GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc7138

Internet Engineering Task Force (IETF) D. Ceccarelli, Ed. Request for Comments: 7138 Ericsson Category: Standards Track F. Zhang ISSN: 2070-1721 Huawei Technologies

                                                            S. Belotti
                                                        Alcatel-Lucent
                                                                R. Rao
                                                  Infinera Corporation
                                                              J. Drake
                                                               Juniper
                                                            March 2014
               Traffic Engineering Extensions to OSPF
   for GMPLS Control of Evolving G.709 Optical Transport Networks

Abstract

 This document describes Open Shortest Path First - Traffic
 Engineering (OSPF-TE) routing protocol extensions to support GMPLS
 control of Optical Transport Networks (OTNs) specified in ITU-T
 Recommendation G.709 as published in 2012.  It extends mechanisms
 defined in RFC 4203.

Status of This Memo

 This is an Internet Standards Track document.
 This document is a product of the Internet Engineering Task Force
 (IETF).  It represents the consensus of the IETF community.  It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG).  Further information on
 Internet Standards is available in Section 2 of RFC 5741.
 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7138.

Ceccarelli, et al. Standards Track [Page 1] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors.  All rights reserved.
 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document.  Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.  Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Ceccarelli, et al. Standards Track [Page 2] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

Table of Contents

 1. Introduction ....................................................4
    1.1. Terminology ................................................4
 2. OSPF-TE Extensions ..............................................4
 3. TE-Link Representation ..........................................6
 4. ISCD Format Extensions ..........................................6
    4.1. Switching Capability Specific Information ..................8
         4.1.1. Switching Capability Specific Information
                for Fixed Containers ................................9
         4.1.2. Switching Capability Specific Information
                for Variable Containers ............................10
         4.1.3. Switching Capability Specific Information --
                Field Values and Explanation .......................10
 5. Examples .......................................................13
    5.1. MAX LSP Bandwidth Fields in the ISCD ......................13
    5.2. Example of T, S, and TS Granularity Utilization ...........17
         5.2.1. Example of Different TS Granularities ..............18
    5.3. Example of ODUflex Advertisement ..........................20
    5.4. Example of Single-Stage Muxing ............................22
    5.5. Example of Multi-Stage Muxing -- Unbundled Link ...........23
    5.6. Example of Multi-Stage Muxing -- Bundled Links ............25
    5.7. Example of Component Links with Non-Homogeneous
         Hierarchies ...............................................27
 6. OSPFv2 Scalability .............................................29
 7. Compatibility ..................................................30
 8. Security Considerations ........................................30
 9. IANA Considerations ............................................31
    9.1. Switching Types ...........................................31
    9.2. New Sub-TLVs ..............................................31
 10. Contributors ..................................................32
 11. Acknowledgements ..............................................33
 12. References ....................................................33
    12.1. Normative References .....................................33
    12.2. Informative References ...................................34

Ceccarelli, et al. Standards Track [Page 3] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

1. Introduction

 G.709 ("Interfaces for the Optical Transport Network (OTN)")
 [G.709-2012] includes new fixed and flexible ODU (Optical channel
 Data Unit) containers, includes two types of tributary slots (i.e.,
 1.25 Gbps and 2.5 Gbps), and supports various multiplexing
 relationships (e.g., ODUj multiplexed into ODUk (j<k)), two different
 tributary slots for ODUk (K=1, 2, 3), and the ODUflex service type.
 In order to advertise this information in routing, this document
 provides encoding specific to OTN technology for use in GMPLS OSPF-TE
 as defined in [RFC4203].
 For a short overview of OTN evolution and implications of OTN
 requirements on GMPLS routing, please refer to [RFC7062].  The
 information model and an evaluation against the current solution are
 provided in [RFC7096].  The reader is supposed to be familiar with
 both of these documents.
 Routing information for Optical Channel (OCh) layer (i.e.,
 wavelength) is beyond the scope of this document.  Please refer to
 [RFC6163] and [RFC6566] for further information.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. OSPF-TE Extensions

 In terms of GMPLS-based OTN networks, each Optical channel Transport
 Unit-k (OTUk) can be viewed as a component link, and each component
 link can carry one or more types of ODUj (j<k).
 Each TE-Link State Advertisement (LSA) can carry a top-level link TLV
 with several nested sub-TLVs to describe different attributes of a
 TE-Link.  Two top-level TLVs are defined in [RFC3630]: (1) The Router
 Address TLV (referred to as the Node TLV) and (2) the TE-Link TLV.
 One or more sub-TLVs can be nested into the two top-level TLVs.  The
 sub-TLV set for the two top-level TLVs are also defined in [RFC3630]
 and [RFC4203].
 As discussed in [RFC7062] and [RFC7096], OSPF-TE must be extended to
 be able to advertise the termination and Switching Capabilities of
 each different ODUj and ODUk/OTUk (Optical Transport Unit) and the
 advertisement of related multiplexing capabilities.  These
 capabilities are carried in the Switching Capability specific
 information field of the Interface Switching Capability Descriptor

Ceccarelli, et al. Standards Track [Page 4] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 (ISCD) using formats defined in this document.  As discussed in
 [RFC7062], the use of a technology-specific Switching Capability
 specific information field necessitates the definition of a new
 Switching Capability value and associated new Switching Capability.
 In the following, we will use ODUj to indicate a service type that is
 multiplexed into a higher-order (HO) ODU, ODUk to indicate a higher-
 order ODU including an ODUj, and ODUk/OTUk to indicate the layer
 mapped into the OTUk.  Moreover, ODUj(S) and ODUk(S) are used to
 indicate the ODUj and ODUk supporting Switching Capability only, and
 the ODUj->ODUk format is used to indicate the ODUj-into-ODUk
 multiplexing capability.
 This notation can be repeated as needed depending on the number of
 multiplexing levels.  In the following, the term "multiplexing tree"
 is used to identify a multiplexing hierarchy where the root is always
 a server ODUk/OTUk and any other supported multiplexed container is
 represented with increasing granularity until reaching the leaf of
 the tree.  The tree can be structured with more than one branch if
 the server ODUk/OTUk supports more than one hierarchy.
 For example, if a multiplexing hierarchy like the following one is
 considered:
           ODU2 ODU0    ODUflex ODU0
              \ /            \ /
               |              |
             ODU3           ODU2
                \            /
                 \          /
                  \        /
                   \      /
                     ODU4
 the ODU4 is the root of the muxing tree; ODU3 and ODU2 are containers
 directly multiplexed into the server; and ODU2 and ODU0 are the
 leaves of the ODU3 branch, while ODUflex and ODU0 are the leaves of
 the ODU2 one.  This means that it is possible to have the following
 multiplexing capabilities:
     ODU2->ODU3->ODU4
     ODU0->ODU3->ODU4
     ODUflex->ODU2->ODU4
     ODU0->ODU2->ODU4

Ceccarelli, et al. Standards Track [Page 5] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

3. TE-Link Representation

 G.709 ODUk/OTUk links are represented as TE-Links in GMPLS Traffic
 Engineering Topology for supporting ODUj layer switching.  These TE-
 Links can be modeled in multiple ways.
 OTUk physical link(s) can be modeled as a TE-Link(s).  Figure 1 below
 provides an illustration of one-hop OTUk TE-Links.
         +-------+               +-------+               +-------+
         |  OTN  |               |  OTN  |               |  OTN  |
         |Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch |
         |   A   |               |   B   |               |   C   |
         +-------+               +-------+               +-------+
                 |<-- TE-Link -->|       |<-- TE-Link -->|
                        Figure 1: OTUk TE-Links
 It is possible to create TE-Links that span more than one hop by
 creating forwarding adjacencies (FAs) between non-adjacent nodes (see
 Figure 2).  As in the one-hop case, multiple-hop TE-Links advertise
 the ODU Switching Capability.
         +-------+               +-------+               +-------+
         |  OTN  |               |  OTN  |               |  OTN  |
         |Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch |
         |   A   |               |   B   |               |   C   |
         +-------+               +-------+               +-------+
                               ODUk Switched
                 |<------------- ODUk Link ------------->|
                 |<-------------- TE-Link--------------->|
                    Figure 2: Multiple-Hop TE-Link

4. ISCD Format Extensions

 The ISCD describes the Switching Capability of an interface and is
 defined in [RFC4203].  This document defines a new Switching
 Capability value for OTN [G.709-2012] as follows:
 Value          Type
 -----          ----
 110            OTN-TDM capable

Ceccarelli, et al. Standards Track [Page 6] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 When supporting the extensions defined in this document, for both
 fixed and flexible ODUs, the Switching Capability and Encoding values
 MUST be used as follows:
 o  Switching Capability = OTN-TDM
 o  Encoding Type = G.709 ODUk (Digital Path) as defined in [RFC4328]
 The same Switching Type and encoding values must be used for both
 fixed and flexible ODUs.  When Switching Capability and Encoding
 fields are set to values as stated above, the Interface Switching
 Capability Descriptor MUST be interpreted as defined in [RFC4203].
 The MAX LSP Bandwidth field is used according to [RFC4203], i.e., 0
 <= MAX LSP Bandwidth <= ODUk/OTUk, and intermediate values are those
 on the branch of the OTN switching hierarchy supported by the
 interface.  For example, in the OTU4 link it could be possible to
 have ODU4 as MAX LSP Bandwidth for some priorities, ODU3 for others,
 ODU2 for some others, etc.  The bandwidth unit is in bytes/second and
 the encoding MUST be in IEEE floating point format.  The discrete
 values for various ODUs are shown in the table below (please note
 that there are 1000 bits in a kilobit according to normal practices
 in telecommunications).
 +-------------------+-----------------------------+-----------------+
 |     ODU Type      |    ODU nominal bit rate     |Value in Byte/Sec|
 |                   |                             |(floating p. val)|
 +-------------------+-----------------------------+-----------------+
 |       ODU0        |      1,244,160 kbps         |    0x4D1450C0   |
 |       ODU1        | 239/238 x 2,488,320 kbps    |    0x4D94F048   |
 |       ODU2        | 239/237 x 9,953,280 kbps    |    0x4E959129   |
 |       ODU3        | 239/236 x 39,813,120 kbps   |    0x4F963367   |
 |       ODU4        | 239/227 x 99,532,800 kbps   |    0x504331E3   |
 |       ODU2e       | 239/237 x 10,312,500 kbps   |    0x4E9AF70A   |
 |                   |                             |                 |
 |  ODUflex for CBR  |    239/238 x client signal  |     MAX LSP     |
 |  Client signals   |           bit rate          |    Bandwidth    |
 |                   |                             |                 |
 | ODUflex for GFP-F |                             |     MAX LSP     |
 |  Mapped client    |      Configured bit rate    |    Bandwidth    |
 |       signal      |                             |                 |
 |                   |                             |                 |
 |      ODUflex      |      Configured bit rate    |     MAX LSP     |
 |     resizable     |                             |    Bandwidth    |
 +-------------------+-----------------------------+-----------------+

Ceccarelli, et al. Standards Track [Page 7] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 A single ISCD MAY be used for the advertisement of unbundled or
 bundled links supporting homogeneous multiplexing hierarchies and the
 same TS (tributary slot) granularity.  A different ISCD MUST be used
 for each different muxing hierarchy (muxing tree in the following
 examples) and different TS granularity supported within the TE-Link.
 When a received LSA includes a sub-TLV not formatted accordingly to
 the precise specifications in this document, the problem SHOULD be
 logged and the wrongly formatted sub-TLV MUST NOT be used for path
 computation.

4.1. Switching Capability Specific Information

 The technology-specific part of the OTN-TDM ISCD may include a
 variable number of sub-TLVs called Bandwidth sub-TLVs.  Each sub-TLV
 is encoded with the sub-TLV header as defined in [RFC3630],
 Section 2.3.2.  The muxing hierarchy tree MUST be encoded as an
 order-independent list.  Two types of Bandwidth sub-TLVs are defined
 (TBA by IANA).  Note that type values are defined in this document
 and not in [RFC3630].
 o  Type 1 - Unreserved Bandwidth for fixed containers
 o  Type 2 - Unreserved/MAX LSP Bandwidth for flexible containers
 The Switching Capability specific information (SCSI) MUST include one
 Type 1 sub-TLV for each fixed container and one Type 2 sub-TLV for
 each variable container.  Each container type is identified by a
 Signal Type.  Signal Type values are defined in [RFC7139].
 With respect to ODUflex, three different Signal Types are allowed:
 o  20 - ODUflex(CBR) (i.e., 1.25*N Gbps)
 o  21 - ODUflex(GFP-F), resizable (i.e., 1.25*N Gbps)
 o  22 - ODUflex(GFP-F), non-resizable (i.e., 1.25*N Gbps)
 where CBR stands for Constant Bit Rate, and GFP-F stands for Generic
 Framing Procedure - Framed.
 Each MUST always be advertised in separate Type 2 sub-TLVs as each
 uses different adaptation functions [G.805].  In the case that both
 GFP-F resizable and non-resizable (i.e., 21 and 22) are supported,
 only Signal Type 21 SHALL be advertised as this type also implies
 support for Type 22 adaptation.

Ceccarelli, et al. Standards Track [Page 8] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

4.1.1. Switching Capability Specific Information for Fixed Containers

 The format of the Bandwidth sub-TLV for fixed containers is depicted
 in the following figure:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |             Length            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |  Signal Type  | Num of stages |T|S| TSG | Res |    Priority   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |    Stage#1    |      ...      |   Stage#N     |    Padding    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |  Unreserved ODUj at Prio 0    |             .....             |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |  Unreserved ODUj at Prio 7    |     Unreserved Padding        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                 Figure 3: Bandwidth Sub-TLV -- Type 1
 The values of the fields shown in Figure 3 are explained in
 Section 4.1.3.

Ceccarelli, et al. Standards Track [Page 9] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

4.1.2. Switching Capability Specific Information for Variable

      Containers
 The format of the Bandwidth sub-TLV for variable containers is
 depicted in the following figure:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |    Type = 2 (Unres/MAX-var)   |             Length            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |  Signal Type  | Num of stages |T|S| TSG | Res |    Priority   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |    Stage#1    |      ...      |   Stage#N     |    Padding    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                Unreserved Bandwidth at priority 0             |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                              ...                              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                Unreserved Bandwidth at priority 7             |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                 MAX LSP Bandwidth at priority 0               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                              ...                              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                 MAX LSP Bandwidth at priority 7               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                 Figure 4: Bandwidth Sub-TLV -- Type 2
 The values of the fields shown in figure 4 are explained in
 Section 4.1.3.

4.1.3. Switching Capability Specific Information – Field Values and

      Explanation
 The fields in the Bandwidth sub-TLV MUST be filled as follows:
 o  Signal Type (8 bits): Indicates the ODU type being advertised.
    Values are defined in [RFC7139].
 o  Num of stages (8 bits): This field indicates the number of
    multiplexing stages used to transport the indicated Signal Type.
    It MUST be set to the number of stages represented in the sub-TLV.

Ceccarelli, et al. Standards Track [Page 10] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 o  Flags (8 bits):
  • T Flag (bit 17): Indicates whether the advertised bandwidth can

be terminated. When the Signal Type can be terminated T MUST

       be set, while when the Signal Type cannot be terminated T MUST
       be cleared.
  • S Flag (bit 18): Indicates whether the advertised bandwidth can

be switched. When the Signal Type can be switched, S MUST be

       set; when the Signal Type cannot be switched, S MUST be
       cleared.
  • The value 0 in both the T bit and S bit MUST NOT be used.
 o  TSG (3 bits): Tributary Slot Granularity.  Used for the
    advertisement of the supported tributary slot granularity.  The
    following values MUST be used:
  • 0 - Ignored
  • 1 - 1.25 Gbps / 2.5 Gbps
  • 2 - 2.5 Gbps only
  • 3 - 1.25 Gbps only
  • 4-7 - Reserved
    A value of 1 MUST be used on interfaces that are configured to
    support the fallback procedures defined in [G.798].  A value of 2
    MUST be used on interfaces that only support 2.5 Gbps tributary
    slots, such as [RFC4328] interfaces.  A value of 3 MUST be used on
    interfaces that are configured to only support 1.25 Gbps tributary
    slots.  A value of 0 MUST be used for non-multiplexed Signal Types
    (i.e., a non-OTN client).
 o  Res (3 bits): Reserved bits.  MUST be set to 0 and ignored on
    receipt.
 o  Priority (8 bits): A bitmap used to indicate which priorities are
    being advertised.  The bitmap is in ascending order, with the
    leftmost bit representing priority level 0 (i.e., the highest) and
    the rightmost bit representing priority level 7 (i.e., the
    lowest).  A bit MUST be set (1) corresponding to each priority
    represented in the sub-TLV and MUST NOT be set (0) when the
    corresponding priority is not represented.  At least one priority
    level MUST be advertised that, unless overridden by local policy,
    SHALL be at priority level 0.

Ceccarelli, et al. Standards Track [Page 11] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 o  Stage (8 bits): Each Stage field indicates a Signal Type in the
    multiplexing hierarchy used to transport the signal indicated in
    the Signal Type field.  The number of Stage fields included in a
    sub-TLV MUST equal the value of the Num of stages field.  The
    Stage fields MUST be ordered to match the data plane in ascending
    order (from the lowest order ODU to the highest order ODU).  The
    values of the Stage field are the same as those defined for the
    Signal Type field.  When the Num of stages field carries a 0, then
    the Stage and Padding fields MUST be omitted.
  • Example: For the ODU1→ODU2→OD3 hierarchy, the Signal Type

field is set to ODU1 and two Stage fields are present, the

       first indicating ODU2 and the second ODU3 (server layer).
 o  Padding (variable): The Padding field is used to ensure the 32-bit
    alignment of stage fields.  The length of the Padding field is
    always a multiple of 8 bits (1 byte).  Its length can be
    calculated, in bytes, as: 4 - ( "value of Num of stages field" %
    4).  The Padding field MUST be set to a zero (0) value on
    transmission and MUST be ignored on receipt.
 o  Unreserved ODUj (16 bits): This field indicates the Unreserved
    Bandwidth at a particular priority level.  This field MUST be set
    to the number of ODUs at the indicated the Signal Type for a
    particular priority level.  One field MUST be present for each bit
    set in the Priority field, and the fields are ordered to match the
    Priority field.  Fields MUST NOT be present for priority levels
    that are not indicated in the Priority field.
 o  Unreserved Padding (16 bits): The Padding field is used to ensure
    the 32-bit alignment of the Unreserved ODUj fields.  When present,
    the Unreserved Padding field is 16 bits (2 bytes) long.  When the
    number of priorities is odd, the Unreserved Padding field MUST be
    included.  When the number of priorities is even, the Unreserved
    Padding MUST be omitted.
 o  Unreserved Bandwidth (32 bits): This field indicates the
    Unreserved Bandwidth at a particular priority level.  This field
    MUST be set to the bandwidth, in bytes/second in IEEE floating
    point format, available at the indicated Signal Type for a
    particular priority level.  One field MUST be present for each bit
    set in the Priority field, and the fields are ordered to match the
    Priority field.  Fields MUST NOT be present for priority levels
    that are not indicated in the Priority field.

Ceccarelli, et al. Standards Track [Page 12] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 o  Maximum LSP Bandwidth (32 bits): This field indicates the maximum
    bandwidth that can be allocated for a single LSP at a particular
    priority level.  This field MUST be set to the maximum bandwidth,
    in bytes/second in IEEE floating point format, available to a
    single LSP at the indicated Signal Type for a particular priority
    level.  One field MUST be present for each bit set in the Priority
    field, and the fields are ordered to match the Priority field.
    Fields MUST NOT be present for priority levels that are not
    indicated in the Priority field.  The advertisement of the MAX LSP
    Bandwidth MUST take into account HO OPUk bit rate tolerance and be
    calculated according to the following formula:
  • Max LSP BW = (# available TSs) * (ODTUk.ts nominal bit rate) *

(1-HO OPUk bit rate tolerance)

5. Examples

 The examples in the following pages are not normative and are not
 intended to imply or mandate any specific implementation.

5.1. MAX LSP Bandwidth Fields in the ISCD

 This example shows how the MAX LSP Bandwidth fields of the ISCD are
 filled according to the evolving of the TE-Link bandwidth occupancy.
 In this example, an OTU4 link is considered, with supported
 priorities 0,2,4,7 and muxing hierarchy ODU1->ODU2->ODU3->ODU4.

Ceccarelli, et al. Standards Track [Page 13] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 At time T0, with the link completely free, the advertisement would
 be:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | SwCap=OTN_TDM | Encoding = 12 |    Reserved (all zeros)       |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 0 = 100 Gbps        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 1 = 0               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 2 = 100 Gbps        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 3 = 0               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 4 = 100 Gbps        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 5 = 0               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 6 = 0               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 7 = 100 Gbps        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             Switching Capability Specific Information         |
 |                        (variable length)                      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         Figure 5: MAX LSP Bandwidth Fields in the ISCD at T0

Ceccarelli, et al. Standards Track [Page 14] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 At time T1, an ODU3 at priority 2 is set up, so for priority 0, the
 MAX LSP Bandwidth is still equal to the ODU4 bandwidth, while for
 priorities from 2 to 7 (excluding the non-supported ones), the MAX
 LSP Bandwidth is equal to ODU3, as no more ODU4s are available and
 the next supported ODUj in the hierarchy is ODU3.  The advertisement
 is updated as follows:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | SwCap=OTN_TDM | Encoding = 12 |    Reserved (all zeros)       |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 0 = 100 Gbps        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 1 = 0               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 2 = 40 Gbps         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 3 = 0               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 4 = 40 Gbps         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 5 = 0               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 6 = 0               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 7 = 40 Gbps         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             Switching Capability Specific Information         |
 |                        (variable length)                      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         Figure 6: MAX LSP Bandwidth Fields in the ISCD at T1

Ceccarelli, et al. Standards Track [Page 15] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 At time T2, an ODU2 at priority 4 is set up.  The first ODU3 has not
 been available since T1 as it was kept by the ODU3 LSP, while the
 second is no longer available and just 3 ODU2s are left in it.  ODU2
 is now the MAX LSP Bandwidth for priorities higher than 4.  The
 advertisement is updated as follows:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | SwCap=OTN_TDM | Encoding = 12 |    Reserved (all zeros)       |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 0 = 100 Gbps        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 1 = 0               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 2 = 40 Gbps         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 3 = 0               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 4 = 10 Gbps         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 5 = 0               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 6 = 0               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             MAX LSP Bandwidth at priority 7 = 10 Gbps         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |             Switching Capability Specific Information         |
 |                        (variable length)                      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         Figure 7: MAX LSP Bandwidth Fields in the ISCD at T2

Ceccarelli, et al. Standards Track [Page 16] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

5.2. Example of T, S, and TS Granularity Utilization

 In this example, an interface with tributary slot type 1.25 Gbps and
 fallback procedure enabled is considered (TS granularity=1).  It
 supports the simple ODU1->ODU2->ODU3 hierarchy and priorities 0 and
 3.  Suppose that in this interface, the ODU3 Signal Type can be both
 switched or terminated, the ODU2 can only be terminated, and the ODU1
 can only be switched.  Please note that since the ODU1 is not being
 advertised to support ODU0, the value of its TSG field is "ignored"
 (TS granularity=0).  For the advertisement of the capabilities of
 such an interface, a single ISCD is used.  Its format is as follows:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU1  |  #stages= 2   |0|1|  0  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU2  | Stage#2=ODU3  |       Padding (all zeros)     |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Unres ODU1 at Prio 0      |     Unres ODU1 at Prio 3      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU2  |  #stages= 1   |1|0|  1  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU3  |        Padding (all zeros)                    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Unres ODU2 at Prio 0      |     Unres ODU2 at Prio 3      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 8          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU3  |  #stages= 0   |1|1|  1  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Unres ODU3 at Prio 0      |     Unres ODU3 at Prio 3      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            Figure 8: T, S, and TS Granularity Utilization

Ceccarelli, et al. Standards Track [Page 17] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

5.2.1. Example of Different TS Granularities

 In this example, two interfaces with homogeneous hierarchies but
 different tributary slot types are considered.  The first one
 supports an [RFC4328] interface (TS granularity=2) while the second
 one supports a G.709-2012 interface with fallback procedure disabled
 (TS granularity=3).  Both support the ODU1->ODU2->ODU3 hierarchy and
 priorities 0 and 3.  Suppose that in this interface, the ODU3 Signal
 Type can be both switched or terminated, the ODU2 can only be
 terminated, and the ODU1 can only be switched.  For the advertisement
 of the capabilities of such interfaces, two different ISCDs are used.
 The format of their SCSIs is as follows:
 SCSI of ISCD 1 -- TS granularity=2
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU1  |  #stages= 2   |0|1|  0  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU2  | Stage#2=ODU3  |       Padding (all zeros)     |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Unres ODU1 at Prio 0      |     Unres ODU1 at Prio 3      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU2  |  #stages= 1   |1|0|  1  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU3  |        Padding (all zeros)                    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Unres ODU2 at Prio 0      |     Unres ODU2 at Prio 3      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 8          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU3  |  #stages= 0   |1|1|  2  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Unres ODU3 at Prio 0      |     Unres ODU3 at Prio 3      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     Figure 9: Utilization of Different TS Granularities -- ISCD 1

Ceccarelli, et al. Standards Track [Page 18] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 SCSI of ISCD 2 -- TS granularity=3
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU1  |  #stages= 2   |0|1|  0  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU2  | Stage#2=ODU3  |       Padding (all zeros)     |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Unres ODU1 at Prio 0      |     Unres ODU1 at Prio 3      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU2  |  #stages= 1   |1|0|  1  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU3  |        Padding (all zeros)                    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Unres ODU2 at Prio 0      |     Unres ODU2 at Prio 3      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 8          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU3  |  #stages= 0   |1|1|  3  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Unres ODU3 at Prio 0      |     Unres ODU3 at Prio 3      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    Figure 10: Utilization of Different TS Granularities -- ISCD 2
 Hierarchies with the same muxing tree but with different exported TS
 granularity MUST be considered as non-homogenous hierarchies.  This
 is the case in which an H-LSP and the client LSP are terminated on
 the same egress node.  What can happen is that a loose Explicit Route
 Object (ERO) is used at the hop where the signaled LSP is nested into
 the Hierarchical-LSP (H-LSP) (penultimate hop of the LSP).
 In the following figure, node C receives a loose ERO from A; the ERO
 goes towards node E, and node C must choose between the ODU2 H-LSP on
 if1 or the one on if2.  In this case, the H-LSP on if1 exports a
 TS=1.25 Gbps, and the H-LSP on if2 exports a TS=2.5 Gbps; because the
 service LSP being signaled needs a 1.25 Gbps tributary slot, only the
 H-LSP on if1 can be used to reach node E.  For further details,
 please see Section 3.2 of [RFC7096].

Ceccarelli, et al. Standards Track [Page 19] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

                        ODU0-LSP
       ..........................................................+
       |                                                         |
       |                                     ODU2-H-LSP          |
       |                         +-------------------------------+
       |                         |                               |
    +--+--+      +-----+      +-----+ if1     +-----+         +-----+
    |     | OTU3 |     | OTU3 |     |---------|     |---------|     |
    |  A  +------+  B  +------+  C  | if2     |  D  |         |  E  |
    |     |      |     |      |     |---------|     |---------|     |
    +-----+      +-----+      +-----+         +-----+         +-----+
          ... Service LSP
          --- H-LSP
        Figure 11: Example of Service LSP and H-LSP Terminating
                           on the Same Node

5.3. Example of ODUflex Advertisement

 In this example, the advertisement of an ODUflex->ODU3 hierarchy is
 shown.  In the case of ODUflex advertisement, the MAX LSP Bandwidth
 needs to be advertised, and in some cases, information about the
 Unreserved Bandwidth could also be useful.  The amount of Unreserved
 Bandwidth does not give a clear indication of how many ODUflex LSPs
 can be set up either at the MAX LSP Bandwidth or at different rates,
 as it gives no information about the spatial allocation of the free
 TSs.
 An indication of the amount of Unreserved Bandwidth could be useful
 during the path computation process, as shown in the following
 example.  Suppose there are two TE-Links (A and B) with MAX LSP
 Bandwidth equal to 10 Gbps each.  In the case where 50 Gbps of
 Unreserved Bandwidth are available on Link A, 10 Gbps on Link B, and
 3 ODUflex LSPs of 10 Gbps each have to be restored, for sure only one
 can be restored along Link B, and it is probable, but not certain,
 that two of them can be restored along Link A.  The T, S, and TSG
 fields are not relevant to this example (filled with Xs).
 In the case of ODUflex advertisement, the Type 2 Bandwidth sub-TLV is
 used.

Ceccarelli, et al. Standards Track [Page 20] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |    Type = 2 (Unres/MAX-var)   |           Length  = 72        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |S. type=ODUflex|  #stages= 1   |X|X|X X X|0 0 0| Priority(8)   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |  Stage#1=ODU3 |          Padding (all zeros)                  |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               Unreserved Bandwidth at priority 0              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               Unreserved Bandwidth at priority 1              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               Unreserved Bandwidth at priority 2              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               Unreserved Bandwidth at priority 3              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               Unreserved Bandwidth at priority 4              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               Unreserved Bandwidth at priority 5              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               Unreserved Bandwidth at priority 6              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               Unreserved Bandwidth at priority 7              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                 MAX LSP  Bandwidth at priority 0              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                 MAX LSP  Bandwidth at priority 1              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                 MAX LSP  Bandwidth at priority 2              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                 MAX LSP  Bandwidth at priority 3              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                 MAX LSP  Bandwidth at priority 4              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                 MAX LSP  Bandwidth at priority 5              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                 MAX LSP  Bandwidth at priority 6              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                 MAX LSP  Bandwidth at priority 7              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                   Figure 12: ODUflex Advertisement

Ceccarelli, et al. Standards Track [Page 21] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

5.4. Example of Single-Stage Muxing

 Suppose there is 1 OTU4 component link supporting single-stage muxing
 of ODU1, ODU2, ODU3, and ODUflex, the supported hierarchy can be
 summarized in a tree as in the following figure.  For the sake of
 simplicity, we also assume that only priorities 0 and 3 are
 supported.  The T, S, and TSG fields are not relevant to this example
 (filled with Xs).
        ODU1 ODU2  ODU3 ODUflex
           \   \    /   /
            \   \  /   /
             \   \/   /
                ODU4
 The related SCSIs are as follows:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 8          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU4  |  #stages= 0   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU4 at Prio 0 =1     |    Unres ODU4 at Prio 3 =1    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU1  |  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU4  |            Padding (all zeros)                |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU1 at Prio 0 =40    |    Unres ODU1 at Prio 3 =40   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU2  |  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU4  |            Padding (all zeros)                |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU2 at Prio 0 =10    |    Unres ODU2 at Prio 3 =10   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU3  |  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU4  |            Padding (all zeros)                |

Ceccarelli, et al. Standards Track [Page 22] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU3 at Prio 0 =2     |    Unres ODU3 at Prio 3 =2    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |    Type = 2 (Unres/MAX-var)   |           Length = 24         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |S. type=ODUflex|  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |  Stage#1=ODU4 |            Padding (all zeros)                |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |            Unreserved Bandwidth at priority 0 =100 Gbps       |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |            Unreserved Bandwidth at priority 3 =100 Gbps       |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |              MAX LSP Bandwidth at priority 0 =100 Gbps        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |              MAX LSP Bandwidth at priority 3 =100 Gbps        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    Figure 13: Single-Stage Muxing

5.5. Example of Multi-Stage Muxing – Unbundled Link

 Suppose there is 1 OTU4 component link with muxing capabilities as
 shown in the following figure:
        ODU2 ODU0    ODUflex ODU0
           \ /            \ /
            |              |
          ODU3           ODU2
             \            /
              \          /
               \        /
                \      /
                  ODU4
 Considering only supported priorities 0 and 3, the advertisement is
 composed by the following Bandwidth sub-TLVs (T and S fields are not
 relevant to this example and filled with Xs):

Ceccarelli, et al. Standards Track [Page 23] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 8          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU4  |  #stages= 0   |X|X|  1  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU4 at Prio 0 =1     |    Unres ODU4 at Prio 3 =1    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU3  |  #stages= 1   |X|X|  1  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |  Stage#1=ODU4 |         Padding (all zeros)                   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU3 at Prio 0 =2     |    Unres ODU3 at Prio 3 =2    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU2  |  #stages= 1   |X|X|  1  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |  Stage#1=ODU4 |         Padding (all zeros)                   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU2 at Prio 0 =10    |    Unres ODU2 at Prio 3 =10   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU2  |  #stages= 2   |X|X|  0  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU3  | Stage#2=ODU4  |    Padding (all zeros)        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU2 at Prio 0 =8     |    Unres ODU2 at Prio 3 =8    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU0  |  #stages= 2   |X|X|  0  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU3  | Stage#2=ODU4  |    Padding (all zeros)        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU0 at Prio 0 =64    |    Unres ODU0 at Prio 3 =64   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU0  |  #stages= 2   |X|X|  0  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU2  | Stage#2=ODU4  |    Padding (all zeros)        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU0 at Prio 0 =80    |    Unres ODU0 at Prio 3 =80   |

Ceccarelli, et al. Standards Track [Page 24] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |    Type = 2 (Unres/MAX-var)   |           Length = 24         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |S.type=ODUflex |  #stages= 2   |X|X|  0  |0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU2  | Stage#2=ODU4  |    Padding (all zeros)        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |            Unreserved Bandwidth at priority 0 =100 Gbps       |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |            Unreserved Bandwidth at priority 3 =100 Gbps       |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |            MAX LSP Bandwidth at priority 0 =10 Gbps           |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |            MAX LSP Bandwidth at priority 3 =10 Gbps           |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            Figure 14: Multi-Stage Muxing -- Unbundled Link

5.6. Example of Multi-Stage Muxing – Bundled Links

 In this example, 2 OTU4 component links with the same supported TS
 granularity and homogeneous muxing hierarchies are considered.  The
 following muxing capabilities trees are supported:
 Component Link#1      Component Link#2
    ODU2 ODU0             ODU2 ODU0
       \ /                   \ /
        |                     |
       ODU3                  ODU3
        |                     |
       ODU4                  ODU4

Ceccarelli, et al. Standards Track [Page 25] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 Considering only supported priorities 0 and 3, the advertisement is
 as follows (the T, S, and TSG fields are not relevant to this example
 and filled with Xs):
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 8          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU4  |  #stages= 0   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU4 at Prio 0 =2     |    Unres ODU4 at Prio 3 =2    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU3  |  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |  Stage#1=ODU4 |          Padding (all zeros)                  |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU3 at Prio 0 =4     |    Unres ODU3 at Prio 3 =4    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU2  |  #stages= 2   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU3  | Stage#2=ODU4  |    Padding (all zeros)        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU2 at Prio 0 =16    |    Unres ODU2 at Prio 3 =16   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU0  |  #stages= 2   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU3  | Stage#2=ODU4  |    Padding (all zeros)        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU0 at Prio 0 =128   |    Unres ODU0 at Prio 3 =128  |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            Figure 15: Multi-Stage Muxing -- Bundled Links

Ceccarelli, et al. Standards Track [Page 26] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

5.7. Example of Component Links with Non-Homogeneous Hierarchies

 In this example, 2 OTU4 component links with the same supported TS
 granularity and non-homogeneous muxing hierarchies are considered.
 The following muxing capabilities trees are supported:
 Component Link#1      Component Link#2
    ODU2 ODU0             ODU1 ODU0
       \ /                   \ /
        |                     |
       ODU3                  ODU2
        |                     |
       ODU4                  ODU4

Ceccarelli, et al. Standards Track [Page 27] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 Considering only supported priorities 0 and 3, the advertisement uses
 two different ISCDs, one for each hierarchy (the T, S, and TSG fields
 are not relevant to this example and filled with Xs).  In the
 following figure, the SCSI of each ISCD is shown:
 SCSI of ISCD 1 -- Component Link#1
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 8          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU4  |  #stages= 0   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU4 at Prio 0 =1     |    Unres ODU4 at Prio 3 =1    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU3  |  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |  Stage#1=ODU4 |           Padding (all zeros)                 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU3 at Prio 0 =2     |    Unres ODU3 at Prio 3 =2    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU2  |  #stages= 2   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU3  | Stage#2=ODU4  |    Padding (all zeros)        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU2 at Prio 0 =8     |    Unres ODU2 at Prio 3 =8    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU0  |  #stages= 2   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU3  | Stage#2=ODU4  |    Padding (all zeros)        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU0 at Prio 0 =64    |    Unres ODU0 at Prio 3 =64   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    Figure 16: Multi-Stage Muxing -- Non-Homogeneous Hierarchies --
                                ISCD 1

Ceccarelli, et al. Standards Track [Page 28] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 SCSI of ISCD 2 -- Component Link#2
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 8          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU4  |  #stages= 0   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU4 at Prio 0 =1     |    Unres ODU4 at Prio 3 =1    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU2  |  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |  Stage#1=ODU4 |           Padding (all zeros)                 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU2 at Prio 0 =10    |    Unres ODU2 at Prio 3 =10   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU1  |  #stages= 2   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU2  | Stage#2=ODU4  |    Padding (all zeros)        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU1 at Prio 0 =40    |    Unres ODU1 at Prio 3 =40   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Type = 1 (Unres-fix)   |           Length = 12         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Sig type=ODU0  |  #stages= 2   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Stage#1=ODU2  | Stage#2=ODU4  |    Padding (all zeros)        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |   Unres ODU0 at Prio 0 =80    |    Unres ODU0 at Prio 3 =80   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    Figure 17: Multi-Stage Muxing -- Non-Homogeneous Hierarchies --
                                ISCD 2

6. OSPFv2 Scalability

 This document does not introduce OSPF scalability issues with respect
 to existing GMPLS encoding and does not require any modification to
 flooding frequency.  Moreover, the design of the encoding has been
 carried out taking into account bandwidth optimization, in
 particular:

Ceccarelli, et al. Standards Track [Page 29] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 o  Only unreserved and MAX LSP Bandwidth related to supported
    priorities are advertised.
 o  For fixed containers, only the number of available containers is
    advertised instead of the available bandwidth in order to use only
    16 bits per container instead of 32 (as per former GMPLS
    encoding).
 In order to further reduce the amount of data advertised it is
 RECOMMENDED to bundle component links with homogeneous hierarchies as
 described in [RFC4201] and illustrated in Section 5.6.

7. Compatibility

 All implementations of this document MAY also support advertisement
 as defined in [RFC4203].  When nodes support both the advertisement
 method in [RFC4203] and the one in this document, implementations
 MUST support the configuration of which advertisement method is
 followed.  The choice of which is used is based on policy and beyond
 the scope of this document.  This enables nodes following each method
 to identify similar supporting nodes and compute paths using only the
 appropriate nodes.

8. Security Considerations

 This document extends [RFC4203].  As with [RFC4203], it specifies the
 contents of Opaque LSAs in OSPFv2.  As Opaque LSAs are not used for
 Shortest Path First (SPF) computation or normal routing, the
 extensions specified here have no direct effect on IP routing.
 Tampering with GMPLS TE LSAs may have an effect on the underlying
 transport (optical and/or Synchronous Optical Network - Synchronous
 Digital Hierarchy (SONET-SDH) network.  [RFC3630] notes that the
 security mechanisms described in [RFC2328] apply to Opaque LSAs
 carried in OSPFv2.  An analysis of the security of OSPF is provided
 in [RFC6863] and applies to the extensions to OSPF as described in
 this document.  Any new mechanisms developed to protect the
 transmission of information carried in Opaque LSAs will also
 automatically protect the extensions defined in this document.
 Please refer to [RFC5920] for details on security threats; defensive
 techniques; monitoring, detection, and reporting of security attacks;
 and requirements.

Ceccarelli, et al. Standards Track [Page 30] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

9. IANA Considerations

9.1. Switching Types

 IANA has made the following assignment in the "Switching Types"
 section of the "Generalized Multi-Protocol Label Switching (GMPLS)
 Signaling Parameters" registry located at
 <http://www.iana.org/assignments/gmpls-sig-parameters>:
 Value      Name                          Reference
 ---------  --------------------------    ----------
 110        OTN-TDM capable               [RFC7138]
 The same type of modification has been applied to the IANA-GMPLS-TC-
 MIB at <https://www.iana.org/assignments/ianagmplstc-mib>, where the
 value:
 OTN-TDM (110), -- Time-Division-Multiplex OTN-TDM capable
 has been added to the IANAGmplsSwitchingTypeTC ::= TEXTUAL-CONVENTION
 syntax list.

9.2. New Sub-TLVs

 This document defines 2 new sub-TLVs that are carried in Interface
 Switching Capability Descriptors [RFC4203] with the Signal Type OTN-
 TDM.  Each sub-TLV includes a 16-bit type identifier (the T-field).
 The same T-field values are applicable to the new sub-TLV.
 IANA has created and will maintain a new sub-registry, the "Types for
 sub-TLVs of OTN-TDM SCSI (Switching Capability Specific Information)"
 registry under the "Open Shortest Path First (OSPF) Traffic
 Engineering TLVs" registry, see
 <http://www.iana.org/assignments/ospf-traffic-eng-tlvs>, with the
 sub-TLV types as follows:
 Value       Sub-TLV                       Reference
 ---------   --------------------------    ----------
 0           Reserved                      [RFC7138]
 1           Unreserved Bandwidth for      [RFC7138]
             fixed containers
 2           Unreserved/MAX Bandwidth for  [RFC7138]
             flexible containers
 3-65535     Unassigned
 Types are to be assigned via Standards Action as defined in
 [RFC5226].

Ceccarelli, et al. Standards Track [Page 31] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

10. Contributors

 Diego Caviglia
 Ericsson
 Via E. Melen, 77
 Genova
 Italy
 EMail: diego.caviglia@ericsson.com
 Dan Li
 Huawei Technologies
 Bantian, Longgang District
 Shenzhen 518129
 P.R. China
 EMail: danli@huawei.com
 Pietro Vittorio Grandi
 Alcatel-Lucent
 Via Trento, 30
 Vimercate
 Italy
 EMail: pietro_vittorio.grandi@alcatel-lucent.com
 Khuzema Pithewan
 Infinera Corporation
 140 Caspian CT.
 Sunnyvale, CA
 USA
 EMail: kpithewan@infinera.com
 Xiaobing Zi
 Huawei Technologies
 EMail: zixiaobing@huawei.com
 Francesco Fondelli
 Ericsson
 EMail: francesco.fondelli@ericsson.com
 Marco Corsi
 EMail: corsi.marco@gmail.com
 Eve Varma
 Alcatel-Lucent
 EMail: eve.varma@alcatel-lucent.com
 Jonathan Sadler
 Tellabs
 EMail: jonathan.sadler@tellabs.com

Ceccarelli, et al. Standards Track [Page 32] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 Lyndon Ong
 Ciena
 EMail: lyong@ciena.com
 Ashok Kunjidhapatham
 EMail: akunjidhapatham@infinera.com
 Snigdho Bardalai
 EMail: sbardalai@infinera.com
 Steve Balls
 EMail: Steve.Balls@metaswitch.com
 Jonathan Hardwick
 EMail: Jonathan.Hardwick@metaswitch.com
 Xihua Fu
 EMail: fu.xihua@zte.com.cn
 Cyril Margaria
 EMail: cyril.margaria@nsn.com
 Malcolm Betts
 EMail: Malcolm.betts@zte.com.cn

11. Acknowledgements

 The authors would like to thank Fred Gruman and Lou Berger for their
 valuable comments and suggestions.

12. References

12.1. Normative References

 [G.709-2012] ITU-T, "Interface for the optical transport network",
              Recommendation G.709/Y.1331, February 2012.
 [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.
 [RFC3630]    Katz, D., Kompella, K., and D. Yeung, "Traffic
              Engineering (TE) Extensions to OSPF Version 2", RFC
              3630, September 2003.
 [RFC4201]    Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling
              in MPLS Traffic Engineering (TE)", RFC 4201, October
              2005.

Ceccarelli, et al. Standards Track [Page 33] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 [RFC4203]    Kompella, K. and Y. Rekhter, "OSPF Extensions in Support
              of Generalized Multi-Protocol Label Switching (GMPLS)",
              RFC 4203, October 2005.
 [RFC4328]    Papadimitriou, D., "Generalized Multi-Protocol Label
              Switching (GMPLS) Signaling Extensions for G.709 Optical
              Transport Networks Control", RFC 4328, January 2006.

12.2. Informative References

 [G.798]      ITU-T, "Characteristics of optical transport network
              hierarchy equipment functional blocks", Recommendation
              G.798, December 2012.
 [G.805]      ITU-T, "Generic functional architecture of transport
              networks", Recommendation G.805, March 2000.
 [RFC2328]    Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
 [RFC5226]    Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              May 2008.
 [RFC5920]    Fang, L., "Security Framework for MPLS and GMPLS
              Networks", RFC 5920, July 2010.
 [RFC6163]    Lee, Y., Bernstein, G., and W. Imajuku, "Framework for
              GMPLS and Path Computation Element (PCE) Control of
              Wavelength Switched Optical Networks (WSONs)", RFC 6163,
              April 2011.
 [RFC6566]    Lee, Y., Bernstein, G., Li, D., and G. Martinelli, "A
              Framework for the Control of Wavelength Switched Optical
              Networks (WSONs) with Impairments", RFC 6566, March
              2012.
 [RFC6863]    Hartman, S. and D. Zhang, "Analysis of OSPF Security
              According to the Keying and Authentication for Routing
              Protocols (KARP) Design Guide", RFC 6863, March 2013.
 [RFC7062]    Zhang, F., Li, D., Li, H., Belotti, S., and D.
              Ceccarelli, "Framework for GMPLS and PCE Control of
              G.709 Optical Transport Networks", RFC 7062, November
              2013.

Ceccarelli, et al. Standards Track [Page 34] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

 [RFC7096]    Belotti, S., Grandi, P., Ceccarelli, D., Ed., Caviglia,
              D., and F. Zhang, "Evaluation of Existing GMPLS Encoding
              against G.709v3 Optical Transport Networks (OTNs)", RFC
              7096, January 2014.
 [RFC7139]    Zhang, F., Ed., Zhang, G., Belotti, S., Ceccarelli, D.,
              and K.  Pithewan, "GMPLS Signaling Extensions for
              Control of Evolving G.709 Optical Transport Networks",
              RFC 7139, March 2014.

Ceccarelli, et al. Standards Track [Page 35] RFC 7138 OSPF-TE Extensions for OTN Support March 2014

Authors' Addresses

 Daniele Ceccarelli (editor)
 Ericsson
 Via E.Melen 77
 Genova - Erzelli
 Italy
 EMail: daniele.ceccarelli@ericsson.com
 Fatai Zhang
 Huawei Technologies
 F3-5-B R&D Center, Huawei Base
 Bantian, Longgang District
 Shenzhen  518129
 P.R. China
 Phone: +86-755-28972912
 EMail: zhangfatai@huawei.com
 Sergio Belotti
 Alcatel-Lucent
 Via Trento, 30
 Vimercate
 Italy
 EMail: sergio.belotti@alcatel-lucent.com
 Rajan Rao
 Infinera Corporation
 140, Caspian CT.
 Sunnyvale, CA-94089
 USA
 EMail: rrao@infinera.com
 John E. Drake
 Juniper
 EMail: jdrake@juniper.net

Ceccarelli, et al. Standards Track [Page 36]

/data/webs/external/dokuwiki/data/pages/rfc/rfc7138.txt · Last modified: 2014/03/14 17:24 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki