GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc8148

Internet Engineering Task Force (IETF) R. Gellens Request for Comments: 8148 Core Technology Consulting Category: Standards Track B. Rosen ISSN: 2070-1721 NeuStar, Inc.

                                                         H. Tschofenig
                                                            Individual
                                                              May 2017
         Next-Generation Vehicle-Initiated Emergency Calls

Abstract

 This document describes how to use IP-based emergency services
 mechanisms to support the next generation of emergency calls placed
 by vehicles (automatically in the event of a crash or serious
 incident, or manually invoked by a vehicle occupant) and conveying
 vehicle, sensor, and location data related to the crash or incident.
 Such calls are often referred to as "Automatic Crash Notification"
 (ACN), or "Advanced Automatic Crash Notification" (AACN), even in the
 case of manual trigger.  The "Advanced" qualifier refers to the
 ability to carry a richer set of data.
 This document also registers a MIME media type and Emergency Call
 Data Type for the vehicle, sensor, and location data (often referred
 to as "crash data" even though there is not necessarily a crash) and
 an INFO package to enable carrying this and related data in SIP INFO
 requests.  An external specification for the data format, contents,
 and structure is referenced in this document.
 This document reuses the technical aspects of next-generation Pan-
 European eCall (a mandated and standardized system for emergency
 calls by in-vehicle systems (IVSs) within Europe and other regions).
 However, this document specifies use of a different set of vehicle
 (crash) data, specifically, the Vehicle Emergency Data Set (VEDS)
 rather than the eCall Minimum Set of Data (MSD).  This document is an
 extension of the IETF eCall document, with the primary differences
 being that this document makes the MSD data set optional and VEDS
 mandatory, and it adds attribute values to the metadata/control
 object to permit greater functionality.  This document registers a
 new INFO package (identical to that registered for eCall but with the
 addition of the VEDS MIME type).  This document also describes legacy
 (circuit-switched) ACN systems and their migration to next-generation
 emergency calling, to provide background information and context.

Gellens, et al. Standards Track [Page 1] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

Status of This Memo

 This is an Internet Standards Track document.
 This document is a product of the Internet Engineering Task Force
 (IETF).  It represents the consensus of the IETF community.  It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG).  Further information on
 Internet Standards is available in Section 2 of RFC 7841.
 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8148.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors.  All rights reserved.
 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document.  Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.  Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Gellens, et al. Standards Track [Page 2] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

Table of Contents

 1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
 2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   6
 3.  Document Scope  . . . . . . . . . . . . . . . . . . . . . . .   8
 4.  Overview of Legacy Deployment Models  . . . . . . . . . . . .   8
 5.  Migration to Next Generation  . . . . . . . . . . . . . . . .  10
 6.  Vehicle Data  . . . . . . . . . . . . . . . . . . . . . . . .  13
 7.  Data Transport  . . . . . . . . . . . . . . . . . . . . . . .  14
 8.  Call Setup  . . . . . . . . . . . . . . . . . . . . . . . . .  16
 9.  New Metadata/Control Values . . . . . . . . . . . . . . . . .  17
   9.1.  New Values for the "action" Attribute . . . . . . . . . .  18
   9.2.  Example <request> Element . . . . . . . . . . . . . . . .  19
   9.3.  The <ack> Element . . . . . . . . . . . . . . . . . . . .  19
   9.4.  The <capabilities> Element  . . . . . . . . . . . . . . .  20
 10. Test Calls  . . . . . . . . . . . . . . . . . . . . . . . . .  21
 11. Example Call Initiation . . . . . . . . . . . . . . . . . . .  22
 12. Security Considerations . . . . . . . . . . . . . . . . . . .  27
 13. Privacy Considerations  . . . . . . . . . . . . . . . . . . .  28
 14. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  28
   14.1.  MIME Media Type Registration for
          application/EmergencyCall.VEDS+xml . . . . . . . . . . .  28
   14.2.  Registration of the "VEDS" Entry in the Emergency Call
          Data Types Registry  . . . . . . . . . . . . . . . . . .  30
   14.3.  New Action Values  . . . . . . . . . . . . . . . . . . .  30
   14.4.  Emergency Call Static Messages Registry  . . . . . . . .  31
   14.5.  Emergency Call Vehicle Lamp IDs Registry . . . . . . . .  32
   14.6.  Emergency Call Vehicle Camera IDs Registry . . . . . . .  33
   14.7.  The EmergencyCallData.VEDS INFO Package  . . . . . . . .  35
 15. References  . . . . . . . . . . . . . . . . . . . . . . . . .  38
   15.1.  Normative References . . . . . . . . . . . . . . . . . .  38
   15.2.  Informative references . . . . . . . . . . . . . . . . .  39
 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  40
 Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  40

Gellens, et al. Standards Track [Page 3] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

1. Introduction

 Emergency calls made by in-vehicle systems (e.g., automatically in
 the event of a crash or serious incident or manually by a vehicle
 occupant) assist in significantly reducing road deaths and injuries
 by allowing emergency services to respond quickly and appropriately
 to the specifics of the incident, often with better location
 accuracy.
 Drivers often have a poor location awareness, especially outside of
 major cities, at night, and when away from home (especially abroad).
 In the most crucial cases, the victim(s) might not be able to call
 because they have been injured or trapped.
 For more than two decades, some vehicles have been equipped with
 telematics systems that, among other features, place an emergency
 call automatically in the event of a crash or manually in response to
 an emergency call button.  Such systems generally have on-board
 location determination systems that make use of satellite-based
 positioning technology, inertial sensors, gyroscopes, etc., which can
 provide an accurate position for the vehicle.  Such built-in systems
 can take advantage of the benefits of being integrated into a
 vehicle, such as more power capacity, ability to have larger or
 specialized antenna, ability to be engineered to avoid or minimize
 degradation by vehicle glass coatings, interference from other
 vehicle systems, etc.  Thus, the Public Safety Answering Point (PSAP)
 can be provided with a good estimate of where the vehicle is during
 an emergency.  Vehicle manufacturers are increasingly adopting such
 systems, both for the safety benefits and for the additional features
 and services they enable (e.g., remote engine diagnostics, remote
 door unlock, stolen vehicle tracking and disabling, etc.).
 A common term for such systems is Automatic Crash Notification (ACN)
 or Advanced Automatic Crash Notification (AACN).  Sometimes the word
 "Collision" is used instead of "Crash."  In this document, "ACN" is
 used as a general term.  ACN systems transmit some amount of data
 specific to the incident, referred to generally as "crash data" (the
 term is commonly used even though there might not have been a crash).
 While different systems transmit different amounts of crash data,
 standardized formats, structures, and mechanisms are needed to
 provide interoperability among systems and PSAPs.
 As of the date of this document, currently deployed in-vehicle
 telematics systems are circuit-switched and lack a standards-based
 ability to convey crash data directly to the PSAP (generally relying
 on either a human advisor or an automated text-to-speech system to
 provide the PSAP call taker with some crash data orally, or in some
 cases via a proprietary mechanism).  In most cases, the PSAP call

Gellens, et al. Standards Track [Page 4] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 taker needs to first realize that the call is related to a vehicle
 incident, and then listen to the data and transcribe it.  Circuit-
 switched ACN systems are referred to here as "CS-ACN".
 The transition to next-generation emergency calling provides an
 opportunity to vastly improve the scope, breadth, reliability, and
 usefulness of crash data by transmitting a standardized set during
 call setup; the data can be processed by the PSAP in an integrated,
 automated way and made available to the call taker at call
 presentation.  It also provides the ability for the call taker to
 request that a vehicle take certain actions, such as flashing lights
 or unlocking doors.  In addition, vehicle manufacturers are provided
 an opportunity to take advantage of the same standardized mechanisms
 for data transmission and request processing for internal use if they
 wish (such as telemetry between the vehicle and a service center for
 both emergency and non-emergency uses, including location-based
 services, multimedia entertainment systems, remote door unlocking,
 remote diagnostics, and roadside assistance applications).
 Next-generation ACN provides an opportunity for such calls to be
 recognized and processed as such during call setup, and routed to an
 equipped PSAP where the vehicle data is available to assist the call
 taker in assessing and responding to the situation.  Next-generation
 (IP-based) ACN systems are referred to here as NG-ACN.
 An ACN call can be initiated by a vehicle occupant or automatically
 initiated by vehicle systems in the event of a serious incident.
 (The "A" in "ACN" does stand for "Automatic", but the term is broadly
 used to refer to the class of calls that are placed by an in-vehicle
 system (IVS) or by Telematics Service Providers (TSPs) and that carry
 incident-related data as well as voice.)  Automatically triggered
 calls indicate a car crash or some other serious incident (e.g., a
 fire).  Manually triggered calls include reports of observed crashes
 or serious hazards (such as impaired drivers or roadway debris),
 requests for medical assistance, etc.
 The Association of Public-Safety Communications Officials (APCO) and
 the National Emergency Number Association (NENA) have jointly
 developed a standardized set of incident-related vehicle data for ACN
 use, called the Vehicle Emergency Data Set (VEDS) [VEDS].  Such data
 is often referred to as crash data although it is applicable in
 incidents other than crashes.
 This document describes how the IETF mechanisms for IP-based
 emergency calls are used to provide the realization of next-
 generation ACN.  Although this specification is designed with the
 requirements for North America ACN in mind (and both APCO and NENA
 are based in the U.S.), it is specified generically such that the

Gellens, et al. Standards Track [Page 5] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 technology can be reused or extended to suit requirements in other
 regions.
 This document reuses the technical aspects of next-generation Pan-
 European eCall (a mandated and standardized system for emergency
 calls by in-vehicle systems within Europe), as described in
 [RFC8147].  However, this document specifies use of a different set
 of vehicle (crash) data, specifically, VEDS rather than the eCall
 Minimum Set of Data (MSD).  This document is an extension of
 [RFC8147], with the differences being that this document makes the
 MSD data set optional and VEDS mandatory, and it adds new attribute
 values to the metadata/control object defined in that document.  This
 document also registers a new INFO package (identical to that defined
 in [RFC8147] with the addition of the VEDS MIME type).
 This document registers the application/EmergencyCallData.VEDS+xml
 MIME media type, the VEDS Emergency Call Data Type, and the
 EmergencyCallData.VEDS INFO package to enable carrying this and
 related data in SIP INFO requests.
 Section 6 introduces VEDS.  Section 7 describes how VEDS data and
 metadata/control blocks are transported within NG-ACN calls.
 Section 8 describes how such calls are placed.
 These mechanisms are used to place emergency calls that are
 identifiable as ACN calls and that carry standardized crash data in
 an interoperable way.
 Calls by in-vehicle systems are placed using cellular networks, which
 might ignore location information sent by an originating device in an
 emergency call INVITE, instead substituting their own location
 information (although often determined in cooperation with the
 originating device).  Standardized crash data structures typically
 include location as determined by the IVS.  A benefit of this is that
 it allows the PSAP to see both the location as determined by the
 cellular network and the location as determined by the IVS.
 This specification inherits the ability to utilize test call
 functionality from Section 15 of [RFC6881].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Gellens, et al. Standards Track [Page 6] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 This document reuses terminology defined in Section 3 of [RFC5012].
 Additionally, we use the following abbreviations:
    3GPP:    3rd Generation Partnership Project
    AACN:    Advanced Automatic Crash Notification
    ACN:     Automatic Crash Notification
    APCO:    Association of Public-Safety Communications Officials
    EENA:    European Emergency Number Association
    ESInet:  Emergency Services IP network
    GNSS:    Global Navigation Satellite System (which includes
             various systems such as the Global Positioning System or
             GPS)
    IVS:     In-Vehicle System
    MNO:     Mobile Network Operator
    MSD:     Minimum Set of Data
    NENA:    National Emergency Number Association
    NG:      Next Generation
    POTS:    Plain Old Telephone Service (normal, circuit-switched
             voice calls)
    PSAP:    Public Safety Answering Point
    TSP:     Telematics Service Provider
    VEDS:    Vehicle Emergency Data Set
 Because the endpoints of a next-generation ACN call are a PSAP and
 either an IVS or a TSP, to avoid repetitively writing "IVS or TSP",
 the term "IVS" is used to represent either an IVS or a TSP when
 discussing signaling behavior (e.g., sending VEDS data, sending a SIP
 INVITE request, receiving a SIP INFO request, etc.).

Gellens, et al. Standards Track [Page 7] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

3. Document Scope

 This document is focused on how an ACN emergency call is set up and
 incident-related data (including vehicle, sensor, and location data)
 is transmitted to the PSAP using IETF specifications.  For the direct
 model, this is the end-to-end description (between the vehicle and
 the PSAP).  For the TSP model, this describes the call leg between
 the TSP and the PSAP, leaving the call leg between the vehicle and
 the TSP up to the entities involved (i.e., IVS and TSP vendors) who
 are free to use the same mechanism for both legs, or not.
 Note that Europe has a mandated and standardized system for emergency
 calls by in-vehicle systems.  This Pan-European system is known as
 "eCall" and is the subject of a separate document, [RFC8147], which
 this document builds on.  Vehicles designed to operate in multiple
 regions might need to support eCall as well as NG-ACN as described
 here.  A vehicle IVS might determine whether to use eCall or ACN by
 first determining the region or country in which it is located (e.g.,
 from a GNSS location estimate and/or identity of or information from
 an MNO).  If other regions adopt other data formats, a multi-region
 vehicle might need to support those as well.  This document adopts
 the call setup and other technical aspects of [RFC8147], which uses
 [RFC7852]; this makes it straightforward to use a different data set
 while keeping other technical aspects unchanged.  Hence, both next-
 generation eCall (NG-eCall) and the NG-ACN mechanism described here
 are compatible, differing primarily in the specific data block that
 is sent (the eCall MSD in the case of NG-eCall and VEDS in this
 document) and some additions to the metadata/control data block.  If
 other regions adopt their own vehicle data sets, this can be
 similarly accommodated without changing other technical aspects.
 Note that any additional data formats require a new INFO package to
 permit transport within SIP INFO requests.

4. Overview of Legacy Deployment Models

 Legacy (circuit-switched) systems for placing emergency calls by
 in-vehicle systems generally have some ability to convey at least
 location and in some cases telematics data to the PSAP.  Most such
 systems use one of three architectural models, which are described
 here as: "TSP", "direct", and "paired".  These three models are
 illustrated below.
 In the TSP model, both emergency and routine TSP service calls are
 placed to a TSP; a proprietary technique (e.g., a proprietary in-band
 modem) is used for data transfer between the TSP and the vehicle.

Gellens, et al. Standards Track [Page 8] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 In an emergency, typically a TSP agent verifies the emergency,
 bridges in the PSAP, and communicates location, crash data (such as
 impact severity and trauma prediction), and other data (such as the
 vehicle description) to the PSAP call taker orally (in some cases, a
 proprietary out-of-band interface is used).  Since the TSP knows the
 location of the vehicle (from on-board GNSS and sensors), location-
 based routing is usually used to route to the appropriate PSAP.  In
 some cases, the TSP is able to transmit location automatically, using
 similar techniques as for wireless calls.  A three-way voice call is
 generally established between the vehicle, the TSP, and the PSAP,
 allowing communication between the PSAP call taker, the TSP agent,
 and the vehicle occupants (who might be unconscious).
    ///----\\\  proprietary  +-----+  911 trunk or POTS   +------+
   ||| IVS |||-------------->| TSP |--------------------->| PSAP |
    \\\----///  crash data   +-----+  location via trunk  +------+
                      Figure 1: Legacy TSP Model
 In the paired model, the IVS uses a local link (typically Bluetooth
 [Bluetooth]) with a previously paired handset to establish an
 emergency call with the PSAP (by dialing a standard emergency number;
 9-1-1 in North America) and then communicates location data to the
 PSAP via text-to-speech; crash data might or might not be conveyed
 also using text-to-speech.  Some such systems use an automated voice
 prompt menu for the PSAP call taker (e.g., "this is an automatic
 emergency call from a vehicle; press 1 to open a voice path to the
 vehicle; press 2 to hear the location read out") to allow the call
 taker to request location data via text-to-speech.
    ///----\\\   +----+   911/etc. voice call via handset  +------+
   ||| IVS |||-->| HS |----------------------------------->| PSAP |
    \\\----///   +----+   location via text-to-speech      +------+
 (Note: "HS" is handset.)
                     Figure 2: Legacy Paired Model
 In the direct model, the IVS directly places an emergency call with
 the PSAP by dialing a standard emergency number (9-1-1 in North
 America).  Such systems might communicate location data to the PSAP
 via text-to-speech; crash data might or might not be conveyed using
 text-to-speech.  Some such systems use an automated voice prompt menu
 (e.g., "this is an automatic emergency call from a vehicle; press 1
 to open a voice path to the vehicle; press 2 to hear the location
 read out") to allow the call taker to request location data via
 text-to-speech.

Gellens, et al. Standards Track [Page 9] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

    ///----\\\      911/etc. voice call via IVS         +------+
   ||| IVS  |||---------------------------------------->| PSAP |
    \\\----///     location via text-to-speech          +------+
                     Figure 3: Legacy Direct Model

5. Migration to Next Generation

 The migration of emergency calls placed by in-vehicle systems to
 next-generation (all-IP) technology per this document provides a
 standardized mechanism to identify such calls and to convey crash
 data with the call setup, as well as enabling additional
 communications modalities and enhanced functionality.  This allows
 ACN calls and crash data to be automatically processed by the PSAP
 and made available to the call taker in an integrated, automated way.
 Because the crash data is carried in the initial SIP INVITE (per
 [RFC7852]) the PSAP can present it to the call taker simultaneously
 with the appearance of the call.  The PSAP can also process the data
 to take other actions (e.g., if multiple calls from the same location
 arrive when the PSAP is busy and a subset of them are NG-ACN calls, a
 PSAP might choose to store the information and reject the calls,
 since the IVS will receive confirmation that the information has been
 successfully received; a PSAP could also choose to include a message
 stating that it is aware of the incident and responders are on the
 way, and a PSAP could call the vehicle back when a call taker is
 available).
 The migration of origination devices and networks, PSAPs, emergency
 services networks, and other telephony environments to next
 generation technology provides enhanced interoperability and
 functionality, especially for emergency calls carrying additional
 data such as vehicle crash data.  (In the U.S., a network
 specifically for emergency responders is being developed.  This
 network, FirstNet, will be next generation from the start, enhancing
 the ability for data exchange between PSAPs and responders.)
 NG-ACN calls can be recognized as such during call set-up; they can
 be routed to a PSAP that is prepared both technically and
 operationally to handle such calls, and the vehicle-determined
 location and crash data can be processed automatically by the PSAP
 and made available to the call taker simultaneously with the call
 appearance.  Enhanced functionality includes the ability for the PSAP
 call taker to request the vehicle to take an action, such as sending
 an updated set of data, conveying a message to the occupants,
 flashing lights, unlocking doors, etc.

Gellens, et al. Standards Track [Page 10] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 Vehicle manufacturers using the TSP model can choose to take
 advantage of the same mechanism to carry telematics data and requests
 and responses between the vehicle and the TSP for both emergency and
 non-emergency calls as are used for the interface with the PSAP.
 An IVS establishes a next-generation emergency call (see [RFC6443]
 and [RFC6881]) with an initial INVITE containing a Request-URI
 indicating an ACN emergency call and Call-Info header fields
 indicating that both vehicle crash and capabilities data are
 included; the IVS typically does not perform routing or location
 queries (relying on the MNO for this).
 [RFC8147] registers new service URN children within the "sos"
 subservice.  These URNs request NG-ACN resources and differentiate
 between manually and automatically triggered NG-ACN calls (which
 might be subject to different treatment depending on policy).  The
 two service URNs registered in [RFC8147] are
 "urn:service:sos.ecall.automatic" and "urn:service:sos.ecall.manual".
 The same service URNs are used for ACN as for eCall since in any
 region only one of these is supported, making a distinction
 unnecessary.  (Further, PSAP equipment might support multiple data
 formats, allowing a PSAP to handle a vehicle that erroneously sent
 the wrong data object.)
 Note that in North America, routing queries performed by clients
 outside of an ESInet typically treat all sub-services of "sos"
 identically to "sos" with no sub-service.  However, the Request-URI
 header field retains the full sub-service; route and handling
 decisions within an ESInet or PSAP can take the sub-service into
 account.  For example, in a region with multiple cooperating PSAPs,
 an NG-ACN call might be routed to a PSAP that is NG-ACN capable, or
 one that specializes in vehicle-related incidents.
 Migration of the three architectural models to next generation
 (all-IP) is described below.
 In the TSP model, the IVS transmits crash and location data to the
 TSP either by reusing the mechanisms and data objects described in
 this document or by using a proprietary mechanism.  In an emergency,
 the TSP bridges in the PSAP, and the TSP transmits crash and other
 data to the PSAP using the mechanisms and data objects described in
 this document.  There is a three-way call between the vehicle, the
 TSP, and the PSAP, allowing communication between the PSAP call
 taker, the TSP agent, and the vehicle occupants (who might be
 unconscious).  The TSP relays PSAP requests and vehicle responses.

Gellens, et al. Standards Track [Page 11] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

                 proprietary
   ///----\\\    or standard     +-----+     standard       +------+
  ||| IVS |||------------------->| TSP |------------------->| PSAP |
   \\\----///  crash+other data  +-----+  crash+other data  +------+
                  Figure 4: Next-Generation TSP Model
 The vehicle manufacturer and the TSP can choose to use the same
 mechanisms and data objects on the left call leg in Figure 4 as on
 the right.  (Note that the TSP model can be more difficult when the
 vehicle is in a different country than the TSP (e.g., a US resident
 driving in Canada) because of the additional complexity in choosing
 the correct PSAP based on vehicle location performed by a TSP in a
 different country.)
 In the direct model, the IVS communicates crash data to the PSAP
 directly using the mechanisms and data objects described in this
 document.
   ///----\\\           NG emergency call              +------+
  ||| IVS |||----------------------------------------->| PSAP |
   \\\----///          crash + other data              +------+
                Figure 5: Next-Generation Direct Model
 In the paired model, the IVS uses a local link to a previously paired
 handset to establish an emergency call with the PSAP; it is unclear
 what facilities are or will be available for transmitting crash data
 through the link to the handset for inclusion in an NG emergency call
 and receiving additional data items from the response.  Hence,
 manufacturers that use the paired model for legacy calls might choose
 to adopt either the direct or TSP model for next-generation calls.
    ///----\\\   (undefined)    +----+      standard        +------+
   ||| IVS |||----------------->| HS |--------------------->| PSAP |
    \\\----///   (undefined)    +----+  crash + other data  +------+
                Figure 6: Next-Generation Paired Model
 Regardless of model, if the call is routed to a PSAP that is not
 NG-ACN capable, the PSAP ignores (or does not receive) the vehicle
 data.  This is detectable by the IVS or TSP when the status response
 to the INVITE (e.g., 200 OK) lacks a metadata/control structure
 acknowledging receipt of the data [RFC8147].  The IVS or TSP then
 proceeds as it would for a CS-ACN call (e.g., oral conveyance of
 data).

Gellens, et al. Standards Track [Page 12] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

6. Vehicle Data

 APCO and NENA have jointly developed a standardized set of incident-
 related vehicle data for ACN use, called the Vehicle Emergency Data
 Set (VEDS) [VEDS].  Such data is often referred to as crash data
 although it is applicable in incidents other than crashes.
 VEDS provides a standard data set for the transmission, exchange, and
 interpretation of vehicle-related data.  A standard data format
 allows the data to be generated by an IVS or TSP and interpreted by
 PSAPs, emergency responders, and medical facilities.  It includes
 incident-related information such as airbag deployment, location and
 compass orientation of the vehicle, spatial orientation of the
 vehicle (e.g., upright, on a side, roof, or bumper), sensor data that
 can indicate the potential severity of the crash and the likelihood
 of severe injuries to the vehicle occupants, etc.  This data better
 informs the PSAP and emergency responders as to the type of response
 that might be needed.  Some of this information has been included in
 U.S. government guidelines for field triage of injured patients
 [triage-2008] [triage-2011].  These guidelines are designed to help
 responders identify the potential existence of severe internal
 injuries and to make critical decisions about how and where a patient
 needs to be transported.
 VEDS is an XML structure (see [VEDS]) transported in SIP using the
 application/EmergencyCallData.VEDS+xml MIME media type.
 If new data blocks are needed (e.g., in other regions or for enhanced
 data), the steps required during standardization are briefly
 summarized below:
 o  A set of data is standardized by a Standards Development
    Organization (SDO) or appropriate organization.
 o  A MIME media type for the crash data set is registered with IANA
  • If the data is specifically for use in emergency calling, the

MIME media type is normally under the application type with a

       subtype starting with EmergencyCallData.
  • If the data format is XML, then by convention the name has a

suffix of "+xml".

Gellens, et al. Standards Track [Page 13] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 o  The item is registered in the "Emergency Call Data Types"
    registry, as defined in Section 11.1.9 of [RFC7852].
  • For emergency-call-specific formats, the registered name is the

root of the MIME media type (not including the

       EmergencyCallData prefix and any suffix such as "+xml") as
       described in Section 4.1 of [RFC7852].
 o  A new INFO package is registered that permits carrying the new
    media type, the metadata/control object (defined in [RFC8147]),
    and for compatibility, the MSD and VEDS objects, in SIP INFO
    requests.

7. Data Transport

 [RFC7852] establishes a general mechanism for including blocks of
 data within a SIP emergency call.  This document makes use of that
 mechanism.  This document also registers an INFO package (in
 Section 14.7) to enable NG-ACN-related data blocks to be carried in
 SIP INFO requests (per [RFC6086], new SIP INFO method usages require
 the definition of an INFO package).
 VEDS is an XML structure defined by APCO and NENA [VEDS].  It is
 carried in a body part with MIME media type application/
 EmergencyCallData.VEDS+xml.
 An IVS transmits a VEDS data block (see [VEDS]) by including it as a
 body part of a SIP message per [RFC7852].  The body part is
 identified by its MIME media type (application/
 EmergencyCallData.VEDS+xml) in the Content-Type header field of the
 body part.  The body part is assigned a unique identifier that is
 listed in a Content-ID header field in the body part.  The SIP
 message is marked as containing the VEDS data by adding (or appending
 to) a Call-Info header field at the top level of the SIP message.
 This Call-Info header field contains a Content Identifier (CID) URL
 referencing the body part's unique identifier and a "purpose"
 parameter identifying the data as a VEDS data block per the
 "Emergency Call Data Types" registry entry; the "purpose" parameter's
 value is "EmergencyCallData.VEDS".  A VEDS data block is carried in a
 SIP INFO request by using the INFO package defined in Section 14.7.
 A PSAP or IVS transmits a metadata/control object (see [RFC8147]) by
 including it in a SIP message as a MIME body part per [RFC7852].  The
 body part is identified by its MIME media type (application/
 EmergencyCallData.Control+xml) in the Content-Type header field of
 the body part.  The body part is assigned a unique identifier that is
 listed in a Content-ID header field in the body part.  The SIP
 message is marked as containing the metadata/control block by adding

Gellens, et al. Standards Track [Page 14] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 (or appending to) a Call-Info header field at the top level of the
 SIP message.  This Call-Info header field contains a CID URL
 referencing the body part's unique identifier and a "purpose"
 parameter identifying the data as a metadata/control block per the
 "Emergency Call Data Types" registry entry; the "purpose" parameter's
 value is "EmergencyCallData.Control".  A metadata/control object is
 carried in a SIP INFO request by using the INFO package defined in
 Section 14.7.
 A body part containing a VEDS or metadata/control object has a
 Content-Disposition header field value containing "By-Reference" and
 is always enclosed in a multipart body part (even if it would
 otherwise be the only body part in the SIP message).
 An IVS initiating an NG-ACN call includes in the initial INVITE a
 VEDS data block and a metadata/control object informing the PSAP of
 its capabilities.  The VEDS and metadata/control body parts (and
 Presence Information Data Format Location Object (PIDF-LO)) have a
 Content-Disposition header field with the value "By-Reference;
 handling=optional".  Specifying handling=optional prevents the INVITE
 from being rejected if it is processed by a legacy element (e.g., a
 gateway between SIP and circuit-switched environments) that does not
 understand the VEDS or metadata/control (or PIDF-LO) objects.  The
 PSAP creates a metadata/control object acknowledging receipt of the
 VEDS data and includes it in the SIP final response to the INVITE.
 The metadata/control object is not included in provisional (e.g.,
 180) responses.
 If the IVS receives an acknowledgment for a VEDS data object with
 received=false, this indicates that the PSAP was unable to properly
 decode or process the VEDS.  The IVS action is not defined (e.g., it
 might only log an error).  Since the PSAP is able to request an
 updated VEDS during the call, if an initial VEDS is unsatisfactory in
 any way, the PSAP can choose to request another one.
 A PSAP can request that the vehicle send an updated VEDS data block
 during a call.  To do so, the PSAP creates a metadata/control object
 requesting VEDS data and includes it as a body part of a SIP INFO
 request sent within the dialog.  The IVS then includes an updated
 VEDS data object as a body part of a SIP INFO request and sends it
 within the dialog.  If the IVS is unable to send the VEDS for any
 reason, it instead sends a metadata/control object containing an
 <ack> element acknowledging the request and containing an
 <actionResult> element with the "success" parameter set to "false"
 and a "reason" parameter (and optionally a "details" parameter)
 indicating why the request cannot be accomplished.  Per [RFC6086],
 metadata/control objects and VEDS data are sent using the INFO
 package defined in Section 14.7.  In addition, to align with the way

Gellens, et al. Standards Track [Page 15] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 a VEDS or metadata/control block is transmitted in a SIP message
 other than a SIP INFO request, one or more Call-Info header fields
 are included in the SIP INFO request referencing the VEDS or
 metadata/control block.  See Section 14.7 for more information on the
 use of SIP INFO requests within NG-ACN calls.
 Any metadata/control object sent by a PSAP can request that the
 vehicle perform an action (such as sending a data block, flashing
 lights, providing a camera feed, etc.).  The IVS sends an
 acknowledgment for any request other than a successfully executed
 send-data action.  Multiple requests with the same "action:" value
 MUST be sent in separate metadata/control body parts (to avoid any
 ambiguity in the acknowledgment).  For each metadata/control block
 received containing one or more <request> elements (except for
 successfully executed send-data requests), the IVS sends a metadata/
 control object containing an <ack> element acknowledging the received
 metadata/control block, containing an <actionResult> element per
 <request> element.
 If the IVS is aware that VEDS data it sent previously has changed, it
 MAY send an unsolicited VEDS in any convenient SIP message, including
 a SIP INFO request during the call.  The PSAP sends an acknowledgment
 for an unsolicited VEDS object; if the IVS sent the unsolicited VEDS
 in a SIP INFO request, the acknowledgment is sent in a new SIP INFO
 request; otherwise, it is sent in the reply to the SIP request
 containing the VEDS.

8. Call Setup

 An IVS initiating an NG-ACN call sends a SIP INVITE request using one
 of the SOS sub-services "SOS.ecall.automatic" or "SOS.ecall.manual"
 in the Request-URI.  This SIP INVITE request includes standard sets
 of both crash and capabilities data as described in Section 7.
 Entities along the path between the vehicle and the PSAP are able to
 identify the call as an ACN call and handle it appropriately.  The
 PSAP is able to identify the crash and capabilities data included in
 the SIP INVITE request by examining the Call-Info header fields for
 "purpose" parameters whose values start with EmergencyCallData.  The
 PSAP is able to access the data it is capable of handling and is
 interested in by checking the "purpose" parameter values.
 This document extends [RFC8147] by reusing the call setup and other
 normative requirements with the exception that in this document,
 support for the eCall MSD is OPTIONAL and support for VEDS is
 REQUIRED.  This document also adds new attribute values to the
 metadata/control object defined in [RFC8147].

Gellens, et al. Standards Track [Page 16] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

9. New Metadata/Control Values

 This document adds new attribute values to the metadata/control
 structure defined in [RFC8147].
 In addition to the base usage from the PSAP to the IVS to acknowledge
 receipt of crash data, the <ack> element is also contained in a
 metadata/control block sent by the IVS to the PSAP.  This is used by
 the IVS to acknowledge receipt of a request by the PSAP and indicate
 if the request was carried out when that request would not otherwise
 be acknowledged (if the PSAP requests the vehicle to send data and
 the vehicle does so, the data serves as a success acknowledgment);
 see Section 8 for details.
 The <capabilities> element is used in a metadata/control block sent
 from the IVS to the PSAP (e.g., in the initial INVITE) to inform the
 PSAP of the vehicle capabilities.  Child elements contain all actions
 and data types supported by the vehicle and all available lamps
 (lights) and cameras.
 New request values are added to the <request> element to enable the
 PSAP to request the vehicle to perform additional actions.
 Mandatory Actions (the IVS and the PSAP MUST support):
 o  Transmit data object (VEDS MUST be supported; MSD MAY be
    supported)
 Optional Actions (the IVS and the PSAP MAY support):
 o  Display and/or play static (pre-defined) message
 o  Display and/or speak dynamic text (text supplied in action)
 o  Flash or turn on or off a lamp (light)
 o  Honk horn
 o  Lock or unlock doors
 o  Enable a camera
 The <ack> element indicates the object being acknowledged (i.e., a
 data object or a metadata/control block containing <request>
 elements) and reports success or failure.
 The <capabilities> element has child <request> elements indicating
 the actions (including data types, lamps (lights), and cameras)
 supported by the IVS.
 The <request> element contains attributes to indicate the request and
 to supply any needed information, and it MAY contain a <text> child
 element to contain the text for a dynamic message.  The "action"

Gellens, et al. Standards Track [Page 17] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 attribute is mandatory and indicates the specific action.  [RFC8147]
 established an IANA registry to contain the allowed values; this
 document adds new values to that registry in Table 1.

9.1. New Values for the "action" Attribute

 The following new "action" values are defined:
 msg-static:  displays or plays a pre-defined message (translated as
    appropriate for the language of the vehicle's interface).  A
    registry is created in Section 14.4 for messages and their IDs.
    Vehicles include the highest registered message in their
    <capabilities> element to indicate support for all messages up to
    and including the indicated value.  A registry of message
    identification values is defined in Section 14.4.  There is only
    one static message initially defined (listed in Table 2).  Because
    all compliant vehicles are expected to support all static messages
    translated into all languages supported by the vehicle, it is
    important to limit the number of such messages.  Therefore, this
    registry operates under "Specification Required" rules as defined
    in [RFC5226], which requires a stable, public document and implies
    expert review of the publication.
 msg-dynamic:  displays or speaks (via text-to-speech) a message
    contained in a child <text> element within the request.
 honk:  sounds the horn.
 lamp:  flashes a lamp (light) or turns it on or off.  The lamp is
    identified by a lamp ID token contained in an "element-id"
    attribute of the request.  The desired state of the lamp is either
    "on", "off", or "flash" as indicated in a "requested-state"
    attribute.  The duration of the lamp's requested state is
    specified in a "persistence" attribute.  A registry of lamp
    identification values is defined in Section 14.5.  The initial
    values (listed in Table 3) are head, interior, fog-front,
    fog-rear, brake, brake-center, position-front, position-rear,
    turn-left, turn-right, and hazard.
 enable-camera:  adds a one-way media stream (established via SIP
    re-INVITE sent by the vehicle) to enable the PSAP call taker to
    view a feed from a camera.  A registry of camera identification
    values is defined in Section 14.6.  The initial values (listed in
    Table 4) are backup, left-rear, right-rear, forward, rear-wide,
    lane, interior, night-front, night-rear, night-left, and night-
    right.

Gellens, et al. Standards Track [Page 18] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 door-lock:  locks or unlocks all door locks.  A "requested-state"
    attribute contains either "locked" or "unlocked" to indicate if
    the doors are to be locked or unlocked.
 Note that there is no "request" action to play dynamic media (such as
 an audio message).  The PSAP can send a SIP re-INVITE to establish a
 one-way media stream for this purpose.

9.2. Example <request> Element

     <?xml version="1.0" encoding="UTF-8"?>
     <EmergencyCallData.Control
         xmlns="urn:ietf:params:xml:ns:EmergencyCallData:control"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
     <request action="send-data" datatype="VEDS"/>
     <request action="lamp" element-id="hazard"
              requested-state="flash" persistence="PT1H"/>
     <request action="msg-static" int-id="1"/>
     <request action="msg-dynamic">
         <text>Remain calm.  Help is on the way.</text>
     </request>
     </EmergencyCallData.Control>
                      Figure 7: <request> Example

9.3. The <ack> Element

 The <ack> element is transmitted by the PSAP to acknowledge
 unsolicited data sent by the IVS and transmitted by the IVS to
 acknowledge receipt of a <request> element other than a successfully
 performed "send-data" request (e.g., a request to display a message
 to the vehicle occupants is acknowledged, but a request to transmit
 VEDS data is not, since the transmitted VEDS serves as
 acknowledgment).  An <ack> element sent by an IVS references the
 unique ID of the metadata/control object containing the request(s),
 and for each request being acknowledged, it indicates whether the
 request was successfully performed, and if not, it indicates why not.

Gellens, et al. Standards Track [Page 19] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

9.3.1. Examples of the <ack> Element

     <?xml version="1.0" encoding="UTF-8"?>
     <EmergencyCallData.Control
         xmlns="urn:ietf:params:xml:ns:EmergencyCallData:control"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
     <ack ref="1234567890@atlanta.example.com">
         <actionResult action="msg-dynamic" success="true"/>
         <actionResult action="lamp" success="false" reason="unable"
                       details="The requested lamp is inoperable"/>
     </ack>
     </EmergencyCallData.Control>
               Figure 8: Example <ack> from IVS to PSAP

9.4. The <capabilities> Element

 The <capabilities> element [RFC8147] is transmitted by the IVS to
 indicate its capabilities to the PSAP.
 The <capabilities> element contains a <request> child element per
 action supported by the vehicle.  The vehicle MUST support sending
 the VEDS data object and so includes at a minimum a <request> child
 element with the "action" attribute set to "send-data" and the
 "supported-values" attribute containing all data blocks supported by
 the IVS, which MUST include "VEDS".  All other actions are OPTIONAL.
 If the "msg-static" action is supported, a <request> child element
 with the "action" attribute set to "msg-static" is included, with the
 "int-id" attribute set to the highest supported static message
 supported by the vehicle.  A registry is created in Section 14.4 to
 map "int-id" values to static text messages.  By sending the highest
 supported static message number in its <capabilities> element, the
 vehicle indicates its support for all static messages in the registry
 up to and including that value.
 If the "lamp" action is supported, a <request> child element with the
 "action" attribute set to "lamp" is included, with the "supported-
 values" attribute set to all supported lamp IDs.  A registry is
 created in Section 14.5 to contain lamp ID values.
 If the "enable-camera" action is supported, a <request> child element
 with the "action" attribute set to "enable-camera" is included, with
 the "supported-values" attribute set to all supported camera IDs.  A
 registry is created in Section 14.6 to contain camera ID values.

Gellens, et al. Standards Track [Page 20] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

9.4.1. Example <capabilities> Element

     <?xml version="1.0" encoding="UTF-8"?>
     <EmergencyCallData.Control
         xmlns="urn:ietf:params:xml:ns:EmergencyCallData:control"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
     <capabilities>
         <request action="send-data" supported-values="VEDS"/>
         <request action="lamp"
                  supported-values="head;interior;fog-front;
                  fog-rear;brake;position-front;position-rear;
                  turn-left;turn-right;hazard"/>
         <request action="msg-static" int-id="3"/>
         <request action="msg-dynamic"/>
         <request action="honk"/>
         <request action="enable-camera"
                  supported-values="backup; interior"/>
         <request action="door-lock"/>
     </capabilities>
     </EmergencyCallData.Control>
                   Figure 9: <capabilities> Example

10. Test Calls

 An NG-ACN test call is a call that is recognized and treated to some
 extent as an NG-ACN call but is not given emergency call treatment
 nor handled by a PSAP call taker.  The specific handling of test
 NG-ACN calls is outside the scope of this document; typically, the
 test call facility allows the IVS, user, or TSP to verify that an
 NG-ACN call can be successfully established with voice and/or other
 media communication.  The IVS might also be able to verify that the
 crash data was successfully received.
 This document builds on [RFC8147], which inherits the ability to
 utilize test call functionality from Section 15 of [RFC6881].  A
 service URN starting with "test." indicates a test call.  Per
 [RFC8147], "urn:service:test.sos.ecall" is used for test NG-ACN
 calls.
 MNOs, emergency authorities, ESInets, and PSAPs handle a vehicle call
 requesting the "test" service URN so that the desired functionality
 is tested, but this is outside the scope of this document.  (One
 possibility is that MNOs route such calls as non-emergency calls to
 an ESInet, which routes them to a PSAP that supports NG-ACN calls;
 the PSAP accepts test calls, sends a crash data acknowledgment, and

Gellens, et al. Standards Track [Page 21] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 plays an audio clip (for example, saying that the call reached an
 appropriate PSAP and the vehicle data was successfully processed) in
 addition to supporting media loopback per [RFC6881].)
 Note that since test calls are placed using "test" as the parent
 service URN and "sos" as a child, such calls are not treated as an
 emergency call, so some functionality might not apply (such as
 preemption or availability for devices lacking service
 ("non-service-initialized" (NSI) devices) if those are available for
 emergency calls).

11. Example Call Initiation

 Figure 10 shows an NG-ACN call initiation.  The vehicle initiates an
 NG-ACN call using an MNO.  The MNO routes the call to an ESInet, as
 for any emergency call.  The ESInet routes the call to an appropriate
 NG-ACN-capable PSAP (using location information and the fact that it
 is an NG-ACN call).  The call is processed by the Emergency Services
 Routing Proxy (ESRP), as the entry point to the ESInet.  The ESRP
 routes the call to an appropriate NG-ACN-capable PSAP, where the call
 is handled by a call taker.  (In deployments where there is no
 ESInet, the MNO itself routes the call directly to an appropriate
 NG-ACN-capable PSAP.)
                             +---------------------------------------+
                             |                                       |
             +------------+  |                  +-------+            |
             |            |  |                  | PSAP2 |            |
             |            |  |                  +-------+            |
             | Originating|  |                                       |
             |   Mobile   |  |  +------+    +----------------------+ |
   Vehicle-->|   Network  |--|->| ESRP |--->| PSAP1 --> Call Taker | |
             |            |  |  +------+    +----------------------+ |
             |            |  |                                       |
             +------------+  |                  +-------+            |
                             |                  | PSAP3 |            |
                             |                  +-------+            |
                             |                                       |
                             |                                       |
                             |                                       |
                             |                ESInet                 |
                             +---------------------------------------+
                  Figure 10: Example Call Initiation
 Figure 11 illustrates an example SIP emergency call INVITE request as
 generated by the IVS.  It includes a PIDF-LO with vehicle-determined
 location information, a VEDS block with crash data, and a metadata/

Gellens, et al. Standards Track [Page 22] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 control block with capabilities data.  The INVITE has a request URI
 containing the urn:service:sos.ecall.automatic service URN.  For
 brevity, the example VEDS block does not show VEDS location
 information, although this is generally present.
 The example VEDS data structure shows information about a crashed
 vehicle.  The example communicates that the car is a model year 2015
 Saab 9-5 (a car that does not exist).  The front airbag deployed as a
 consequence of the crash.  The <VehicleBodyCategoryCode> indicates
 that the crashed vehicle is a passenger car (the code is set to
 "101") and that it is not a convertible (the <ConvertibleIndicator>
 value is set to "false").
 The <VehicleCrashPulse> element provides further information about
 the crash, namely that the force of impact based on the change in
 velocity over the duration of the crash pulse was 100 MPH.  The
 principal direction of the force of the impact is set to "12" (which
 refers to 12 o'clock, corresponding to a frontal collision).  This
 value is in the <CrashPulsePrincipalDirectionOfForceValue> element.
 The <CrashPulseRolloverQuarterTurnsValue> indicates the number of
 quarter turns in concert with a rollover expressed as a number; in
 our case 1.
 No roll bar was deployed, as indicated in
 <VehicleRollbarDeployedIndicator> being set to "false".
 Next, there is information indicating seat belt and seat sensor data
 for individual seat positions in the vehicle.  In our example,
 information from the driver seat is available (value "1" in the
 <VehicleSeatLocationCategoryCode> element) showing that the seat belt
 was monitored (<VehicleSeatbeltMonitoredIndicator> element), the seat
 belt was fastened (<VehicleSeatbeltFastenedIndicator> element), and
 the seat sensor determined that the seat was occupied
 (<VehicleSeatOccupiedIndicator> element).
 The weight of the vehicle when empty is listed as 600 kilograms in
 our example.
 The <SevereInjuryIndicator> element is set to "true", indicating a
 likelihood that a vehicle occupant has suffered a severe injury
 requiring immediate trauma care.
 Additional information is provided, including the presence of fuel
 leakage (<FuelLeakingIndicator> element), an indication whether the
 vehicle was subjected to multiple impacts (<MultipleImpactsIndicator>
 element), the orientation of the vehicle at final rest
 (<VehicleFinalRestOrientationCategoryCode> element), and an

Gellens, et al. Standards Track [Page 23] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 indication that no parts of the vehicle are currently detected as
 being on fire (the <VehicleFireIndicator> element).
   INVITE urn:service:sos.ecall.automatic SIP/2.0
   To: urn:service:sos.ecall.automatic
   From: <sip:+13145551111@example.com>;tag=9fxced76sl
   Call-ID: 3848276298220188511@atlanta.example.com
   Geolocation: <cid:target123@example.com>
   Geolocation-Routing: no
   Call-Info: <cid:1234567890@atlanta.example.com>;
              purpose=EmergencyCallData.VEDS
   Call-Info: <cid:1234567892@atlanta.example.com>;
              purpose=EmergencyCallData.Control
   Accept: application/sdp, application/pidf+xml,
           application/EmergencyCallData.Control+xml
   Recv-Info: EmergencyCallData.eCall
   Allow: INVITE, ACK, PRACK, INFO, OPTIONS, CANCEL, REFER, BYE,
          SUBSCRIBE, NOTIFY, UPDATE
   CSeq: 31862 INVITE
   Content-Type: multipart/mixed; boundary=boundary1
   Content-Length: ...
  1. -boundary1

Content-Type: application/sdp

   ...Session Description Protocol (SDP) goes here
  1. -boundary1

Content-Type: application/pidf+xml

    Content-ID: <target123@atlanta.example.com>
    Content-Disposition: by-reference;handling=optional
    <?xml version="1.0" encoding="UTF-8"?>
    <presence
       xmlns="urn:ietf:params:xml:ns:pidf"
       xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
       xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
       xmlns:dyn="urn:ietf:params:xml:ns:pidf:geopriv10:dynamic"
       xmlns:gml="http://www.opengis.net/gml"
       xmlns:gs="http://www.opengis.net/pidflo/1.0"
       entity="sip:+13145551111@example.com">
       <dm:device id="123">
           <gp:geopriv>
               <gp:location-info>
                   <gml:Point srsName="urn:ogc:def:crs:EPSG::4326">
                      <gml:pos>-34.407 150.883</gml:pos>
                   </gml:Point>
                    <dyn:Dynamic>

Gellens, et al. Standards Track [Page 24] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

                       <dyn:heading>278</dyn:heading>
                       <dyn:direction></dyn:direction>
                    </dyn:Dynamic>
               </gp:location-info>
               <gp:usage-rules/>
               <method>gps</method>
           </gp:geopriv>
           <timestamp>2012-04-5T10:18:29Z</timestamp>
           <dm:deviceID>1M8GDM9A_KP042788</dm:deviceID>
       </dm:device>
</presence>
  1. -boundary1

Content-Type: application/EmergencyCallData.VEDS+xml

    Content-ID: <1234567890@atlanta.example.com>
    Content-Disposition: by-reference;handling=optional
    <?xml version="1.0" encoding="UTF-8"?>
    <AutomatedCrashNotification xmlns="http://www.veds.org/acn/1.0"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <Crash>
        <CrashVehicle>
            <ItemMakeName xmlns="http://niem.gov/niem/niem-core/2.0">
                Saab
            </ItemMakeName>
            <ItemModelName xmlns="http://niem.gov/niem/niem-core/2.0">
                9-5
            </ItemModelName>
            <ItemModelYearDate
                xmlns="http://niem.gov/niem/niem-core/2.0">
                2015
            </ItemModelYearDate>
            <Airbag>
                <AirbagCategoryCode>FRONT</AirbagCategoryCode>
                <AirbagDeployedIndicator>true
                </AirbagDeployedIndicator>
            </Airbag>
            <ConvertibleIndicator>false</ConvertibleIndicator>
            <PowerSourceCategoryCode>MAIN</PowerSourceCategoryCode>
            <VehicleBodyCategoryCode
                xmlns="http://niem.gov/niem/domains/jxdm/4.1">
                101
            </VehicleBodyCategoryCode>
            <VehicleCrashPulse>
                <CrashPulseChangeInVelocityMeasure>
                    <MeasurePointValue
                        xmlns="http://niem.gov/niem/niem-core/2.0">

Gellens, et al. Standards Track [Page 25] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

                        100
                    </MeasurePointValue>
                    <MeasureUnitText
                        xmlns="http://niem.gov/niem/niem-core/2.0">
                        MPH</MeasureUnitText>
                 </CrashPulseChangeInVelocityMeasure>
                        <CrashPulsePrincipalDirectionOfForceValue>12
                        </CrashPulsePrincipalDirectionOfForceValue>
                <CrashPulseRolloverQuarterTurnsValue>1
                </CrashPulseRolloverQuarterTurnsValue>
            </VehicleCrashPulse>
            <VehicleRollbarDeployedIndicator>false
            </VehicleRollbarDeployedIndicator>
            <VehicleSeat>
                <VehicleSeatLocationCategoryCode>1
                </VehicleSeatLocationCategoryCode>
                <VehicleSeatOccupiedIndicator>true
                </VehicleSeatOccupiedIndicator>
                <VehicleSeatbeltFastenedIndicator>true
                </VehicleSeatbeltFastenedIndicator>
                <VehicleSeatbeltMonitoredIndicator>true
                </VehicleSeatbeltMonitoredIndicator>
            </VehicleSeat>
            <VehicleUnladenWeightMeasure
                xmlns="http://niem.gov/niem/niem-core/2.0">
                <MeasurePointValue
                    xmlns="http://niem.gov/niem/niem-core/2.0">
                    600
                    </MeasurePointValue>
                <MeasureUnitText
                    xmlns="http://niem.gov/niem/niem-core/2.0">
                    kilogram
                </MeasureUnitText>
            </VehicleUnladenWeightMeasure>
        </CrashVehicle>
        <FuelLeakingIndicator>true</FuelLeakingIndicator>
        <MultipleImpactsIndicator>false</MultipleImpactsIndicator>
        <SevereInjuryIndicator>true</SevereInjuryIndicator>
        <VehicleFinalRestOrientationCategoryCode>Driver
        </VehicleFinalRestOrientationCategoryCode>
        <VehicleFireIndicator>false</VehicleFireIndicator>
    </Crash>
</AutomatedCrashNotification>
  1. -boundary1

Content-Type: application/EmergencyCallData.Control+xml

    Content-ID: <1234567892@atlanta.example.com>
    Content-Disposition: by-reference;handling=optional

Gellens, et al. Standards Track [Page 26] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

    <?xml version="1.0" encoding="UTF-8"?>
    <EmergencyCallData.Control
         xmlns="urn:ietf:params:xml:ns:EmergencyCallData:control"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
     <capabilities>
         <request action="send-data" supported-datatypes="VEDS"/>
         <request action="lamp"
                  supported-values="head;interior;fog-front;fog-rear;
                  brake;position-front;position-rear;turn-left;
                  turn-right;hazard"/>
         <request action="msg-static" int-id="3"/>
         <request action="msg-dynamic"/>
         <request action="honk"/>
         <request action="enable-camera"
                  supported-values="backup;interior"/>
         <request action="door-lock"/>
     </capabilities>
    </EmergencyCallData.Control>
  1. -boundary1–
     Figure 11: SIP INVITE for a Vehicle-Initiated Emergency Call

12. Security Considerations

 Since this document relies on [RFC8147] and [RFC7852], the security
 considerations described in those specifications apply here.  The
 security considerations of [RFC5069] apply as well.  Implementors are
 cautioned to read and understand the discussion in those documents.
 In emergency service systems where location data is supplied or
 determined with the assistance of an end host, it is possible that
 the location is incorrect, either intentionally (e.g., in a denial-
 of-service attack against the emergency services infrastructure) or
 due to a malfunctioning device.  The reader is referred to [RFC7378]
 for a discussion of some of these vulnerabilities.
 In addition to the security considerations discussion specific to the
 metadata/control object in [RFC8147], note that vehicles MAY decline
 to carry out any requested action (e.g., if the vehicle requires but
 is unable to verify the certificate used to sign the request).  The
 vehicle MAY use any value in the reason registry to indicate why it
 did not take an action (e.g., the generic "unable" or the more
 specific "security-failure").  Because some actions carry more
 potential risk than others (e.g., unlocking a door versus flashing
 lights), vehicle policy MAY decline to carry out some requests in

Gellens, et al. Standards Track [Page 27] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 some circumstances (e.g., decline a request to unlock doors, send an
 updated VEDS, or enable a camera received in a vehicle-terminated
 call while carrying out such requests received in a vehicle-initiated
 emergency call).

13. Privacy Considerations

 Since this document builds on [RFC8147], which itself builds on
 [RFC7852], the data structures specified there, and the corresponding
 privacy considerations discussed there, apply here as well.  The VEDS
 data structure contains optional elements that can carry identifying
 and personal information, both about the vehicle and about the owner,
 as well as location information, so it needs to be protected against
 unauthorized disclosure, as discussed in [RFC7852].  Local
 regulations may impose additional privacy protection requirements.
 The additional functionality enabled by this document, such as access
 to vehicle camera streams, carries a burden of protection, so
 implementations need to be careful that access is only provided
 within the context of an emergency call or to an emergency services
 provider (e.g., by verifying that the request for camera access is
 signed by a certificate issued by an emergency services registrar).

14. IANA Considerations

 This document registers the application/EmergencyCallData.VEDS+xml
 MIME media type and adds "VEDS" to the "Emergency Call Data Types"
 registry.  This document adds to and creates sub-registries in the
 "Emergency Call Metadata/Control Data" registry created in [RFC8147].
 In addition, this document registers a new INFO package.

14.1. MIME Media Type Registration for application/

     EmergencyCall.VEDS+xml
 IANA has registered a new MIME media type according to the procedures
 of [RFC6838] and guidelines in [RFC7303].
    MIME media type name:  application
    MIME subtype name:  EmergencyCallData.VEDS+xml
    Mandatory parameters:  none
    Optional parameters:  charset
       Indicates the character encoding of enclosed XML.

Gellens, et al. Standards Track [Page 28] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

    Encoding considerations:
       Uses XML, which can employ 8-bit characters, depending on the
       character encoding used.  See Section 3.2 of RFC 7303
       [RFC7303].
    Security considerations:
          This media type is designed to carry vehicle crash data
          during an emergency call.
          This data can contain personal information including vehicle
          VIN, location, direction, etc.  Appropriate precautions need
          to be taken to limit unauthorized access, inappropriate
          disclosure to third parties, and eavesdropping of this
          information.  Please refer to Sections 9 and 10 of [RFC7852]
          for more information.
          When this media type is contained in a signed or encrypted
          body part, the enclosing multipart (e.g., multipart/signed
          or multipart/encrypted) has the same Content-ID as the data
          part.  This allows an entity to identify and access the data
          blocks it is interested in without having to dive deeply
          into the message structure or decrypt parts it is not
          interested in.  (The "purpose" parameter in a Call-Info
          header field identifies the data, and the CID URL points to
          the data block in the body, which has a matching Content-ID
          body part header field.)
    Interoperability considerations:  None
    Published specification:  [VEDS]
    Applications which use this media type:  Emergency Services
    Additional information:  None
    Magic Number:  None
    File Extension:  .xml
    Macintosh file type code:  TEXT
    Persons and email addresses for further information:
       Randall Gellens, rg+ietf@randy.pensive.org;
       Hannes Tschofenig, Hannes.Tschofenig@gmx.net
    Intended usage:  LIMITED USE

Gellens, et al. Standards Track [Page 29] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

    Author:
       This specification is a work item of the IETF ECRIT working
       group, with mailing list address <ecrit@ietf.org>.
    Change controller:  The IESG <ietf@ietf.org>

14.2. Registration of the "VEDS" Entry in the Emergency Call Data Types

     Registry
 IANA has added "VEDS" to the "Emergency Call Data Types" registry,
 with a reference to this document; the "Data About" value is "The
 Call".  The "Emergency Call Data Types" registry was established by
 [RFC7852].

14.3. New Action Values

 This document adds new values for the "action" attribute of the
 <request> element in the "Emergency Call Action" registry created by
 [RFC8147].
              +---------------+-------------------------+
              |      Name     |       Description       |
              +---------------+-------------------------+
              |   msg-static  | Section 9.1 of RFC 8148 |
              |               |                         |
              |  msg-dynamic  | Section 9.1 of RFC 8148 |
              |               |                         |
              |      honk     | Section 9.1 of RFC 8148 |
              |               |                         |
              |      lamp     | Section 9.1 of RFC 8148 |
              |               |                         |
              | enable-camera | Section 9.1 of RFC 8148 |
              |               |                         |
              |   door-lock   | Section 9.1 of RFC 8148 |
              +---------------+-------------------------+
          Table 1: Emergency Call Action Registry New Values

Gellens, et al. Standards Track [Page 30] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

14.4. Emergency Call Static Messages Registry

 This document creates a new sub-registry called "Emergency Call
 Static Messages" in the "Emergency Call Metadata/Control Data"
 registry established by [RFC8147].  Because compliant vehicles are
 expected to support all static messages translated into all languages
 supported by the vehicle, it is important to limit the number of such
 messages.  As defined in [RFC5226], this registry operates under
 "Specification Required", which requires a stable, public document
 and implies expert review of the publication.  The expert should
 determine that the document has been published by an appropriate
 emergency services organization (e.g., NENA, EENA, or APCO) or by the
 IETF with input from an emergency services organization, and that the
 proposed message is sufficiently distinguishable from other messages.
 The contents of this registry are:
 ID:  An integer identifier to be used in the "int-id" attribute of a
    metadata/control <request> element.
 Message:  The text of the message.  Messages are listed in the
    registry in English; vehicles are expected to implement
    translations into languages supported by the vehicle.
 When new messages are added to the registry, the message text is
 determined by the registrant; IANA assigns the IDs.  Each message is
 assigned a consecutive integer value as its ID.  This allows an IVS
 to indicate by a single integer value that it supports all messages
 with that value or lower.  The value 0 is reserved; usable messages
 start with 1.
 The initial set of values is listed in Table 2.
 +----+--------------------------------------------------------------+
 | ID | Message                                                      |
 +----+--------------------------------------------------------------+
 | 0  | Reserved                                                     |
 |    |                                                              |
 | 1  | Emergency services has received your information and         |
 |    | location but cannot speak with you right now.  We will get   |
 |    | help to you as soon as possible.                             |
 +----+--------------------------------------------------------------+
    Table 2: Emergency Call Static Messages Registry Initial Values

Gellens, et al. Standards Track [Page 31] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

14.5. Emergency Call Vehicle Lamp IDs Registry

 This document creates a new sub-registry called "Emergency Call
 Vehicle Lamp IDs" in the "Emergency Call Metadata/Control Data"
 registry established by [RFC8147].  This new sub-registry uniquely
 identifies the names of automotive lamps (lights).  As defined in
 [RFC5226], this registry operates under "Expert Review" rules.  The
 expert should determine that the proposed lamp name is clearly
 understandable and is sufficiently distinguishable from other lamp
 names.
 The contents of this registry are:
 Name:  The identifier to be used in the "element-id" attribute of a
    metadata/control <request> element.
 Description:  A description of the lamp (light).
 The initial set of values is listed in Table 3.
   +----------------+---------------------------------------------+
   | Name           | Description                                 |
   +----------------+---------------------------------------------+
   | head           | The main lamps used to light the road ahead |
   |                |                                             |
   | interior       | Interior lamp, often at the top center      |
   |                |                                             |
   | fog-front      | Front fog lamps                             |
   |                |                                             |
   | fog-rear       | Rear fog lamps                              |
   |                |                                             |
   | brake          | Brake indicator lamps                       |
   |                |                                             |
   | brake-center   | Center high-mounted stop lamp               |
   |                |                                             |
   | position-front | Front position/parking/standing lamps       |
   |                |                                             |
   | position-rear  | Rear position/parking/standing lamps        |
   |                |                                             |
   | turn-left      | Left turn/directional lamps                 |
   |                |                                             |
   | turn-right     | Right turn/directional lamps                |
   |                |                                             |
   | hazard         | Hazard/four-way lamps                       |
   +----------------+---------------------------------------------+
        Table 3: Emergency Call Lamp ID Registry Initial Values

Gellens, et al. Standards Track [Page 32] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

14.6. Emergency Call Vehicle Camera IDs Registry

 This document creates a new sub-registry called "Emergency Call
 Vehicle Camera IDs" in the "Emergency Call Metadata/Control Data"
 registry established by [RFC8147].  This new sub-registry uniquely
 identifies automotive cameras.  As defined in [RFC5226], this
 registry operates under "Expert Review" rules.  The expert should
 determine that the proposed camera name is clearly understandable and
 is sufficiently distinguishable from other camera names.
 The contents of this registry are:
 Name:  The identifier to be used in the "element-id" attribute of a
    control <request> element.
 Description:  A description of the camera.
 The initial set of values is listed in Table 4.

Gellens, et al. Standards Track [Page 33] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 +-------------+-----------------------------------------------------+
 | Name        | Description                                         |
 +-------------+-----------------------------------------------------+
 | backup      | Shows what is behind the vehicle, e.g., often used  |
 |             | for driver display when the vehicle is in reverse.  |
 |             | Also known as rearview, reverse, rear visibility,   |
 |             | etc.                                                |
 |             |                                                     |
 | left-rear   | Shows view to the left and behind (e.g., left-side  |
 |             | rearview mirror or blind spot view)                 |
 |             |                                                     |
 | right-rear  | Shows view to the right and behind (e.g., right-    |
 |             | side rearview mirror or blind spot view)            |
 |             |                                                     |
 | forward     | Shows what is in front of the vehicle               |
 |             |                                                     |
 | rear-wide   | Shows what is behind the vehicle (e.g., used by     |
 |             | rear-collision detection systems), separate from    |
 |             | backup view                                         |
 |             |                                                     |
 | lane        | Used by systems to identify road lane and/or        |
 |             | monitor the vehicle's position within lane          |
 |             |                                                     |
 | interior    | Shows the interior (e.g., driver)                   |
 |             |                                                     |
 | night-front | Night-vision view of what is in front of the        |
 |             | vehicle                                             |
 |             |                                                     |
 | night-rear  | Night-vision view of what is behind the vehicle     |
 |             |                                                     |
 | night-left  | Night-vision view of what is to the left of the     |
 |             | vehicle                                             |
 |             |                                                     |
 | night-right | Night-vision view of what is to the right of the    |
 |             | vehicle                                             |
 +-------------+-----------------------------------------------------+
  Table 4: Emergency Call Vehicle Camera IDs Registry Initial Values

Gellens, et al. Standards Track [Page 34] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

14.7. The EmergencyCallData.VEDS INFO Package

 This document registers the EmergencyCallData.VEDS INFO package in
 the "Info Packages Registry".
 Both endpoints (the IVS and the PSAP equipment) include
 "EmergencyCallData.VEDS" in a Recv-Info header field per [RFC6086] to
 indicate the ability to receive SIP INFO messages carrying data as
 described here.
 Support for the EmergencyCallData.VEDS INFO package indicates the
 ability to receive NG-ACN-related body parts as specified in this
 document.
 A SIP INFO request message carrying data related to an emergency call
 as described in this document has an Info-Package header field set to
 "EmergencyCallData.VEDS" per [RFC6086].
 The requirements of Section 10 of [RFC6086] are addressed in the
 following sections.

14.7.1. Overall Description

 This section describes what type of information is carried in INFO
 requests associated with the INFO package and for what types of
 applications and functionalities User Agents (UAs) can use the INFO
 package.
 SIP INFO requests associated with the EmergencyCallData.VEDS INFO
 package carry data associated with emergency calls as defined in this
 document.  The application is vehicle-initiated emergency calls
 established using SIP.  The functionality is to carry vehicle data
 and metadata/control information between vehicles and PSAPs.

14.7.2. Applicability

 This section describes why the INFO package mechanism, rather than
 some other mechanism, has been chosen for the specific use case.
 The use of the SIP INFO method is based on an analysis of the
 requirements against the intent and effects of the INFO method versus
 other approaches (which included the SIP MESSAGE method, SIP OPTIONS
 method, SIP re-INVITE method, media-plane transport, and non-SIP
 protocols).  In particular, the transport of emergency call data
 blocks occurs within a SIP emergency dialog, per Section 7, and is
 normally carried in the initial INVITE request and its response; the
 use of the INFO method only occurs when emergency-call-related data
 needs to be sent mid call.  While the SIP MESSAGE method could be

Gellens, et al. Standards Track [Page 35] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 used, it is not tied to a SIP dialog as is the INFO method and thus
 might not be associated with the dialog.  Both the SIP OPTIONS or
 re-INVITE methods could also be used, but they are seen as less clean
 than the INFO method.  The SIP SUBSCRIBE/NOTIFY method could be
 coerced into service, but the semantics are not a good fit, e.g., the
 subscribe/notify mechanism provides one-way communication consisting
 of (often multiple) notifications from notifier to subscriber
 indicating that certain events in the notifier have occurred, whereas
 what's needed here is two-way communication of data related to the
 emergency dialog.  Use of media-plane mechanisms was discounted
 because the number of messages needing to be exchanged in a dialog is
 normally zero or very few, and the size of the data is likewise very
 small.  The overhead caused by user-plane setup (e.g., to use the
 Message Session Relay Protocol (MSRP) as transport) would be
 disproportionately large.
 Based on the analyses, the SIP INFO method was chosen to provide for
 mid-call data transport.

14.7.3. INFO Package Name

 The INFO package name is EmergencyCallData.VEDS.

14.7.4. INFO Package Parameters

 None

14.7.5. SIP Option-Tags

 None

14.7.6. INFO Request Body Parts

 The body of an EmergencyCallData.VEDS INFO package is a multipart
 body containing zero or one application/EmergencyCallData.VEDS+xml
 parts (containing a VEDS data block), zero or more application/
 EmergencyCallData.Control+xml (containing a metadata/control object)
 parts, and zero or one application/EmergencyCallData.eCall.MSD parts
 (containing an MSD).  At least one VEDS, MSD, or metadata/control
 body part is expected; the behavior upon receiving a SIP INFO request
 with none is undefined.
 The body parts are sent per [RFC6086]; in addition, to align with how
 these body parts are sent in non-INFO messages, each associated body
 part is referenced by a Call-Info header field at the top level of
 the SIP message.  The body part has a Content-Disposition header
 field set to "By-Reference".

Gellens, et al. Standards Track [Page 36] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

 A VEDS, metadata/control block, or MSD is always enclosed in a
 multipart body part (even if it would otherwise be the only body part
 in the SIP message).  The outermost multipart that contains only body
 parts associated with the INFO package has a Content-Disposition
 value of "Info-Package".
 Service providers in the call path are not expected to add Additional
 Data [RFC7852] to SIP INFO requests (as they would to an initial
 INVITE request).

14.7.7. INFO Package Usage Restrictions

 Usage is limited to vehicle-initiated emergency calls as defined in
 this document.

14.7.8. Rate of INFO Requests

 The SIP INFO request is used within an established emergency call
 dialog to send requests, updated data, or an acknowledgment.  Because
 requests are normally sent only on manual action of the PSAP call
 taker (who suspects some aspect of the vehicle state has changed) and
 updated data is sent only when an aspect of previously sent data has
 changed, the rate of SIP INFO requests associated with the
 EmergencyCallData.VEDS INFO package is normally quite low (most
 dialogs are likely to contain zero SIP INFO requests, while others
 can be expected to carry an occasional request).

14.7.9. INFO Package Security Considerations

 The MIME media type registrations for the data blocks that can be
 carried using this INFO package contains a discussion of the security
 and/or privacy considerations specific to that data block.  See
 Sections 12 and 13 for information on the security and privacy
 considerations of the data carried in vehicle-initiated emergency
 calls.

14.7.10. Implementation Details

 See Sections 7 and 8 for protocol details.

14.7.11. Examples

 See Section 11 for protocol examples.

Gellens, et al. Standards Track [Page 37] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

15. References

15.1. Normative References

 [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119,
            DOI 10.17487/RFC2119, March 1997,
            <http://www.rfc-editor.org/info/rfc2119>.
 [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
            IANA Considerations Section in RFCs", BCP 26, RFC 5226,
            DOI 10.17487/RFC5226, May 2008,
            <http://www.rfc-editor.org/info/rfc5226>.
 [RFC6086]  Holmberg, C., Burger, E., and H. Kaplan, "Session
            Initiation Protocol (SIP) INFO Method and Package
            Framework", RFC 6086, DOI 10.17487/RFC6086, January 2011,
            <http://www.rfc-editor.org/info/rfc6086>.
 [RFC6838]  Freed, N., Klensin, J., and T. Hansen, "Media Type
            Specifications and Registration Procedures", BCP 13,
            RFC 6838, DOI 10.17487/RFC6838, January 2013,
            <http://www.rfc-editor.org/info/rfc6838>.
 [RFC6881]  Rosen, B. and J. Polk, "Best Current Practice for
            Communications Services in Support of Emergency Calling",
            BCP 181, RFC 6881, DOI 10.17487/RFC6881, March 2013,
            <http://www.rfc-editor.org/info/rfc6881>.
 [RFC7303]  Thompson, H. and C. Lilley, "XML Media Types", RFC 7303,
            DOI 10.17487/RFC7303, July 2014,
            <http://www.rfc-editor.org/info/rfc7303>.
 [RFC7852]  Gellens, R., Rosen, B., Tschofenig, H., Marshall, R., and
            J. Winterbottom, "Additional Data Related to an Emergency
            Call", RFC 7852, DOI 10.17487/RFC7852, July 2016,
            <http://www.rfc-editor.org/info/rfc7852>.
 [RFC8147]  Gellens, R. and H. Tschofenig, "Next-Generation Pan-
            European eCall", RFC 8147, DOI 10.17487/RFC8147, May 2017,
            <http://www.rfc-editor.org/info/rfc8147>.
 [VEDS]     APCO International, "Vehicular Emergency Data Set (VEDS)",
            Version 3.0, Prepared by the Advanced Automatic Crash
            Notification (AACN) Joint APCO/NENA Data Standardization
            Working Group, February 2012, <https://www.apcointl.org/
            resources/telematics/aacn-and-veds.html>.

Gellens, et al. Standards Track [Page 38] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

15.2. Informative references

 [Bluetooth]
            Bluetooth Special Interest Group (SIG), "Bluetooth
            Specifications", <https://www.bluetooth.com/
            specifications>.
 [RFC5012]  Schulzrinne, H. and R. Marshall, Ed., "Requirements for
            Emergency Context Resolution with Internet Technologies",
            RFC 5012, DOI 10.17487/RFC5012, January 2008,
            <http://www.rfc-editor.org/info/rfc5012>.
 [RFC5069]  Taylor, T., Ed., Tschofenig, H., Schulzrinne, H., and M.
            Shanmugam, "Security Threats and Requirements for
            Emergency Call Marking and Mapping", RFC 5069,
            DOI 10.17487/RFC5069, January 2008,
            <http://www.rfc-editor.org/info/rfc5069>.
 [RFC6443]  Rosen, B., Schulzrinne, H., Polk, J., and A. Newton,
            "Framework for Emergency Calling Using Internet
            Multimedia", RFC 6443, DOI 10.17487/RFC6443, December
            2011, <http://www.rfc-editor.org/info/rfc6443>.
 [RFC7378]  Tschofenig, H., Schulzrinne, H., and B. Aboba, Ed.,
            "Trustworthy Location", RFC 7378, DOI 10.17487/RFC7378,
            December 2014, <http://www.rfc-editor.org/info/rfc7378>.
 [triage-2008]
            National Center for Injury Prevention and Control,
            "Recommendations from the Expert Panel: Advanced Automatic
            Collision Notification and Triage of the Injured Patient",
            Centers for Disease Control and Prevention, 2008,
            <https://stacks.cdc.gov/view/cdc/5304/>.
 [triage-2011]
            National Center for Injury Prevention and Control,
            "Guidelines for Field Triage of Injured Patients:
            Recommendations of the National Expert Panel on Field
            Triage", Centers for Disease Control and Prevention,
            January 2012, <https://www.cdc.gov/mmwr/preview/mmwrhtml/
            rr6101a1.htm>.

Gellens, et al. Standards Track [Page 39] RFC 8148 Vehicle-Initiated Emergency Calls May 2017

Acknowledgments

 We would like to thank Lena Chaponniere, Alissa Cooper, Stephen Edge,
 Christer Holmberg, Allison Mankin, and Dan Romascanu for their review
 and suggestions; Robert Sparks and Paul Kyzivat for their help with
 the SIP mechanisms; Michael Montag, Arnoud van Wijk, Ban Al-Bakri,
 Wes George, Gunnar Hellstrom, and Rex Buddenberg for their feedback;
 and Ulrich Dietz for his help with preliminary draft versions of the
 original document that later evolved into this document.

Authors' Addresses

 Randall Gellens
 Core Technology Consulting
 Email: rg+ietf@coretechnologyconsulting.com
 URI:   http://www.coretechnologyconsulting.com
 Brian Rosen
 NeuStar, Inc.
 470 Conrad Dr
 Mars, PA  16046
 United States of America
 Email: br@brianrosen.net
 Hannes Tschofenig
 Individual
 Email: Hannes.Tschofenig@gmx.net
 URI:   http://www.tschofenig.priv.at

Gellens, et al. Standards Track [Page 40]

/data/webs/external/dokuwiki/data/pages/rfc/rfc8148.txt · Last modified: 2017/05/12 15:34 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki