GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc6803

Internet Engineering Task Force (IETF) G. Hudson Request for Comments: 6803 MIT Kerberos Consortium Category: Informational November 2012 ISSN: 2070-1721

                 Camellia Encryption for Kerberos 5

Abstract

 This document specifies two encryption types and two corresponding
 checksum types for the Kerberos cryptosystem framework defined in RFC
 3961.  The new types use the Camellia block cipher in CBC mode with
 ciphertext stealing and the CMAC algorithm for integrity protection.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.
 This document is a product of the Internet Engineering Task Force
 (IETF).  It represents the consensus of the IETF community.  It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG).  Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.
 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6803.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors.  All rights reserved.
 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document.  Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.  Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hudson Informational [Page 1] RFC 6803 Camellia Encryption for Kerberos 5 November 2012

1. Introduction

 The Camellia block cipher, described in [RFC3713], has a 128-bit
 block size and a 128-bit, 192-bit, or 256-bit key size, similar to
 AES.  This document specifies Kerberos encryption and checksum types
 for Camellia using 128-bit or 256-bit keys.  The new types conform to
 the framework specified in [RFC3961] but do not use the simplified
 profile.
 Like the simplified profile, the new types use key derivation to
 produce keys for encryption, integrity protection, and checksum
 operations.  Instead of the key derivation function described in
 [RFC3961], Section 5.1, the new types use a key derivation function
 from the family specified in [SP800-108].
 The new types use the CMAC algorithm for integrity protection and
 checksum operations.  As a consequence, they do not rely on a hash
 algorithm except when generating keys from strings.
 Like the AES encryption types [RFC3962], the new encryption types use
 CBC mode with ciphertext stealing [RFC3962] to avoid the need for
 padding.  They also use the same PBKDF2 algorithm for key generation
 from strings, with a modification to the salt string to ensure that
 different keys are generated for Camellia and AES encryption types.

2. Protocol Key Representation

 The Camellia key space is dense, so we use random octet strings
 directly as keys.  The first bit of the Camellia bit string is the
 high bit of the first byte of the random octet string.

3. Key Derivation

 We use a key derivation function from the family specified in
 [SP800-108], Section 5.2, "KDF in Feedback Mode".  The PRF parameter
 of the key derivation function is CMAC with Camellia-128 or
 Camellia-256 as the underlying block cipher; this PRF has an output
 size of 128 bits.  A block counter is used with a length of 4 bytes,
 represented in big-endian order.  The length of the output key in
 bits (denoted as k) is also represented as a 4-byte string in big-
 endian order.  The label input to the KDF is the usage constant
 supplied to the key derivation function, and the context is unused.
 In the following summary, | indicates concatenation.  The random-to-
 key function is the identity function, as defined in Section 6.  The
 k-truncate function is defined in [RFC3961], Section 5.1.

Hudson Informational [Page 2] RFC 6803 Camellia Encryption for Kerberos 5 November 2012

 n = ceiling(k / 128)
 K(0) = zeros
 K(i) = CMAC(key, K(i-1) | i | constant | 0x00 | k)
 DR(key, constant) = k-truncate(K(1) | K(2) | ... | K(n))
 KDF-FEEDBACK-CMAC(key, constant) = random-to-key(DR(key, constant))
 The constants used for key derivation are the same as those used in
 the simplified profile.

4. Key Generation from Strings

 We use a variation on the key generation algorithm specified in
 [RFC3962], Section 4.
 First, to ensure that different long-term keys are used with Camellia
 and AES, we prepend the enctype name to the salt string, separated by
 a null byte.  The enctype name is "camellia128-cts-cmac" or
 "camellia256-cts-cmac" (without the quotes).
 Second, the final key derivation step uses the algorithm described in
 Section 3 instead of the key derivation algorithm used by the
 simplified profile.
 Third, if no string-to-key parameters are specified, the default
 number of iterations is raised to 32768.
 saltp = enctype-name | 0x00 | salt
 tkey = random-to-key(PBKDF2-HMAC-SHA1(passphrase, saltp,
                                       iter_count, keylength))
 key = KDF-FEEDBACK-CMAC(tkey, "kerberos")

5. CMAC Checksum Algorithm

 For integrity protection and checksums, we use the CMAC function
 defined in [SP800-38B], with Camellia-128 or Camellia-256 as the
 underlying block cipher.  The output length (Tlen) is 128 bits for
 both key sizes.

6. Encryption Algorithm Parameters

 The following parameters, required by [RFC3961], Section 3, apply to
 the encryption types camellia128-cts-cmac, which uses a 128-bit
 protocol key, and camellia256-cts-cmac, which uses a 256-bit protocol
 key.
 Protocol key format: as defined in Section 2.
 Specific key structure: three protocol format keys: { Kc, Ke, Ki }.

Hudson Informational [Page 3] RFC 6803 Camellia Encryption for Kerberos 5 November 2012

 Required checksum mechanism: as defined in Section 7.
 Key generation seed length: the key size (128 or 256 bits).
 String-to-key function: as defined in Section 4.
 Random-to-key function: identity function.
 Key-derivation function: as indicated below, with usage represented
 as 4 octets in big-endian order.
 String-to-key parameter format: 4 octets indicating a 32-bit
 iteration count in big-endian order.  Implementations may limit the
 count as specified in [RFC3962], Section 4.
 Default string-to-key parameters: 00 00 80 00.
 Kc = KDF-FEEDBACK-CMAC(base-key, usage | 0x99)
 Ke = KDF-FEEDBACK-CMAC(base-key, usage | 0xAA)
 Ki = KDF-FEEDBACK-CMAC(base-key, usage | 0x55)
 Cipher state: a 128-bit CBC initialization vector.
 Initial cipher state: all bits zero.
 Encryption function: as follows, where E() is Camellia encryption in
 CBC-CTS mode, with the next-to-last block used as the CBC-style ivec,
 or the last block if there is only one.
 conf = Random string of 128 bits
 (C, newstate) = E(Ke, conf | plaintext, oldstate)
 M = CMAC(Ki, conf | plaintext)
 ciphertext = C | M
 Decryption function: as follows, where D() is Camellia decryption in
 CBC-CTS mode, with the ivec treated as in E().  To separate the
 ciphertext into C and M components, use the final 16 bytes for M and
 all of the preceding bytes for C.
 (C, M) = ciphertext
 (P, newIV) = D(Ke, C, oldstate)
 if (M != CMAC(Ki, P)) report error
 newstate = newIV
 Pseudo-random function: as follows.
 Kp = KDF-FEEDBACK-CMAC(protocol-key, "prf")
 PRF = CMAC(Kp, octet-string)

Hudson Informational [Page 4] RFC 6803 Camellia Encryption for Kerberos 5 November 2012

7. Checksum Parameters

 The following parameters, required by [RFC3961], Section 4, apply to
 the checksum types cmac-camellia128 and cmac-camellia256, which are
 the associated checksum for camellia128-cts-cmac and camellia256-cts-
 cmac, respectively.
 Associated cryptosystem: Camellia-128 or Camellia-256 as appropriate
 for the checksum type.
 get_mic: CMAC(Kc, message).
 verify_mic: get_mic and compare.

8. Security Considerations

 Chapter 4 of [CRYPTOENG] discusses weaknesses of the CBC cipher mode.
 An attacker who can observe enough messages generated with the same
 key to encounter a collision in ciphertext blocks could recover the
 XOR of the plaintexts of the previous blocks.  Observing such a
 collision becomes likely as the number of blocks observed approaches
 2^64.  This consideration applies to all previously standardized
 Kerberos encryption types and all uses of CBC encryption with 128-bit
 block ciphers in other protocols.  Kerberos deployments can mitigate
 this concern by rolling over keys often enough to make observing 2^64
 messages unlikely.
 Because the new checksum types are deterministic, an attacker could
 pre-compute checksums for a known plain-text message in 2^64 randomly
 chosen protocol keys.  The attacker could then observe checksums
 legitimately computed in different keys until a collision with one of
 the pre-computed keys is observed; this becomes likely after the
 number of observed checksums approaches 2^64.  Observing such a
 collision allows the attacker to recover the protocol key.  This
 consideration applies to most previously standardized Kerberos
 checksum types and most uses of 128-bit checksums in other protocols.
 Kerberos deployments should not migrate to the Camellia encryption
 types simply because they are newer, but should use them only if
 business needs require the use of Camellia, or if a serious flaw is
 discovered in AES which does not apply to Camellia.
 The security considerations described in [RFC3962], Section 8,
 regarding the string-to-key algorithm also apply to the Camellia
 encryption types.

Hudson Informational [Page 5] RFC 6803 Camellia Encryption for Kerberos 5 November 2012

 At the time of writing this document, there are no known weak keys
 for Camellia, and no security problem has been found on Camellia (see
 [NESSIE], [CRYPTREC], and [LNCS5867]).

9. IANA Considerations

 IANA has assigned the following numbers from the Encryption Type
 Numbers and Checksum Type Numbers registries defined in [RFC3961],
 Section 11.
                           Encryption types
             +-------+----------------------+-----------+
             | etype | encryption type      | Reference |
             +-------+----------------------+-----------+
             | 25    | camellia128-cts-cmac | [RFC6803] |
             | 26    | camellia256-cts-cmac | [RFC6803] |
             +-------+----------------------+-----------+
                            Checksum types
   +---------------+------------------+---------------+-----------+
   | sumtype value | Checksum type    | checksum size | Reference |
   +---------------+------------------+---------------+-----------+
   | 17            | cmac-camellia128 | 16            | [RFC6803] |
   | 18            | cmac-camellia256 | 16            | [RFC6803] |
   +---------------+------------------+---------------+-----------+

10. Test Vectors

 Sample results for string-to-key conversion:
 Iteration count = 1
 Pass phrase = "password"
 Salt = "ATHENA.MIT.EDUraeburn"
 128-bit Camellia key:
     57 D0 29 72 98 FF D9 D3 5D E5 A4 7F B4 BD E2 4B
 256-bit Camellia key:
     B9 D6 82 8B 20 56 B7 BE 65 6D 88 A1 23 B1 FA C6
     82 14 AC 2B 72 7E CF 5F 69 AF E0 C4 DF 2A 6D 2C

Hudson Informational [Page 6] RFC 6803 Camellia Encryption for Kerberos 5 November 2012

 Iteration count = 2
 Pass phrase = "password"
 Salt = "ATHENA.MIT.EDUraeburn"
 128-bit Camellia key:
     73 F1 B5 3A A0 F3 10 F9 3B 1D E8 CC AA 0C B1 52
 256-bit Camellia key:
     83 FC 58 66 E5 F8 F4 C6 F3 86 63 C6 5C 87 54 9F
     34 2B C4 7E D3 94 DC 9D 3C D4 D1 63 AD E3 75 E3
 Iteration count = 1200
 Pass phrase = "password"
 Salt = "ATHENA.MIT.EDUraeburn"
 128-bit Camellia key:
     8E 57 11 45 45 28 55 57 5F D9 16 E7 B0 44 87 AA
 256-bit Camellia key:
     77 F4 21 A6 F2 5E 13 83 95 E8 37 E5 D8 5D 38 5B
     4C 1B FD 77 2E 11 2C D9 20 8C E7 2A 53 0B 15 E6
 Iteration count = 5
 Pass phrase = "password"
 Salt=0x1234567878563412
 128-bit Camellia key:
     00 49 8F D9 16 BF C1 C2 B1 03 1C 17 08 01 B3 81
 256-bit Camellia key:
     11 08 3A 00 BD FE 6A 41 B2 F1 97 16 D6 20 2F 0A
     FA 94 28 9A FE 8B 27 A0 49 BD 28 B1 D7 6C 38 9A
 Iteration count = 1200
 Pass phrase = (64 characters)
   "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
 Salt="pass phrase equals block size"
 128-bit Camellia key:
     8B F6 C3 EF 70 9B 98 1D BB 58 5D 08 68 43 BE 05
 256-bit Camellia key:
     11 9F E2 A1 CB 0B 1B E0 10 B9 06 7A 73 DB 63 ED
     46 65 B4 E5 3A 98 D1 78 03 5D CF E8 43 A6 B9 B0
 Iteration count = 1200
 Pass phrase = (65 characters)
   "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
 Salt = "pass phrase exceeds block size"
 128-bit Camellia key:
     57 52 AC 8D 6A D1 CC FE 84 30 B3 12 87 1C 2F 74
 256-bit Camellia key:
     61 4D 5D FC 0B A6 D3 90 B4 12 B8 9A E4 D5 B0 88
     B6 12 B3 16 51 09 94 67 9D DB 43 83 C7 12 6D DF

Hudson Informational [Page 7] RFC 6803 Camellia Encryption for Kerberos 5 November 2012

 Iteration count = 50
 Pass phrase = g-clef (0xf09d849e)
 Salt = "EXAMPLE.COMpianist"
 128-bit Camellia key:
     CC 75 C7 FD 26 0F 1C 16 58 01 1F CC 0D 56 06 16
 256-bit Camellia key:
     16 3B 76 8C 6D B1 48 B4 EE C7 16 3D F5 AE D7 0E
     20 6B 68 CE C0 78 BC 06 9E D6 8A 7E D3 6B 1E CC
 Sample results for key derivation:
 128-bit Camellia key:
     57 D0 29 72 98 FF D9 D3 5D E5 A4 7F B4 BD E2 4B
 Kc value for key usage 2 (constant = 0x0000000299):
     D1 55 77 5A 20 9D 05 F0 2B 38 D4 2A 38 9E 5A 56
 Ke value for key usage 2 (constant = 0x00000002AA):
     64 DF 83 F8 5A 53 2F 17 57 7D 8C 37 03 57 96 AB
 Ki value for key usage 2 (constant = 0x0000000255):
     3E 4F BD F3 0F B8 25 9C 42 5C B6 C9 6F 1F 46 35
 256-bit Camellia key:
     B9 D6 82 8B 20 56 B7 BE 65 6D 88 A1 23 B1 FA C6
     82 14 AC 2B 72 7E CF 5F 69 AF E0 C4 DF 2A 6D 2C
 Kc value for key usage 2 (constant = 0x0000000299):
     E4 67 F9 A9 55 2B C7 D3 15 5A 62 20 AF 9C 19 22
     0E EE D4 FF 78 B0 D1 E6 A1 54 49 91 46 1A 9E 50
 Ke value for key usage 2 (constant = 0x00000002AA):
     41 2A EF C3 62 A7 28 5F C3 96 6C 6A 51 81 E7 60
     5A E6 75 23 5B 6D 54 9F BF C9 AB 66 30 A4 C6 04
 Ki value for key usage 2 (constant = 0x0000000255):
     FA 62 4F A0 E5 23 99 3F A3 88 AE FD C6 7E 67 EB
     CD 8C 08 E8 A0 24 6B 1D 73 B0 D1 DD 9F C5 82 B0
 Sample encryptions (all using the default cipher state):
 Plaintext: (empty)
 128-bit Camellia key:
     1D C4 6A 8D 76 3F 4F 93 74 2B CB A3 38 75 76 C3
 Random confounder:
     B6 98 22 A1 9A 6B 09 C0 EB C8 55 7D 1F 1B 6C 0A
 Ciphertext:
     C4 66 F1 87 10 69 92 1E DB 7C 6F DE 24 4A 52 DB
     0B A1 0E DC 19 7B DB 80 06 65 8C A3 CC CE 6E B8

Hudson Informational [Page 8] RFC 6803 Camellia Encryption for Kerberos 5 November 2012

 Plaintext: 1
 Random confounder:
     6F 2F C3 C2 A1 66 FD 88 98 96 7A 83 DE 95 96 D9
 128-bit Camellia key:
     50 27 BC 23 1D 0F 3A 9D 23 33 3F 1C A6 FD BE 7C
 Ciphertext:
     84 2D 21 FD 95 03 11 C0 DD 46 4A 3F 4B E8 D6 DA
     88 A5 6D 55 9C 9B 47 D3 F9 A8 50 67 AF 66 15 59
     B8
 Plaintext: 9 bytesss
 Random confounder:
     A5 B4 A7 1E 07 7A EE F9 3C 87 63 C1 8F DB 1F 10
 128-bit Camellia key:
     A1 BB 61 E8 05 F9 BA 6D DE 8F DB DD C0 5C DE A0
 Ciphertext:
     61 9F F0 72 E3 62 86 FF 0A 28 DE B3 A3 52 EC 0D
     0E DF 5C 51 60 D6 63 C9 01 75 8C CF 9D 1E D3 3D
     71 DB 8F 23 AA BF 83 48 A0
 Plaintext: 13 bytes byte
 Random confounder:
     19 FE E4 0D 81 0C 52 4B 5B 22 F0 18 74 C6 93 DA
 128-bit Camellia key:
     2C A2 7A 5F AF 55 32 24 45 06 43 4E 1C EF 66 76
 Ciphertext:
     B8 EC A3 16 7A E6 31 55 12 E5 9F 98 A7 C5 00 20
     5E 5F 63 FF 3B B3 89 AF 1C 41 A2 1D 64 0D 86 15
     C9 ED 3F BE B0 5A B6 AC B6 76 89 B5 EA
 Plaintext: 30 bytes bytes bytes bytes byt
 Random confounder:
     CA 7A 7A B4 BE 19 2D AB D6 03 50 6D B1 9C 39 E2
 128-bit Camellia key:
     78 24 F8 C1 6F 83 FF 35 4C 6B F7 51 5B 97 3F 43
 Ciphertext:
     A2 6A 39 05 A4 FF D5 81 6B 7B 1E 27 38 0D 08 09
     0C 8E C1 F3 04 49 6E 1A BD CD 2B DC D1 DF FC 66
     09 89 E1 17 A7 13 DD BB 57 A4 14 6C 15 87 CB A4
     35 66 65 59 1D 22 40 28 2F 58 42 B1 05 A5

Hudson Informational [Page 9] RFC 6803 Camellia Encryption for Kerberos 5 November 2012

 Plaintext: (empty)
 Random confounder:
     3C BB D2 B4 59 17 94 10 67 F9 65 99 BB 98 92 6C
 256-bit Camellia key:
     B6 1C 86 CC 4E 5D 27 57 54 5A D4 23 39 9F B7 03
     1E CA B9 13 CB B9 00 BD 7A 3C 6D D8 BF 92 01 5B
 Ciphertext:
     03 88 6D 03 31 0B 47 A6 D8 F0 6D 7B 94 D1 DD 83
     7E CC E3 15 EF 65 2A FF 62 08 59 D9 4A 25 92 66
 Plaintext: 1
 Random confounder:
     DE F4 87 FC EB E6 DE 63 46 D4 DA 45 21 BB A2 D2
 256-bit Camellia key:
     1B 97 FE 0A 19 0E 20 21 EB 30 75 3E 1B 6E 1E 77
     B0 75 4B 1D 68 46 10 35 58 64 10 49 63 46 38 33
 Ciphertext:
     2C 9C 15 70 13 3C 99 BF 6A 34 BC 1B 02 12 00 2F
     D1 94 33 87 49 DB 41 35 49 7A 34 7C FC D9 D1 8A
     12
 Plaintext: 9 bytesss
 Random confounder:
     AD 4F F9 04 D3 4E 55 53 84 B1 41 00 FC 46 5F 88
 256-bit Camellia key:
     32 16 4C 5B 43 4D 1D 15 38 E4 CF D9 BE 80 40 FE
     8C 4A C7 AC C4 B9 3D 33 14 D2 13 36 68 14 7A 05
 Ciphertext:
     9C 6D E7 5F 81 2D E7 ED 0D 28 B2 96 35 57 A1 15
     64 09 98 27 5B 0A F5 15 27 09 91 3F F5 2A 2A 9C
     8E 63 B8 72 F9 2E 64 C8 39
 Plaintext: 13 bytes byte
 Random confounder:
     CF 9B CA 6D F1 14 4E 0C 0A F9 B8 F3 4C 90 D5 14
 256-bit Camellia key:
     B0 38 B1 32 CD 8E 06 61 22 67 FA B7 17 00 66 D8
     8A EC CB A0 B7 44 BF C6 0D C8 9B CA 18 2D 07 15
 Ciphertext:
     EE EC 85 A9 81 3C DC 53 67 72 AB 9B 42 DE FC 57
     06 F7 26 E9 75 DD E0 5A 87 EB 54 06 EA 32 4C A1
     85 C9 98 6B 42 AA BE 79 4B 84 82 1B EE

Hudson Informational [Page 10] RFC 6803 Camellia Encryption for Kerberos 5 November 2012

 Plaintext: 30 bytes bytes bytes bytes byt
 Random confounder:
     64 4D EF 38 DA 35 00 72 75 87 8D 21 68 55 E2 28
 256-bit Camellia key:
     CC FC D3 49 BF 4C 66 77 E8 6E 4B 02 B8 EA B9 24
     A5 46 AC 73 1C F9 BF 69 89 B9 96 E7 D6 BF BB A7
 Ciphertext:
     0E 44 68 09 85 85 5F 2D 1F 18 12 52 9C A8 3B FD
     8E 34 9D E6 FD 9A DA 0B AA A0 48 D6 8E 26 5F EB
     F3 4A D1 25 5A 34 49 99 AD 37 14 68 87 A6 C6 84
     57 31 AC 7F 46 37 6A 05 04 CD 06 57 14 74
 Sample checksums:
 Plaintext: abcdefghijk
 Checksum type: cmac-camellia128
 128-bit Camellia key:
     1D C4 6A 8D 76 3F 4F 93 74 2B CB A3 38 75 76 C3
 Key usage: 7
 Checksum:
     11 78 E6 C5 C4 7A 8C 1A E0 C4 B9 C7 D4 EB 7B 6B
 Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 Checksum type: cmac-camellia128
 128-bit Camellia key:
     50 27 BC 23 1D 0F 3A 9D 23 33 3F 1C A6 FD BE 7C
 Key usage: 8
 Checksum:
     D1 B3 4F 70 04 A7 31 F2 3A 0C 00 BF 6C 3F 75 3A
 Plaintext: 123456789
 Checksum type: cmac-camellia256
 256-bit Camellia key:
     B6 1C 86 CC 4E 5D 27 57 54 5A D4 23 39 9F B7 03
     1E CA B9 13 CB B9 00 BD 7A 3C 6D D8 BF 92 01 5B
 Key usage: 9
 Checksum:
     87 A1 2C FD 2B 96 21 48 10 F0 1C 82 6E 77 44 B1
 Plaintext: !@#$%^&*()!@#$%^&*()!@#$%^&*()
 Checksum type: cmac-camellia256
 256-bit Camellia key:
     32 16 4C 5B 43 4D 1D 15 38 E4 CF D9 BE 80 40 FE
     8C 4A C7 AC C4 B9 3D 33 14 D2 13 36 68 14 7A 05
 Key usage: 10
 Checksum:
     3F A0 B4 23 55 E5 2B 18 91 87 29 4A A2 52 AB 64

Hudson Informational [Page 11] RFC 6803 Camellia Encryption for Kerberos 5 November 2012

11. References

11.1. Normative References

 [RFC3713]    Matsui, M., Nakajima, J., and S. Moriai, "A Description
              of the Camellia Encryption Algorithm", RFC 3713,
              April 2004.
 [RFC3961]    Raeburn, K., "Encryption and Checksum Specifications for
              Kerberos 5", RFC 3961, February 2005.
 [RFC3962]    Raeburn, K., "Advanced Encryption Standard (AES)
              Encryption for Kerberos 5", RFC 3962, February 2005.
 [SP800-108]  Chen, L., "Recommendation for Key Derivation Using
              Pseudorandom Functions", NIST Special Publication 800&
              nhby;108, October 2009.
 [SP800-38B]  Dworkin, M., "Recommendation for Block Cipher Modes of
              Operation: The CMAC Mode for Authentication", NIST
              Special Publication 800-38B, October 2009.

11.2. Informative References

 [CRYPTOENG]  Schneier, B., "Cryptography Engineering", March 2010.
 [CRYPTREC]   Information-technology Promotion Agency (IPA), Japan,
              "Cryptography Research and Evaluation Committees",
              <http://www.ipa.go.jp/security/enc/CRYPTREC/
              index-e.html>.
 [LNCS5867]   Mala, H., Shakiba, M., Dakhilalian, M., and G.
              Bagherikaram, "New Results on Impossible Different
              Cryptanalysis of Reduced-Round Camellia-128", Lecture
              Notes in Computer Science, Vol. 5867, November 2009,
              <http://www.springerlink.com/content/e55783u422436g77/>.
 [NESSIE]     The NESSIE Project, "New European Schemes for
              Signatures, Integrity, and Encryption",
              <http://www.cosic.esat.kuleuven.be/nessie/>.

Hudson Informational [Page 12] RFC 6803 Camellia Encryption for Kerberos 5 November 2012

Appendix A. Acknowledgements

 The author would like to thank Ken Raeburn, Satoru Kanno, Jeffrey
 Hutzelman, Nico Williams, Sam Hartman, and Tom Yu for their help in
 reviewing and providing feedback on this document.

Author's Address

 Greg Hudson
 MIT Kerberos Consortium
 EMail: ghudson@mit.edu

Hudson Informational [Page 13]

/home/gen.uk/domains/wiki.gen.uk/public_html/data/pages/rfc/rfc6803.txt · Last modified: 2012/11/20 00:55 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki