUE and SCHAQUE entries are identical in formmt
and in the nethod by which they are processed, The major difference being that
SCXQUE entries are processed not only at line clock intervupts, but also when
the processor is idle and when ihe SCAN call is executed. The distincliion can
be important if the routine is to be used for controlling or monitoring a vreal
tine or external event. For the purposes of the following exanple, an entry
is inserted into the CLXQUE, but the method is the sare for the SCNQUE.

EXHPLE: LOCK . no interrupts
Hov PHCLKQUE,R3 load address of chain
QINS insert queue clock at R3
LEA R1,CO0DE address of routine to be run
MoV E1,(R3)+ set address of routine ir queue block
HEY DATA,{R3)+ resaining six words can be used for daztam

R s e e W -

UNLOCK routine is now queued
::: ; balance of user program
EXIT
COBE: ... i code which is execubed when CLKIUE entry is

‘s ' ; called. RI will index the second word of the

vae ; gueue block for use as data area. RA aust
. : not be disturbed! Calls which index @ job
- ; nay not necessarily index the caller’s.
RN ; the routine nmust return

Note: The block of code that is inserted into either SINGUE or [LXQUE
may not reside in bank switched nemery, it nust be in nenory coanon to all users
as a job does not run this code, the nonitor vuns it. In addition, the queue
eatry must be deleted from SCNAUE or CLKQUE before the progran ferninates which
inserted it if the code is a part of thai progras. If the code is anpiher
menory nodule which wor”t sove afier the progras terninates, then the Jueue
entry may resmain. Otherwise, garbage will probably be executed the next time
the entry is processed resulting in a system crash.

_ To allow the inseried code to remove itself from CLKQUE lor SCHNQUE] when
some condition is met, the following instructions {or appropriate alternatives)
are added 1o the routine: ,

COBRE: ... ; user routine

TST VALUE ; condition net yet?

BNE RETURN ;WO

LEC 2 y yes, set "VU" bii to delete eniry
RETURN: RTN

If it is desired thai the routine only be executed at fixed iniervals 3
SLEEF call cannot be used as the SLEEF call only deschedules jobs, not CLKQUE
(or SCNGUE) entries. A& routine such as the one described by Lefford Lowden
(Method One) in issue Number 2.3 of this MNewsletier should be used. The LR
igcading is not severe as the overhead of job context switching is wot incurved.

I? the job which inserted the queue entry execuled a *JWAIT FLAGS",
suspending itself until some event tramspired, the gqueue entry can vevive it
by executing a "JRUN FLAGS" with RO indexing the job‘s JCB before the final
weturn. :

Good luck!

The three memary calls (GETHEM, DELMEN, and CHGHEM) are all part of the

s3ne module and include extensive error testing. The GETHEM call will vetusrn
a sodule cleared to nulls.

The #ost involved module in this section of the sonitor is the FETIH/
SRCH module. It is composed of over 150 instructions (compared to the barely 70
of the job scheduler). It first determines whal control flags have been sel and
“then limits its search on that basis. Unless the F.ABS flag was set a search
of either user nemory (F.USR) or sysiewm senory and user memory is sade on a
module by apdule basis.) :

if 2 disk fetch was requested, FETCH clears all flags and error codes
Pron the user DDB, except flag bits 4 (transfer initiated) and 5 (read or
write). The DDB is then pre-INITed (BIS #40000,DD0B) and an INIT DDB is called,
This is done to get the address of the disk driver in DBUB+12 without allocating
a buffer and also, FILSER will supply the user’s default device if it was not
specified in the specification. The FETCH call uses this address to deternine
the record size of the device (always the first word of a disk driver). It
sets this record size in DDB+4 and then checks to sake sure the caller has
enough sesory to accosodate a disk record. If not, the call will be aboried.
If no PPN was supplied in the DDB, the user’s PPN is picked up before & search
of the disk WFD is nade to find the address of the UFB. If the UFD wms found,
ils records are read until the specified file and its link are located. If the
file is found, ils size is calculated and if the user has enough free nemory, @
memory nodule is built and the file is vead in. If the user included the f.FIL
control flag, the file’s name will be copied from the DBB to the housekeeping
words of the aemory smodule and the wodule "FIL" flag will be set.

The KBD call follows the FETCH/SRCH module. If the job has no ternisal
attached, a "JUAIT J.TIU" is execuied, descheduling the job until a terainal is
attached. If the terminal is in inage mode, a TIN is called and the input
character ‘is placed directly in R1. If the fersinal is in nornal nrode, the
job’s connand Tile size word (JOBCHI) is tested for command file processing. IT
the word is zerc {(not processing a conmand file) TIN is called, adding characters
to the inpul buffer, until either a line-feed is reachgd or the buffer is full.

The ¥BD routine also handles command file processing. If the JOICHI
word is non-zero, KBD will set its input from the command file buffer, echoing
the data if the Trace flag is set and placing it into the input buffer, until &
line-feed or a special cosnand file syabol (delimited by ":™) is reached. Iif

the comnand is ":<" the data is anly echoed until a2 ">" is reached,

The TTY call tests the JOLCMZ word $o debermine if 2 coamand tile is
being processed. If the JOBCMZ word is zera, no couMand Tile is loaded and TTY
calis TOUT. I the JOBCHZ word is non-zero, bit 4 of JOBCHS is tested to
deternine if the Trace flag is set; if not, TTY returns. I Trace is set, bit 2
of JIBCHS (Revive) is tested and, if set, TOUT is called else TTY returns.

The TTYI call executes a TTYL until 3 null character is remched, TTYL
axecutes a TTY. 1In the TTYL call, a carriage return (octal 15) gets mn
autonatic line-feed (gctal 12) appended,

The TAR call executes a TTYI with octal 11 and ¢ as imsediate dmta and

@ CRLF daes the same, but with octal 15 and 0 as innediate data.

The tersinal service routines follow the preceeding calls and they
will be discussed in the next article.

#ARNING ON USE OF SLEEF MACRO

.Related to the discussion above, one should not specify in an assembler
routine & SLEEP period greater tham 32747 clock ticks (77777 octal or 7FFF hex),
In 2 system with a 60 Hz power line, this is equivalent to just under 9.1 ain
or 346 seconds. In the processing of the SLEEP call (see above), the argusent
is placed in a queue entry and decremented each clock tick until it rezches
zero. Uith arguments larger than 32747, the argunent is technically negative as
viewed by the WD14. Thus, decresenting it will generate an overflow which is
reflected in the setting of the status bits. On exit from the decresent routine
the "¥" bit has not been cleared due to the overflow, thus causing the relatad
CLKQUE entry to be cleared. Thus, it will not be rum next time. However, that
code tests the decremenied value for zero which would ultinately issue @ JRUN
instruction to restart the job! Ergo, the job will hang in lisbo forever,
Presumably at some later release of the systesw this minor error will be Pined,

TYPO IN SLEEP AND DINE IN JUNE NEUSLETTER, MUMBER 1.C

GTDEC inm the listings was #istakenly speiled as GETDEL, sorry.

- DISCUSBION OF ANDS (TH) MOMITOR, PART 2
‘ by Peter A. Jacobson

The terminal service routines, TRMSER, foallow the first section of ihe
-monitor which was discussed in the last article. The spurce for theap routines
i1s available Proa Alpha Micro in the file, “TRNSER,.NAC® on the Driver. Source
Diskette (8FD-00003-00). Documentation on the Axjor operational aspacis of
TRMSER {8 discussed in the document, “Terninal Service Systaa® (DUR-00100-31),
which i included with every AM=100 (TH) board. Tha supervisor calls which
access TRNSER are well documented in the AMDS NONIYOR CALLS NARUAL and the
reader ta advised to refer to that Amnual for furither inforsation. The
following discussion will tover anly the aajor paints of TRHSER, thosme ttemt
whith are undocuaented, and sone programning technigues.

TRNSER provides input and output linkmge betueen the jobs allecsted to
the systen and their terainals. This linkage is maintained through the JOBTRR
word in each job7e JCB. The JODTRN word points to the terminal line twble
nesociated with the actusl terainal. The terminal Yine table is part of »
linked 1ist which nakes up the terninal definition chain (TRNOFC)., In addition,
sach terainal line table entry s linked back to the JCB of the job to uhith the
terainal fe attached. This forward and backvward linkage ig an tsportant
aafegquard festure insuring that uhen a terainal is attached to » job {thraugh
ATTACH), amy Job previously attached to that terainal ts detached from it batore
the attach!ng is conplated.

The JOBTRH ink in the JCB does not actually point to the base entry in
the terainsl tine table, dut rather to the terainal status vord tuerd 3 starting
fron zerd)., The first three words vonsist of: 1) link 't the next terainal lime
table antry (O for lnst entery), 2) tirst wvord of the tersinal nene (packed RﬁDﬁO)
and 3) second word of terninal nane (also RADIO).

Before getting inte tarniaal 1/0, sone definitions and explanations
ahould prove helpful. The following components ara necessary for tersiml 1/0
in an nu-iooz ~

TRMSER - The section of the nonitor which passes terainal input and output
to and tron the job nttnched to it. '

JOBTRN = The line tadle of the terminal to which the job is attached. 1t
contains 1inks to the terainal driver, interface driver, the jeb
attached to 1t, and the next terninal definition chain entry. In
addition, it contains the 1/0 buffer addresges and the various
paraaot!r: agsociated with the buffers {sse ¥1.2, LFLI.

DRIVER - Two types of drivers are negessary:
1) A harduare interface driver (I1DV), responsible for actuslly
receiving and sending data ta and from the tarninal,

2) A softvare teratnal driver (TDV), which perfaorss tuston hundllng
"of datz if necessary, o

The TBY has the following as an exanple of 1ts tirst § wordst
Cumy MM

$ terainal attributes:
$ bit 4 if set says terminal has null output
. ? bit 7 i zet says terninnl has has iu:al echo
BR RiigH + input routine
CBR O QUTPUT + output routine
BR ECHO $ echa routine
. lk SPtCAL y Spetinl proceasing routiue tcnrsur, ete)

1¢ custon handling 1s not required for a routine, the branch instruttios.
BT rnpla:ld uith » return (RTN). :

= ~ far most tarainal drivers, the attridute word is 2ero. The PSEUDD
ttralnnl driver has bit & et and tht NULL termina) driver has bits & and 7 set.

P ;;j." © The character input routine can be used to tonvert the input ot -
. non-ASCII devices to ASCII or to throw away characters., The charcter is pas;ed
1| Rt while RS indexes the terntntl Iine table.

The character output ruutine can be used to tonvert from ASCII to
" uhatever code the terminal accepts, wdd nulls to ouput (see SIL700.MAC), of

plrforn a softusre forn-feed on hard copy terminals that don’t support forn-faed
_;.*(I!l exanple below).

; The echo routine i used for ipictal proce:sing of rubouts (an hard topy
irninalll and control-u. :

The special processing routine i3 4enerally ysed on CRT/S to provide
confornily with Alpha Micro’s dafined standard functions for X-Y curssr movement,
clear to the end of line, hone, clear CRT, atc. Mowever, it could be used with
aay terainul to previde special features,

For hard copy terninals which asy have eptional fora-feed capabilities,
- ofr which are nissing thea entirely, er which have the forn-feed response fixed
at one page size only, the following output routine ean be inserted ints the
appropriate driver routing to qenerate softuare fora-fasde:

)4 - 44 t location of pagesize info
L¥C . 30 line tounter -~ poth nddresses muet de changud
17 Alpha Mero atarts to use thea

bl T]

DUTPITs 18T PSZ(RS) see 1f 2 page sizs defined

»
!
1444 DONE -] MO page size, ergo raturn
AND "2, m $ strip character to ASCII
cp k1,014 3 forn-feed charactor?
BRE LF y no
LEA R3,22(R3) } index terainal output queue it
QINg y 9ot L ingert Block into outpul queue (2
L1l LHC(R3),2(R3) 7 aet number of lines 18f4 on page (1
noy f12,4(03) ? set literal character to » line-feed {4
CLR Rt + ihrov away forn-feed tharacter
bR DONE ; return
LFs ctaP - R, M2 $ line-feed character?
BNE DONE $ o
BEC LRCIRY) y decrenent line coumter - 1t 2evo yet?
BHE DORE ! no
BBV PSLZ(RS),LNCIRY) ; reset the line counter to top of form
DomE: LCE 10 t set N bit for position processing (3

RTN

There have been two assumptions made in the above coder 1) word at
location 44 in the terninal line tadle contains the nuaber of lines per page for
- seftware conirol of fora feeds. 1If thix ward is zerp, it iaplies that the
harduare on the terainal will interpret fora-fesds. 2) The word at location 30 -

counts the remaining lines on tha page, Currently these twe words sre unuspd
in the teratnal line table,

Terninal output ia processed both by an actusl output buffer and by
queue block chains. tines t thru 4 in the apave code insert a queur dlock to
handle the software forn-feed. Line t loads the address of the output queue
into R3. QINS obtains a queue black from the nonitar, links that gqueve Slovk at
the front of the queue addressed by R3, and returns vith R3 addressing the first
data word in the block obtained. Uith the 4.t relsass of AMOS {TH) each queue
block cansists of 8 words =~ one 1ink word and ? data words (nunbored tn thie
context 1 theu 7). The first data vord contains 3 connand code which determines
hew the queue entry is to be handled. A sunmary of thess conmands follous:

 DATA CONNAND
0. data block (duffer or liters))
2 subroutine call
L] output inage data
8 cencel sutput watt state
t0 gutput suspended

The queue blotk entriss are processat betone output buffers, Since the
RINS call returns the block with the data words zeroed, the coanand in the
exanple {s 8 - data block. The protessing of this conmnand takes tuo Pornse
1) butfered data, and 2) literal characters. The first fora allous the uter ¢o.
queue up » buffer of data for {maediate output and the secund fora allows the
user to spectfy a particular character to be output. In both cases the tecond
data word in the queue dlock contains the character count, The third datm word
13 efther the literal charactar or the address of the butfer. If the third word

" 1n greater than nctal 377, it is assumad to be an address,

Note that when the fara-feed i replaced by the queus bleck entry for
the appropriate nuaber of 1ine-feeds, the line count 1s not restored. One tw
tenpted to think that this is an error, 1¢ fsn’t, as the line-feeds gonmrated
by the queue bloek entry also 90 through this routine and when all of them have
gone through, this routine resete the lime count by copying the page size isto
the line counter and » new page degina. '

Line 3 sets the return code fron the terminal output'reuttn!. The

possible codes aret

N bit get (LCC 10) - char 48 sutput and positioning {3 adjusted
Z bit st (LCC 4) -~ char is Dypasesd (assuasd the routine performed outpt)
Noand Z bits off - ehar is output without positioning

Output positioning is amintained to handle tabs, rubouts, and control-U’s,

In addition to now being adble to send fora-fesds 0 the tesminal, if the
hard copy device has a key board, typing a contrel-t will echo a fora-feed,

Briefly (and sonewhnt over-simplified) terminsl input is handled a3
follows:

1) For interrupt driven interface drivers (AN-300 (TH) and AN=310 (T}
A key is depressed on the termainnl‘’s keyboard, causing the doard to
generate a vertored interrupt. The location of the interrupt handling
routine is deterained by fetching PC from nbanlute location 26 (hex)
and adding the device code %o 1t. The contents of this intermedinte
location 18 addad to PC to fora the final 2ddreas of ¢the input routine.

for non~interrupt driven interface drivars (INSAT 810 (TH))s
‘ Vhen the driver {s initialized (2t its first apearance in » TRADEF
coanand in the SYSTEN.IRI file) an entry ie placed in the BCNQUE. fvery
tine the queue is seanned the device’s status will dbe checked for
characters awaiting input. VWhen a3 character {s reaxdy, the input degins.
(For thess drivers only: the seanning roautine will also check for
possible sutput to process),

2) The address of the tersinal line tadble is placed in RY and TRMICP is called.
"TRWICP calla the input routine of the terminal driver which will |upply By
special processing the character needs.

3} 1If the character aakes it past the tests for fnage nede input; control-$,
- =@, or -, doudle mscape, rudout or control-U, printable, ete.; it vill be
echoed via 2 cul! ta TINIT.

4) If the character {9 a :arringe raturn, & frae line~feed will be mppended,
Uhen a line-feed {3 reached, if the terninal has 2 job attached which ts in

3 terainal input wait state, the Job will be rescheduled to'proclst the
input line, '

Again brietly terminal output is handled as follous:

1) YOUT adds characters to the terninal output buffer, initializdng termimil
output vis the TINIT call, and putting the Job (1f any is attached) ints
B tersinal output wait state 1 the butter is full. TBUF works the same
way, but uses the data froa & yess designated duffer rather than taking
single characters fran R1 as TOUT does. TCRY cally the terainal‘s spocial -
sutput handling routine, which in turn initiates output by calls to TTY,
TTYL, and TYYL vhere a tall to TOUT is nade,

. : v, :

'2) The intertace driver for the terminal uses 3 eall to TRHOCP to gst the

next character fron the output buffer. L

In order for keyboard data to de proceased by an nssenbly languege ‘
progran, the pragran should exerute a KBD call which will deliver onp line of
data, indexed by R2 and terntnated by a line-feed. 1f the terainal i in inage
node, the character {s deliverad directly in R1. KBD makes repeated calls to

- LTIN, Tilling the tnput lime buffer until a line-feed 15 reached. 1f the Job
has no terminal attached, sxecution of the progran will stall in NBD by
descheduling the job €JWAIT LTI until a terninal is attached and kevhoard
dats 19 avatlabdle or i delivered by a FORCE coamand. TRNIEP reschedules the
Job (JRUN J.TIW) when 3 line-feed has been entered. :

The TIN eall stalls via a "JUAIT J.TIU® until a line~fend is entered and

all dats has bean echoed., The data 1s then transterred, character by tharacter,

~from the input buffer to Rt where if TIN was called by X3D, the character i

- placed in the input line buffer. The TIN call is the only routine in the

- monttor which will perforn lower ta upper case ASCII conversions. The
convarsion {3 apde 4f bit 4 of the status word is not set (tha EXIT eall aluays
elears this bit to insyre the entry of systes commands in uper tase), The
conversion does not affoct how the character ia echoed, 4t only places the upper
case characder in Rt, . o

One disadvantage to using-either-a KXD or TIN call to get -datn from 3
terninal e that the Jod 13 descheduled until » earringe roturn of line-faed i
- veceived. If the terninsl ts in !ugge node, the job 1w still atalled ustid =t

Ly

'least one charatter {1 received. If the programaeer fa yriting real time

pregrans, this technique will not work to get input data. In the Ausquast fesue
(funber 2,2), tefford Lowden provided a method of retrieving a tingle

characier from & terainal only 4f one had been entered. The sudroutine bypassed
the KBD call until date had mctually beem placed in the input buffar. Belauw 1%
a routine which will accoaplish the same thing dypassing the KBP call sltogethers

H terninal line table equates (fron TRMSER)
J AN BT ? input character count
tift = 37 } 1aat character {nput
BTART: CALL ' CHAR ¢ test far uver input
Bt REAL y branch if no input
ves s brocess input data
REAL: ...
ves y continue real tine protessing
BR ~ 8TARY

CHART MOV @XJODEUR,RO
ROV JOBTRN(RO),RO
8T . ICC(RO)

BEQ DONE

CLR IEE(RD)

HOVE LCC(RO),RY
DONE: RTH

load this job’s B
10ad 1te terninal line tmble
any fnput?

no
reset input charncter count
103d last character input

WY RS wF SR wE SR

This sathod does not require setting the terainal into iange node
not does it require a call ¢o KBB. [t does, however, require that the loop
in the real tine progranming seetion never stall longer than about 1/20th
second {the expected typing speed of & good typist). A heavy coaputing lood
due to several other jJobs in the CPU might make this assumption tnvalid, Per
ptand alone prograns it ia probably O, LFL] ,

The routine can be modified to pracess buffered deta by using a TIYIN
call as folloust :

CHAR: MOU eRJOBCUR,RO
TIYIN Rt ER0
18T RY
RTH

load this job’s JCB _
get character fron input line duffaer
set 7 bit reflecting presence of character

- AE ws

The TIYIR ctall adjusts the fnput character count, returns (he firat

character in the input buffer, and adjusts the duffer. If no characters are
available, Rt will be cleared.

HOTE T0 SERI0US BARE PLAYERB: You should new have enough information
1o comstruct sone really godd games in 2 wulti-tasking environaent (Klingons
that shoot first, real tine ganes betueen tuo terainals and/or jobx, ete.). The _
gone can proceed vhather or not the player is ready and the CLKOUE (discussed in-
the previous article) tan be utilized to allet a specific amsunt of time to ench
player. Don’t heep these programs to yourself.

Processing of control-C’s does not require the use of 3 KBD eall. dhen
TRHICP detects x control-C, it clears the buffer indicss, echos a bell ende,
aets the J.CCC dit in the JOBSTS word and reachedules the Job 1f, 1t was wniting
for terninal taput (an earlier JUAIY J.TIW). CTRLC calls placed approprintely
ta » progran will test the J.CCC bit of the JOPSTH vord, and, 1f 1t is set, wil}
_udjust P 8 the trap routine specified as the argqunent of the CTRLC call.

Blrlctiy tollouing the TRASER routines are the initial entries in TRRINC

o 'ttermtmal dnterface driver chain) and TRNTDC (terinsl driver ehatnd. * The

U reutines see >hvizngly bath returns,

© L UTERINC haw ome entry in 1tS the PSEUDD interface driver. Its input and eutput
The TRETDC chatn containg tuo initiad

: E“;lltrlll; POEUDD and MULL. The PSEUDD tersinal driver contains three RTN‘s as

.peither nput, output, nar echo require special handling with & PBEUBD tevatnal.
ﬁTho RULL terainal driver contains RTN’e for both input and echo, but the sutput

E :;L’reutlne sets the I bit, inticating that the teratnal driver handled output, with

. the rrsult thet w NULL terninal discards all output

NEWSLETTER FOR AM~100 USER’S BROUP Produced by Lefford F. Lowden
. 416 Long Pond Road
1 DECEMBER 1979 Nunber 2.4 Rochester, New York 14412

DISCUSSION OF ANUS (TM) MONITOR, PART 3
by Peter A, Jacohson

The next section of the monitor includes the file service routines,

FILSER, and the file error wessage routines, FILERR. As with TRMSER, seurce for
these routines is available from Alpha Micro on the Driver Source Diskette (part
nusaber BFD-00003-00). The macro calls to these routines ars well docunented

1n the ANOS MONITOR CALLS MANUAL and, again, the reader {a advised to vefer to
that nanual for information on the individusl calls. The following discussion
Will focus on some of ihe operational aspects of calls to FILSER. It is assuned
that the reader has knowledge of the structurs of a DDB. ' . :

Entry into FILSER is made only through an SVCB 0. As discussed in the
first article (Mumber 2.4), the SU(B decoding module will place the fusctien
code in RO, the address of the first arqument in R4 {for SVCH 0 this will always
be the address of a BDB), and the address of the second argunent (if any) 1s R3.
Upon entry into FILSER, the function code and the addvess of the error recovery
routine are pushed onto the stack as a return address for possible error
trapping. If a device was not explicitly enterad in the DDB, the user’s defaull
~device tode is picked up from the JCB. The address of the general device driver

voutine, DSKSER (discussed in tha next article), is placed in R2 and the addvess
of the sysiem disk driver (first word of DSKSER) is placed in R1 as a default,
in that most file calls will be to BSK. ;

The device driver will be fetehad sither fron D§KO:L1,43 or nenory it
the device was not DSK. An error is reported if the driver can not be located.
The driver attribute word (described below) is tested to deternine if the device
1s file structured; if not, the address of the USKBER routines is replaced by
the driver’s address. If the flag bits in the DDR indicate that INIT was
talled, execution procedes to the indicated subroutine. All calls except INIT
require that a buffar be allpcated first; thus, i? the DDB has not baen IXiTed,
an errer occurs and processing depends on the settings of the flag bits in the
DFB (default is that an error nessage is produced and the routine EXITs)., It

the DDB is INITed, a TJKP to the appropriate routine within FILEER is executed
where 2 call may be nade to either DSKSER (for file structured devices) or to
the actual device driver. NOTE: If DSKSER is being used, it in turn will call
the actual disk driver routines,

Both DIKSER and unique device drivers have a cosnunication area at their

peginning, where words three through eleven sre the addresses of routines. The
basic layout of this area i

WORD CONTENT
i . physical record size
2 driver attributes (function supported if bil set)

bit 0: read
hit 1: write
bit 2 assign
bit I open
bit 41 tlose ‘
bit 5: input/output
bit 4: renane/delete
bit 7 not used
bit 83 specizl (bilmap maintaired)
bit 9-142 not used
bit 15 file structured
read/write
open
tlose
assign
input
output
delate
rename
special (bitaap routines)

oS 0 00~ O~ CA B

—

Word 1 of DSKSER ia tha address of the system disk (DSK) driver voutine. To
clarifyr it the device is file strurtured, the FILBER routines will call YSKSER
which, in turn, w#ill mzke calls to the specific’ disk driver; 1f the device is
not file atructured, the FILSER routines will call the specific device driver.
R will always contain the address of the actual driver, and K2 will contain

either the address of DS8KSER, or, if not f{le structured, the address of the
driver. ' ‘

The INIT c¢all perforss tuwo tfunctions, 1) places the address of the
device driver routine in DDB+12 and 2) allocates a DDB buffer based on the size
of the physical record for the device. The size of the physical record is put
in DDB+4, Tha BETHEM call, with the MCB painting at DDB+2, puts the address

. ot the buffer in DDB+2. The driver address will always be placed {n the BD}.

However, {f a buffer has already besn allocated, a new buffer will not be
allocated.

The OPEN call ASSIGNs the device (if possibie) and sets the open code ia
DDB+34. The open code is automatically supplied as the second arqunent of the
BYCh 0 by the macro coded in SYS.MACL7,7). There are four types of open calls -
avallable, and they will set the Tollowing data in DDB+34y

Macro Name Data
LOOKUP 0
QFENT |
OPEND . 2
OPENR 4

Note that the fourth code differs Trom that defined in the ARDS NONITOR EALLS
MANUAL which appears to be in error. . '

The OPEN call then resets the Iogi:al record size in DDI+4, clears the

. buffer index (DDB+4), and reclears the DD butfer (addressed by DDB+2). The

device driver atiribute word is tested to determine 1f an OPEN routine exists,
and if it does, the routine is executed. MNote that although the OPEN routise is

FILSER clears the DDB buffsr to nulls, the device driver‘s apen routine may use
the buffer and it may not remain null.

The CLOSE routine will return the error message *FILE NOT OPEN® if the
file is not open. 1If the open code indicates the file iz open for sequential’
input or randoa processing, the device’s GLOSE routine ie bypassed. If the BB
was open for sequential output, the final record is written and the devite’s
CLOSBE routine is executed. Uhen tontrol is returned to the FILSER CLOSE routine,

. the open code is cleared and the device is deagsisned (i? necessary),

The DELETE, RENAME, and SPECL calls are contained in the same routine of
FILSER and call the driver’s routine (or the DSKSER routine) if {4 exists, It
the device 1s file structured, DSKSER is called and the SPECL calls perfora
wodifications to the device’s bitnap.

The ASBIGN and DEASGN calls will lock non-sharable devices {o the
calling job. 1If the device is sharable, the calls are ignored. If the device
iy already ASS1GNed to another job, the "DEVICE IN USE™ error nessage is
returned. -

The READ and URITE calls clear or set bit § of the BDB flag byte, test
the DDB record size word (to determine if a2 read or write it possible) and call
the driver’s routine or the DSKSER routine. Through this call, physical
transfers to and from the device are initiated, The source code in FILSER for
the READ and URITE calls indicates interrupt driven devices will have READ/URITE
requests queued, but in the 4.2 release of the monitor, this is not yet
inplenented. The tuo 1tnes of code which teat for interupt driven service and
branch {f true should be cosmented aut, as they do not sxist {n the actuaml-
monitor, ' :

Alpha Hitro has not yet documented the 1008 csll in that queued 1/0 is

net yel supported. Its function will be to dequeue a transfer request from the
DBB chain after the transfer is completed.

The INPUT and QUTRUT calls both‘insure that the file is opsn for randos
or sequential input or sutput. If the device driver doss not have input and
autput routines, the read and write routines of the driver are called,

After a ctall to FILSER has been completed, the file 1/0 return (FIORT)
processor in FILSER is executed. Error codes are raturned in DDB+t, but if hit
7 is set, error processing is bypassed (bit ? is set by LOOKUP calls which do
not actually open files). 1If an error condition exists, a call is made to
FILERR to print the error nessage and execution of the porgram is aborted with
an EXIT call. Both the printing of error messages and the abort on error can be
suppressed by setting the appropriate bits in the first word of the DDB as
described in the ANOS HONITOR CALLS HANUAL (page &-4).

The next section of the monitor containg the executive proagram and the
renainder of the supervisor calls which will be discussed in the next article.

NEUSLETTER FOR AM-100 {ISER”S BROUP Produced by Leffard F. Lowden
. 414 Long Pond Road
1 JANUARY 1980 Nunber 2.7 _ Rochester, ¥ew York 14412

BISCUSSION OF AMOS (TN) MONITOR, PARY 4
by Peterlﬁ. Jacobson

The EXEC module (ny designation) fpllows the FILSER voutines which were
discussed in the iast article. This module contains the executive progran and
the renzinder of the suparvisor calls.

The first routine in EXEC is EXIY. WUhen a job is nllocated to the .
systes, the JOBS proqras sets EXIT as the tirst progran the job will execute.
EXIT first enables interrupts (in case the user progran -1aft the processer
LOCKed) and then determines if the EXIT call was forced by a CTRLE call. It a
Control € is waiting (J.CCC set in JOBBYS), »~C* is sent to the job‘s terainal
and the JOBCMZ word is cleared, which aborts any remnining cowusands in a coamand

file. All flags except J.ALC are claared fros the JOBSTS word and the J.MON -
flag is sat. :

The DDBCHN is than scanned to determine 1f the job has any I/0 queued.
It it does, the remainder of the job’s CPU time is used to process it. (Queved
interrupt driven I/0 is not supported in the 4.2 release of the monitor).

The error control intercept (JDBERC) and the breakpoint vector address
(JOBBPT) are both cleared and the job’s atack pointer is rzetored to the top of
the job’s stack. If the Job has memory assiqned (the J.MUL bit is not met i
the JOBTYP word) the DEVIBL is scanned and any devices assigned to the job are
deassigned, and the following nemory tests are perfaoraed, '

It the job has a new memory allocation, the first word of the job“s
nenory will be cleared, insuring the memory partition contains no garbage. The
partition and any memory nodules in it are tested for address errors. The
aysten dieplays “CHEMORY MAP DESTROYEDI® 1f the partition’e base sddress or a
nodule’s address is odd, or the partition’s base address or 2 module addres: is
above HEMERD. If none of the nodule flaq codesr FIL, FGD, or LOK are set, the
module is removed from the partition. This operation gets rid of buffers and

!

other tesporary seaory nodules that were created with the INIT or BETMEM talls,
the pragran file unless 4t was placed 4n mesory earlier with 2 LOAD command
(which sets the FIL flag automatically), and modules that ware set for removal
with the DEL comnnand (ERASE on Lefford”s systen).

The memory calls, BETMEM and CHOMEN will always teturn an even module
size and cisar the word following the module, but memory module errors can be
vaused by a progran which itsel? aodifies the module size word, either by error
or intentionally. The location of ascending modules {2 determined by adding the
module size word {the first housekeeping word) to the address of the current
todule, generating the address of the next expected module, If the content of
this location is 2o2ro, the end of memory sodules is assused to have been
reached. 1f the address is odd, caused by an odd byte count, or the address i«
beyond the end of user neaory (MENEND), the error {5 reporied and the content
of the offanding address is cleared.

1f a program leaves snne garbage modules in the partition (VUE used to)
which cannot be deleted with DEL, a HEHORY 0 command followad by NEMDRY wyxxm
Will restore the partition. xuxx takes on the value of the previous size of the
partition. If you don’t know this, type MEMORY with no argument, and the systen
will tell you what it {s,

Normally, this type of memory error should not be fatal to the job or
the systea, but there are two bugs in EXIT which can cause the job or the system
to crash. The firet 1s that no test is nade to deteruine if a nodule, either
real or erroneous, extands bayond the snd of the job®s partition. The sscond is
in the asthod by which EXIT tlears the erroneous zddress. The current module’s
address is saved in RY before the next module’s address is caltulatad., It the
nodule creates an error, the content of Lhe word addressed by RI 18 cleared,
however, R3 is not sat until after the first module t5 tested. Therefore, if
the first nodule creates an error, the content of an undetermined word addressed
by R3 {s cleared.

1t the job has terminal output in progress (the OIP flag is 4ed in the
terninal status word for the tersminal ASSIGNed to the job), {4 will loop in EXIT
until all terninal output has been processad after which the terainal status

flags will be reset (restoring normal terminal 1/70) and control will pats to the
executive prograa. !

The executive program (hereafter called EXEC) is at ARDS (TH) comaand
1svel, which upon entry issues the monitor prompt, ™.", and calls KBD where ihe
Job {s descheduled until terninal input is available, or where, as described in
the first of these articles, {f a coanand file is being processed, the inpul
line buffer is tilled from the command file data area. After a command is
entered, EXEC resets the job stack pointer to the top of the stack and
deternines if the Job has any memory allocated. If the lob does not have amy
memory, EXEC will allocate to the job all of the available nesory in the job‘s
bank, If at least 2000 decimal bytes are not available, the “[ND NENORY
AVAILABLE]" message is jssued and EXIT iz called.

fin FSPEC eall with a null default exteneion i3 performed on the conmand
line with the job run block "(JOBRBK - partial DDB in the JTB) indexed to receive
the file specification. The #ile nane i{s copied inte the JOBNAM words, the
J.HOR bit cleared, the J.LOD bit set in the JOBSTS word, and s search for the
file is made. Tha AMDS USER’S GUIDE is sorevhat ambiguous on what foraat is
used for syetlen connands (page 7-I), but full file specificrations arsz allowed,
The file search order is documented, although not accurately, in Appendix B of
that manual, and is briefly summarized below, If the Device, Drive, Extension,
or PPR are supplied on the comsand line, the appropriate search is bypazsed.

DEVICE EXTENSION PPN

systen nemnory PRO N4

USET AEADTY FRG N/A

DeKOr. PRE 1,4

DSKO: Cip 2,2

user : PRO tiser -

uger tHd uzer

ussr 14411 user librany

It the search failed up to this point, DSXG:MDO.PRGIN, 4] is loaded uhich
attenpts to locate the file in the following order:

DEVICE EKTENSIDH PPH
user - BO user
user oo user library

DSKOs 0 2,2

It the file is found, it is loaded 1nto the job~s menory, providing
encugh memory is available. If the file is not found, the conmand {s echoed to
the job’s terminal, bracketed with question marks. The message “Plnsutficient
wenory for progran load* is returned if the Job did not have enocugh REAOEHY,

After the file is loaded, EXEC teats ite first word to detsraine if tha
progran can be run not logged in. If the first word of the file is non-zero,
the JOBUSR word is tested, and {f it {a zero {the job is not Yogqed in), the
“ILOBIN PLEASEY* prompt is issued and the executive program EX1Ts,

The file’s extension is tested, and if it is “Péﬁ', program execttion
beging with NOV R3,PC. Upon entry into the progran the registars contadn:

RO - base address of JLB
R1 - cleared
R2 = resainder of input line duffer

R} - base address of progran
R4 - cleared
RS ~ clearad

A file with an extension othar than “PRE™ is assumed to be a comaznd
file, EXIC moves the file in reverse order to the top of the job‘s partition,
sets the C.8IL bit in the JOBCMS word, and branthes to ths entry point of EXEC.
If the file wes loadad under conirol of MDD, the specified paranetera are '
inserted into the command file and » block move places the command file al the
top of the job’s partition after which MDD £X1Ts.

The nuneric conversion calls, DCYY and OCUT (or HCUT - hex convertd),

follow EXEC. They parform binary to ASCII conversions based on table entries,
which linit the magnitude of the output.

Following the canversion routines is FSPEC which 18 well docunented ia
the "AHOS HOXITOR CALLS MANUAL® (pp &4-8 through 4-9). Lower tp upper case
ASCIY conversions are not made in FSPEC, therefore whatever R2 points to
(terninal input line buffer or progras buffer) must be in upper case.

PFILE follows FSPEC and perforss in essentially the opposite aanner to
FBPEC. Its output is divected only to the job’s terminal {via a TTYL) and PPN

output is always in octal régardless of the setting of the J.HEX flag in the
JOB3TS word.

The JOBIDX, JOBGET, and JOBSET require more words to describe than the
anount of code they octupy in the monitor. TYhey are all SUCB calls and require
8 considerable amount of time to decode in the SUCE protessing nodule. It speed
of execution for a program 13 a consideration, the following matro definition
will ninic these calls saving over sixty instructions to be executed:

JJIBX = -t v JOBIDX control flag
J.BET = O 3 JORGET control flay
JBET » 1 ; JOBSET control flag
DEFINE JCB TAB,ITEN,CTRL
PUSH HITEM s load JEB indew
ADD eRJOBCUR, R6P t build job table entry
1F LT,CTRL, POP TAD $ JOBIDX
IF EQG,CTRL, MOV 2{5P)+,TAB ; JOBBEY
IF 6T,CTRL, MOV TAG,@(8P)¢ s JOBSEY
ENDH
Instead of JOBIDX RG,JOBTRM ise JiB R0,JOBYRY, J. 1IN
“and JOBBET RO, JOBTRH use Jep R0, JOBTRH,J.BET
and JOBSET RO, JOBTRM use JCB RO, JOBTRY, J.SET

The object code resulting fron this macrs will use between 42 and 77 machine
cycles, while just the SUCB instruction and the ensuing RSVC instructiens alone
consuse 133 cycles (which doesn’t include any of the decoding timing).

The three calls USRDAR, USREND, and USRFRE follow next im ihe aonitor.
They function as described in the “AMDS NONITOR CALLS HANUAL®.

: The CYIRLC cal) was briefly described earlier article on TRMSER. It
tasts the J.CCC bit in the JORSTS word and, if set, it means that s fontrol €
was entered at the Jjob”s tersinal (or by the KILL progras) and, cansequently,
the argunent address of the CYRLE {w added to the szaved PC.

The PRNAN c2ll sends its output to the Job’s terminal via o TTY call as
does PRPPN, Like PFILE, PRPPN displays the PPN in octal regardless of the

artting of J.MEX flag in the JOBSTH word.

The terminal input line processing calls BYP, ALF, NUM, TRN and LIN
occupy the next section of the monitor and are unresarkable except to note that
ALF tests for upper case alphabetic characters only,

The FILNAM call functions exactly as dascribed in the manual.

The OTOCT call followa FILMAN and is really two callsj 8TOLT and 8THEX.
The GTHEX code i< used if the J.HEX bit is set in the JOBSTS word, If the
leading character is a digit, it does not ned to be prededed by zers. It the
input i greater than 1777777 octal {FFFF hex), tausing an eror to be reported
(N flag set), the result contained in K1 will be neaningless.

GTDEC, unlike GTOCT will stop processing the imput 1ine it the aext
character will couse the result to be graater than 43335.

The STPPH call will alvays process the imput PPN on an ottal basis
vegardless of the setting of the J.HEX bit. '

The tinal twe calls in this section of the monitor are the PACK and
UNPACK calls for which no description will be atteapted except to note that
UNPACK uses a saall (tue word) tzble for unpacking,

The concluding article will discuss DSKSER and INITIA.

USER COMNENTS ON ANDS 4.2 (TH), SUIGESTIONS FOR INPROVEMENT

by Logical Softwarae, Inc.

MONITOR:

Absolute, immediate check for <*C> (control-C) character input froa the
terminal. Would slways cause imsediate exit from the progras in control except
where specitically defeated within the prograa. Many A-N programs can’i be
halted by <°C> entry or KILL, etc, EQ, COPY TRMtslouterninalwbigfile.

' Buss srrorst should srits-protect the disk, report all busas ervors io
the CONSOLE (terminal connected to JOBY) then to all other terminals, then halt
or 9o to an error recovery procedure. Possibly should re-boot automatically.
Most buss errars are serious-enough to require the attention of the aystea
progranaer, the users should not be left to wonder where sverything went. '
Ysually, nothing will work right anyway, but a user who i3 unaware that the

aystem is down can waste a lot of his time before he finds that his new file la
now gone foresvar,

Should incorporate FLTCHY, SCHULD, and TODCHV.

Ability to save away an existing running progres, load and execute
anpther, then continue the first prograa without error.

Hew special character, Control-T, would mean “Are you stil1l alive, ARDYT®
Would respond with 2 beep for yes, silence for reboot tina. Second <*T> within
about 1 second would cause systat to be displayed. Third <"T> would save auay
the existing program, make processor and memony available to user. User can
continue first program via CONT.PRG.

Auto program loading: BASIC and others allowed to lond subroutines (.SBR
and .RUH) as required by the program in control (from library areas), keep in
menory or delete by internal comnand. Would greatly sinplify program writing,

- ond aveid clogging up tha BABIC srogram and memory with seldos-used subroutines,

Would effectively give BASIC programs muth asre aemory to work with, ar 2llow
runting in smaller chunks of nemory.,

DESIRED FEATURES IN SYSTEM PROGRAMS

DASIC: A) Structured programming including WHILE, REPEAT INTIL, EXIT
0N, and DO-ENDG. B) PRINT USING 7LLL /RRRR /CCCC. C) Multi~line function
definitions (with local variables). D) A full renusber. E) Provision for
initializing arrays ot compile time, within HAP statements. F) CASE statenents.
G) NAT statements. H) Edit capabilities - line and global. I) INCLUDE {would
work the same as C-BASIC in CP/W -- reads in 2a naned source file). J) Allow
RUN to look in library or public file area for subroutines uritten in BASIC.
K} Allow program in control to determine whether to delete .SBR files and
subroutines written in BASIC (from memory). L) Allow system functions idate,
time, I0, etc.) from the terainal sttachad to Job! only. #H) Include FLOCK as

NEVSLETTER FOR AN-100 USER’S BROUP Produced by Lefford f. Lowden
616 Long Pond Road
1 FEDRUARY 1980 Nunber_z.a Rochesier, New York 14442

DIBCUGSION OF ANOS (TM) WONITOR, COMCLUSION
by Peter A. Jacobson

The next section of the monitor is DBKSER which is aeationed by Alpha
Micro only briefly in FILSER. DSKSER is the generalized device driver for file
structured devices such as floppy disks and hard disks, It simplifies the
actual code needed for a disk driver and allows the systam to acceas several
devices without a great amount of code. Like other device drivers, it has »
connunication area at its beginning which was definad in the December issue.
The attribute word of DSKSER is zero, but all functions are supported, except
ASSIGN. File structured devices cannot be assigned to one Jjob, but for obvious
reasons, iwo Jobs cannot be given access to the sane file structured device
sinultaneously. The controlling job cannot lock other Jobs out by digabling
interrupts because other I/0 devices night lose data. The solution is to
increase the controlling job”s priority considerably until i% is done sith the

disk. In DSKSER, this is accomplished by setting the Job’s priority counter to -
177777 octal (about 18 ninutes).

Before discussing DSKSER’s routines, the structure of a disk driver

consunication area will be described as well as the three support routines nstd
by DSKSER. .

Disk drivers, like non-file structured device drivers, have a

conaunicaions area at their beginning, which contains sone differences fron

other drivers. ‘the 200DVR.BYR disk driver communication arsa is descrided below

$‘5ailgn.txanplet .

physical record size

~ driver atiridutes

. driver entry address pffset
physital sector size

physical sectors per logical record
naxlnun record nuubor

at

Mords 7-14 not usad

Yord 17 aaxiaun record nuaber
Verd 18 directory entries per record
Word 19 bitnap size

The renaining five words are specific to the physical drive type.

DSKEER includes three support reoutines for locating devices and files.
The first of these is a routine (DEVTSET) to detsraine of the device spacitied in
the DDB exists and is mounted, If the device is not specified in the BDD,
DEVIST will pick up the job’s default device and drive. If the device i3
specified, but the drive is not (DDB+23 contains 377), device 0 is vsed. The
appropriate error code is get in DDB+1 if the device is not found in the DEVTIL
or the device is not mounted.

The second routine (FILTST) is used to locate the UFD entry of the tile
gpecified in the DDB. The calling sequence to FILTST is sonsuhat different than
o norasl subroutine call in that control flags are set to 1init the actions
FILTST can perfora, The seguence ist

CALL RS, FILYST
VORD FLABS

A3 is used as the liskage register
control flags

-y

Control flags {vhen om}t

Bit 0 locate file

31t 1 return error if file already exists
Bit 2 test for prograsaer auaber match
pit 3 lock directory (DSKDRL)

Vsrious combinations of flags can be used. When FILTBT returns, RY is
iscrenented past the contrel flags.

The third routine (NFDTST) reads the. KFD (record ore} of the device to
locate the specified UFD. 1If the PPN is not specified in the DDB, JOBUER 1s
used to locate the UFB link.

The following is a discussion of the DSKSER routines. HKeep in mind that
these routines are talled by FILBER and are not directly entered with an SUCB 0.

mqﬁMZta§Q

FILBER can call any device driver on the systen, of which DSKSER is only one.

The first routine in DSKSER is the physical READ/URITE routine. This is
the only section of DSKSER which actually makes calls to the device driver.
A call to DEVIST insures that the device exists and is mounted, The spectfied
record nunbar (BDR+10) i tested to deternine 1f it is within the renge of the
device. If the READ/URITE call ts valid, the device is locked to this job by
resetiing the job’s priority counter as deseridbed above. The 3DB record number
is aultiplied by the number of sectors per logical block for the device to get
the physical sector number for the device and the transfer is initiated. Upon
return fron the device driver, the job’s priority counter is reset to 1 and, if
no other Jobs are currently scheduled, the routine raturns, If other jobs are
scheduled, the job is put to sleep for one clock tick (presunably to giv: other
Jobs CPY tine).

The OPEN routine handles all four OPEN calls: LOOKUP, OPENI, OPERD, ané
OPENR. The OPEND tall insures that the user has access to the PPN and that the
file does not already exist with = call to FILTST and then allocates a disk
vezord for file data. The physical record numder is returned in DDB+10 and
DIBP+42. The buffer index (DDP+4} is set to two. The OPEN] and OPENR c2lls
locate the file and if it exists, insure that ¢ has the sane type as specified
is the open code of the BB (PDB433). If the file type natches, the nunber of
records in the file is placed in BBB334, the byte count of the last record is

~ put in BBB+42 and DDB+10. The LODKUP tall does not disiinguish betwees raldon
. awd sequential files.

* The CLOBE rall locks the disk directory and then locates the UFD of the

PP specified in DDB+32 with an HFDTST call. If a directory for the PPN is not

allocated, CLOSE will allocate a record. If a directory for the PPN already
exists, CLOSE locates the first emply or deleted entry, ir if the record is

full, allotates ancther directory record. Once an eapty directory ewivy is

.faund, the file name and the Pile divectory parameters are inserted iats the
directory, the bitmap is updated, and the directory it unlocked. If it uas

. necessary to allocate a directory record, the unused words in the retord are
tleared to nulls to insure thate are no spurious entries,

L The INPUT routine follows CLOSE. For files cpen for sequeatial input,
. INPUT executes a READ based on the record number in DDB+10. The link to ihe
: - next record is updated in 3DB410, and the buffer index, BDB+4, is set torz,

bypassing the link word. For files open for random processing, INPUT wies the
data in DDB+10 as an offset from the base of the file contained in DBBe42. In
this case, DPDB+10 is not updated. :

The BSKSER DUTPUT routine for files open for sequential output can be
ralled on tuo levels (DDB+22 contains the csll level). A level one call is made
with a normal ussr progran OUTPUT call which first allocates another disk record
for the next call, inserts that record number link into the first word of the
DED buffer, writes the current record, and sets the next record number in
DIB+10. A leverl two call is made through a FILSER CLOSE call, which in turn
calls the FILSER OUTPUT routine to write the last record. This call does not
allocate another record, instead it determines the amount data in the DDY buffer
and fills out to the record size with nulls before writing the record,

The QUTPUT routine for files open for random processing insures that the
user has access to the PPN with a FILTST call and then urites to the record

.using the file base offset in DDB+10 added to the file record base in DIBe42 as

the current record nunber.

The DELETE routine locates the directory, insuring the user’s PIN grasty
mccess 0 the file, ssts the first vord of the file nane in the directory entry
te -1, and then deallocates sach record the file had used fron the bitawep,

The RENAME routine =lsp locates the directory, insures the user’s PPN
allous access to the directory, deternines that a file of the sane nane dees sot
already exist snd then enters the new name, contained in the three words
following the BD3, into the directory in place of the previous nase.

The three support routines (DEVIST, FILTST, and HFDTSI) are physically
lacated just after the abpve nentioned routines.

The FILSER SPECL routines are SVCB 0 calls with 2 function code of -ecial
14, They essentially are bitmap service calls named DSKDRL, DSKDRY, DSHALL,
DSKDEA, DSKBMR, DSKBMU, and DSKCTB. They reside in the nonitor directly after
the above described DSKSER routines. These calls are fully described in the
AHOS MONITOR CALLS HANUAL in the section entitled "DISK SERVICE HONITOR CALLS®
{pp 6-17 through é-21) and the reader is advised to refer to that docuaent for
detailed inforsation. '

Diractly following these seven calls is a special bitmap service
routine. The function of this routine is to locate the device’s bitaap (if
any), reurite it if necessary, and recompute the hash total io imsure the
current bitmap is correct, If the bitwap is currently locked by some other job,
this routine will stall until the bitmap is free. If the bitmap hash total is
not correct, the drive is apparently disabled by setting the drive number
contained in the bitmap’s partial DBB to 177.

Following this routine is the supervisor call HTIN shich is called by
_ 200DVR.DVR {f PERSCI drives are being used. HTIN copies the HLDTIN argument
" 4ints HLDYIN42 and inserts a clock tick counter routine into the CLKQVE which
uill dscrenent the HLDTIN42 argument until it reaches zero. Uponm reaching zeve,
the routine sends the comamand to unload the hends of the disk drive and thes -
deschedules 1tsedf. The routine will not be scheduled again if it is alveady
contained in CLKQUE. - . _ o .

The next area of the systen monitor is 2 2000 (decimal) byte area which

it reserved for the system disk driver. MONGEN.PRG inserts the driver routine

here and updates the HENBAS work in the system commurication area to reflect the

" and of the driver. Describing the functioning of a disk driver is beyond the
scope of this article. However, in passing, i% should be noted that disk
.drivers maintain data storage areas within their code.

The last section of the monitor is INITIA, the initfalization program.

CINITIA is not actually part of the momitor, it merely defines the initial systen

‘paraneters and starts the first job running the SYSTEN.INI command filej it is
sventually overwritten as it resides above the base of systen aenory a3
contained in MEHDAS. : '

- As described in the first article, after one of the various moniter
loaders (the comtroller board’s PROM coutine, MONTST, UNGLOD, MUNLOD, etc.) has
finished loading the noniter rant, interrupts are disabled and 2 CLR PC in
executed which effectively couses a JHP to absolute 0. This location initiatly
contains & JUP instruction to INITIA. INITIA branches around a teaporary stack,
ssts 8P to the address of this temporary stack, and starts a menory test to tind
how wuch nemory the systea has in BANK 0, starting at the end of INITIA and

-testing in 1K increnents. Uhen the end of nenory is found, -it is set iato

©_ MEMEND. JOBTBL and JOBCUR both get the address of HENBAS, JOBESZ is defined |
(cqrrently:Z!Z‘decina; bytes}, and the first JCB entry is cleared. MEMBAS 18 - ,

bl

AT B 20

P e

1 E s
Ly

updated to the end of this first JOBTBL entry.

An BK partition is then set up at the end of memory which contains a
temporary tersinal line table for a pseudo ierminal with a pseudo interface
driver. This teraninal is attached to the férst job and allows it to communicate
until the first terminal is defined. A temporary device table (DEVTBL) eniry is
also allocated in the partition for DSKO: and has no bitmap. The various JCB
entries are then inserted into the first JOBTBL entry including logging the job
into DSKO:[1,41. ' :

"SYSTEM. INICCRYSLFY" is entered in the cosmand file buffer at the top of
the partition and the address of EXIT is set on the job’s stack as the saved
PC of the first progras the job will run, The Job is then scheduled tor CPY
time with a JRUN, after which INITIA enables interrupis and loops, waiting for
the first clock interrupt to start the job with systeam inttializatiom.

ERROR VITH THE FUNCTION FIX 1N ALPHABASIC (TM)

It has been reportad to ae that the function FIX ia AlphaBASIC (TH)
has an error in it. It seens that, for exaaple, if one issues the comand
PRINT FIX(-.3), the jJob that one i3 running crashes. It is not a sysiea crash
in that other jobs in the systea renain running. However, whatever FIX is
doing, the algorithm will not terminate, that job goes into a compute bound
state. 1 have checked release 4.1 and found that the same problem is there also
ag I think that the probles has been present for sone tine and merely has not
been desteacted to date {I was unaware of the function in the first place). FIX
operntes correctly over the range of veal nuabers with the exception of thase
arqunents between 0 and -1, & rather sinple substitution of operators can be
wade s6 that the prables.can be avoided until the function is corrected. The
substitution is the following:

For FIX(X) substitute SGNC(X)*INT(ABS{X))
This substitutes three fumction calls for one and will run a little slower, but

I suspect that FIX is not used all that often and will, thus, nake little
ditference. Thanks to Jack Hobbs. ‘ ‘

