GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc6367

Internet Engineering Task Force (IETF) S. Kanno Request for Comments: 6367 NTT Software Corporation Category: Informational M. Kanda ISSN: 2070-1721 NTT

                                                        September 2011
             Addition of the Camellia Cipher Suites to
                   Transport Layer Security (TLS)

Abstract

 This document specifies forty-two cipher suites for the Transport
 Security Layer (TLS) protocol to support the Camellia encryption
 algorithm as a block cipher.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.
 This document is a product of the Internet Engineering Task Force
 (IETF).  It represents the consensus of the IETF community.  It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG).  Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.
 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6367.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors.  All rights reserved.
 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document.  Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.  Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Kanno & Kanda Informational [Page 1] RFC 6367 Camellia Cipher Suites for TLS September 2011

Table of Contents

 1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . 2
   1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . 2
 2.  Proposed Cipher Suites  . . . . . . . . . . . . . . . . . . . . 3
   2.1.  HMAC-Based Cipher Suites  . . . . . . . . . . . . . . . . . 3
   2.2.  GCM-Based Cipher Suites . . . . . . . . . . . . . . . . . . 3
   2.3.  PSK-Based Cipher Suites . . . . . . . . . . . . . . . . . . 4
 3.  Cipher Suite Definitions  . . . . . . . . . . . . . . . . . . . 4
   3.1.  Key Exchange  . . . . . . . . . . . . . . . . . . . . . . . 4
   3.2.  Cipher  . . . . . . . . . . . . . . . . . . . . . . . . . . 4
   3.3.  PRFs  . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
   3.4.  PSK Cipher Suites . . . . . . . . . . . . . . . . . . . . . 5
 4.  Security Considerations . . . . . . . . . . . . . . . . . . . . 5
 5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 5
 6.  References  . . . . . . . . . . . . . . . . . . . . . . . . . . 6
   6.1.  Normative References  . . . . . . . . . . . . . . . . . . . 6
   6.2.  Informative References  . . . . . . . . . . . . . . . . . . 7

1. Introduction

 The Camellia cipher suites are already specified in RFC 5932 [15]
 with SHA-256-based Hashed Message Authentication Code (HMAC) using
 asymmetric key encryption.  This document proposes the addition of
 new cipher suites to the Transport Layer Security (TLS) [8] protocol
 to support the Camellia [4] cipher algorithm as a block cipher
 algorithm.  The proposed cipher suites include variants using the
 SHA-2 family of cryptographic hash functions [13] and Galois Counter
 Mode (GCM) [14].  Elliptic curve cipher suites and pre-shared key
 (PSK) [5] cipher suites are also included.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [3].

Kanno & Kanda Informational [Page 2] RFC 6367 Camellia Cipher Suites for TLS September 2011

2. Proposed Cipher Suites

2.1. HMAC-Based Cipher Suites

 The eight cipher suites use Camellia [4] in Cipher Block Chaining
 (CBC) [4] mode with a SHA-2 family HMAC using the elliptic curve
 cryptosystem:

CipherSuite TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 = {0xC0,0x72}; CipherSuite TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 = {0xC0,0x73}; CipherSuite TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 = {0xC0,0x74}; CipherSuite TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 = {0xC0,0x75}; CipherSuite TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 = {0xC0,0x76}; CipherSuite TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384 = {0xC0,0x77}; CipherSuite TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256 = {0xC0,0x78}; CipherSuite TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384 = {0xC0,0x79};

2.2. GCM-Based Cipher Suites

 The twenty cipher suites use the same asymmetric key algorithms as
 those in the previous section but use the authenticated encryption
 modes defined in TLS 1.2 [8] with Camellia in GCM [14].

CipherSuite TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x7A}; CipherSuite TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x7B}; CipherSuite TLS_DHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x7C}; CipherSuite TLS_DHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x7D}; CipherSuite TLS_DH_RSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x7E}; CipherSuite TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x7F}; CipherSuite TLS_DHE_DSS_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x80}; CipherSuite TLS_DHE_DSS_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x81}; CipherSuite TLS_DH_DSS_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x82}; CipherSuite TLS_DH_DSS_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x83}; CipherSuite TLS_DH_anon_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x84}; CipherSuite TLS_DH_anon_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x85}; CipherSuite TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x86}; CipherSuite TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x87}; CipherSuite TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x88}; CipherSuite TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x89}; CipherSuite TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x8A}; CipherSuite TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x8B}; CipherSuite TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x8C}; CipherSuite TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x8D};

Kanno & Kanda Informational [Page 3] RFC 6367 Camellia Cipher Suites for TLS September 2011

2.3. PSK-Based Cipher Suites

 The fourteen cipher suites describe PSK cipher suites.  The first six
 cipher suites use Camellia with GCM, and the next eight cipher suites
 use Camellia with SHA-2 family HMAC using asymmetric key encryption
 or the elliptic curve cryptosystem.
CipherSuite TLS_PSK_WITH_CAMELLIA_128_GCM_SHA256        = {0xC0,0x8D};
CipherSuite TLS_PSK_WITH_CAMELLIA_256_GCM_SHA384        = {0xC0,0x8F};
CipherSuite TLS_DHE_PSK_WITH_CAMELLIA_128_GCM_SHA256    = {0xC0,0x90};
CipherSuite TLS_DHE_PSK_WITH_CAMELLIA_256_GCM_SHA384    = {0xC0,0x91};
CipherSuite TLS_RSA_PSK_WITH_CAMELLIA_128_GCM_SHA256    = {0xC0,0x92};
CipherSuite TLS_RSA_PSK_WITH_CAMELLIA_256_GCM_SHA384    = {0xC0,0x93};
CipherSuite TLS_PSK_WITH_CAMELLIA_128_CBC_SHA256        = {0xC0,0x94};
CipherSuite TLS_PSK_WITH_CAMELLIA_256_CBC_SHA384        = {0xC0,0x95};
CipherSuite TLS_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256    = {0xC0,0x96};
CipherSuite TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384    = {0xC0,0x97};
CipherSuite TLS_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256    = {0xC0,0x98};
CipherSuite TLS_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384    = {0xC0,0x99};
CipherSuite TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256  = {0xC0,0x9A};
CipherSuite TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384  = {0xC0,0x9B};

3. Cipher Suite Definitions

3.1. Key Exchange

 The RSA, DHE_RSA, DH_RSA, DHE_DSS, DH_DSS, ECDH, DH_anon, and ECDHE
 key exchanges are performed as defined in RFC 5246 [8].

3.2. Cipher

 This document describes cipher suites based on Camellia cipher using
 CBC mode and GCM.  The details are as follows.
 The CAMELLIA_128_CBC cipher suites use Camellia [4] in CBC mode with
 a 128-bit key and 128-bit Initialization Vector (IV); the
 CAMELLIA_256_CBC cipher suites use a 256-bit key and 128-bit IV.
 Advanced Encryption Standard (AES) [19] authenticated encryption with
 additional data algorithms, AEAD_AES_128_GCM and AEAD_AES_256_GCM,
 are described in RFC 5116 [7].  AES GCM cipher suites for TLS are
 described in RFC 5288 [9].  AES and Camellia share common
 characteristics including key sizes and block length.
 CAMELLIA_128_GCM and CAMELLIA_256_GCM are defined according to those
 of AES.

Kanno & Kanda Informational [Page 4] RFC 6367 Camellia Cipher Suites for TLS September 2011

3.3. PRFs

 The hash algorithms and pseudorandom function (PRF) algorithms for
 TLS 1.2 [8] SHALL be as follows:
 a.  The cipher suites ending with _SHA256 use HMAC-SHA-256 [1] as the
     MAC algorithm.  The PRF is the TLS PRF [8] with SHA-256 [13] as
     the hash function.
 b.  The cipher suites ending with _SHA384 use HMAC-SHA-384 [1] as the
     MAC algorithm.  The PRF is the TLS PRF [8] with SHA-384 [13] as
     the hash function.
 When used with TLS versions prior to 1.2 (TLS 1.0 [2] and TLS 1.1
 [6]), the PRF is calculated as specified in the appropriate version
 of the TLS specification.

3.4. PSK Cipher Suites

 PSK cipher suites for TLS are described in RFC 5487 [11] as to SHA-
 256/384 and RFC 5489 [12] as to ECDHE_PSK.

4. Security Considerations

 At the time of writing this document, there are no known weak keys
 for Camellia.  Additionally, no security problems with Camellia have
 been found (see NESSIE [16], CRYPTREC [17], and LNCS 5867[18]).
 The security considerations in previous RFCs (RFC 5116 [7], RFC 5289
 [10], and RFC 5487 [11]) apply to this document as well.

5. IANA Considerations

 IANA allocated the following numbers in the TLS Cipher Suite
 Registry:

CipherSuite TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 = {0xC0,0x72}; CipherSuite TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 = {0xC0,0x73}; CipherSuite TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 = {0xC0,0x74}; CipherSuite TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 = {0xC0,0x75}; CipherSuite TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 = {0xC0,0x76}; CipherSuite TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384 = {0xC0,0x77}; CipherSuite TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256 = {0xC0,0x78}; CipherSuite TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384 = {0xC0,0x79}; CipherSuite TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x7A}; CipherSuite TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x7B}; CipherSuite TLS_DHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x7C}; CipherSuite TLS_DHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x7D};

Kanno & Kanda Informational [Page 5] RFC 6367 Camellia Cipher Suites for TLS September 2011

CipherSuite TLS_DH_RSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x7E}; CipherSuite TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x7F}; CipherSuite TLS_DHE_DSS_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x80}; CipherSuite TLS_DHE_DSS_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x81}; CipherSuite TLS_DH_DSS_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x82}; CipherSuite TLS_DH_DSS_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x83}; CipherSuite TLS_DH_anon_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x84}; CipherSuite TLS_DH_anon_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x85}; CipherSuite TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x86}; CipherSuite TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x87}; CipherSuite TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x88}; CipherSuite TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x89}; CipherSuite TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x8A}; CipherSuite TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x8B}; CipherSuite TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x8C}; CipherSuite TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x8D}; CipherSuite TLS_PSK_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x8E}; CipherSuite TLS_PSK_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x8F}; CipherSuite TLS_DHE_PSK_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x90}; CipherSuite TLS_DHE_PSK_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x91}; CipherSuite TLS_RSA_PSK_WITH_CAMELLIA_128_GCM_SHA256 = {0xC0,0x92}; CipherSuite TLS_RSA_PSK_WITH_CAMELLIA_256_GCM_SHA384 = {0xC0,0x93}; CipherSuite TLS_PSK_WITH_CAMELLIA_128_CBC_SHA256 = {0xC0,0x94}; CipherSuite TLS_PSK_WITH_CAMELLIA_256_CBC_SHA384 = {0xC0,0x95}; CipherSuite TLS_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256 = {0xC0,0x96}; CipherSuite TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384 = {0xC0,0x97}; CipherSuite TLS_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256 = {0xC0,0x98}; CipherSuite TLS_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384 = {0xC0,0x99}; CipherSuite TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256 = {0xC0,0x9A}; CipherSuite TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384 = {0xC0,0x9B};

6. References

6.1. Normative References

 [1]   Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing
       for Message Authentication", RFC 2104, February 1997.
 [2]   Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
       RFC 2246, January 1999.
 [3]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.
 [4]   Matsui, M., Nakajima, J., and S. Moriai, "A Description of the
       Camellia Encryption Algorithm", RFC 3713, April 2004.

Kanno & Kanda Informational [Page 6] RFC 6367 Camellia Cipher Suites for TLS September 2011

 [5]   Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites for
       Transport Layer Security (TLS)", RFC 4279, December 2005.
 [6]   Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
       Protocol Version 1.1", RFC 4346, April 2006.
 [7]   McGrew, D., "An Interface and Algorithms for Authenticated
       Encryption", RFC 5116, January 2008.
 [8]   Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
       Protocol Version 1.2", RFC 5246, August 2008.
 [9]   Salowey, J., Choudhury, A., and D. McGrew, "AES Galois Counter
       Mode (GCM) Cipher Suites for TLS", RFC 5288, August 2008.
 [10]  Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-256/
       384 and AES Galois Counter Mode (GCM)", RFC 5289, August 2008.
 [11]  Badra, M., "Pre-Shared Key Cipher Suites for TLS with SHA-256/
       384 and AES Galois Counter Mode", RFC 5487, March 2009.
 [12]  Badra, M. and I. Hajjeh, "ECDHE_PSK Cipher Suites for Transport
       Layer Security (TLS)", RFC 5489, March 2009.
 [13]  National Institute of Standards and Technology, "Secure Hash
       Standard (SHS)", FIPS PUB 180, October 2008,
       <http://csrc.nist.gov/publications/fips/fips180-3/
       fips180-3_final.pdf>.
 [14]  Dworkin, M., "Recommendation for Block Cipher Modes of
       Operation: Galois/Counter Mode (GCM) for Confidentiality and
       Authentication", Special Publication 800-38D, April 2006,
       <http://csrc.nist.gov/publications/nistpubs/800-38D/
       SP-800-38D.pdf>.

6.2. Informative References

 [15]  Kato, A., Kanda, M., and S. Kanno, "Camellia Cipher Suites for
       TLS", RFC 5932, June 2010.
 [16]  "The NESSIE Project (New European Schemes for Signatures,
       Integrity and Encryption)",
       <http://www.cosic.esat.kuleuven.be/nessie/>.
 [17]  "CRYPTREC (Cryptography Research and Evaluation Committees)",
       <http://www.cryptrec.go.jp/english/estimation.html>.

Kanno & Kanda Informational [Page 7] RFC 6367 Camellia Cipher Suites for TLS September 2011

 [18]  Mala, H., Shakiba, M., Dakhilalian, M., and G. Bagherikaram,
       "New Results on Impossible Differential Cryptanalysis of
       Reduced Round Camellia-128", LNCS 5867, November 2009,
       <http://www.springerlink.com/content/e55783u422436g77/>.
 [19]  National Institute of Standards and Technology, "Advanced
       Encryption Standard (AES)", FIPS PUB 197, November 2001,
       <http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf>.

Authors' Addresses

 Satoru Kanno
 NTT Software Corporation
 Phone: +81-45-212-9803
 Fax:   +81-45-212-9800
 EMail: kanno.satoru@po.ntts.co.jp
 Masayuki Kanda
 NTT
 Phone: +81-422-59-3456
 Fax:   +81-422-59-4015
 EMail: kanda.masayuki@lab.ntt.co.jp

Kanno & Kanda Informational [Page 8]

/home/gen.uk/domains/wiki.gen.uk/public_html/data/pages/rfc/rfc6367.txt · Last modified: 2011/09/07 21:20 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki