GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc5960

Internet Engineering Task Force (IETF) D. Frost, Ed. Request for Comments: 5960 S. Bryant, Ed. Category: Standards Track Cisco Systems ISSN: 2070-1721 M. Bocci, Ed.

                                                        Alcatel-Lucent
                                                           August 2010
           MPLS Transport Profile Data Plane Architecture

Abstract

 The Multiprotocol Label Switching Transport Profile (MPLS-TP) is the
 set of MPLS protocol functions applicable to the construction and
 operation of packet-switched transport networks.  This document
 specifies the subset of these functions that comprises the MPLS-TP
 data plane: the architectural layer concerned with the encapsulation
 and forwarding of packets within an MPLS-TP network.
 This document is a product of a joint Internet Engineering Task Force
 (IETF) / International Telecommunication Union Telecommunication
 Standardization Sector (ITU-T) effort to include an MPLS Transport
 Profile within the IETF MPLS and Pseudowire Emulation Edge-to-Edge
 (PWE3) architectures to support the capabilities and functionalities
 of a packet transport network.

Status of This Memo

 This is an Internet Standards Track document.
 This document is a product of the Internet Engineering Task Force
 (IETF).  It represents the consensus of the IETF community.  It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG).  Further information on
 Internet Standards is available in Section 2 of RFC 5741.
 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5960.

Frost, et al. Standards Track [Page 1] RFC 5960 MPLS-TP Data Plane Architecture August 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors.  All rights reserved.
 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document.  Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.  Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
   1.1.  Scope  . . . . . . . . . . . . . . . . . . . . . . . . . .  3
   1.2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . .  4
   1.3.  Requirements Language  . . . . . . . . . . . . . . . . . .  4
 2.  MPLS-TP Packet Encapsulation and Forwarding  . . . . . . . . .  4
 3.  MPLS-TP Transport Entities . . . . . . . . . . . . . . . . . .  5
   3.1.  Label Switched Paths . . . . . . . . . . . . . . . . . . .  5
     3.1.1.  LSP Packet Encapsulation and Forwarding  . . . . . . .  6
     3.1.2.  LSP Payloads . . . . . . . . . . . . . . . . . . . . .  7
     3.1.3.  LSP Types  . . . . . . . . . . . . . . . . . . . . . .  7
   3.2.  Sections . . . . . . . . . . . . . . . . . . . . . . . . .  8
   3.3.  Pseudowires  . . . . . . . . . . . . . . . . . . . . . . .  9
 4.  MPLS-TP Generic Associated Channel . . . . . . . . . . . . . . 10
 5.  Server-Layer Considerations  . . . . . . . . . . . . . . . . . 11
 6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 11
 7.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 12
   7.1.  Normative References . . . . . . . . . . . . . . . . . . . 12
   7.2.  Informative References . . . . . . . . . . . . . . . . . . 14

Frost, et al. Standards Track [Page 2] RFC 5960 MPLS-TP Data Plane Architecture August 2010

1. Introduction

 The MPLS Transport Profile (MPLS-TP) is the set of functions that
 meet the requirements [RFC5654] for the application of MPLS to the
 construction and operation of packet-switched transport networks.
 MPLS-based packet-switched transport networks, and the overall
 architecture of the MPLS-TP, are defined and described in [RFC5921].
 It is assumed that the reader is familiar with that document.
 This document defines the set of functions that comprise the MPLS-TP
 data plane: the architectural layer concerned with the encapsulation
 and forwarding of packets within an MPLS-TP network.  This layer is
 based on the data plane architectures for MPLS ([RFC3031] and
 [RFC3032]) and for pseudowires [RFC3985].
 This document is a product of a joint Internet Engineering Task Force
 (IETF) / International Telecommunication Union Telecommunication
 Standardization Sector (ITU-T) effort to include an MPLS Transport
 Profile within the IETF MPLS and PWE3 architectures to support the
 capabilities and functionalities of a packet transport network.

1.1. Scope

 This document has the following purposes:
 o  To identify the data plane functions within the MPLS Transport
    Profile; and
 o  To indicate which of these data plane functions an MPLS-TP
    implementation is required to support.
 This document defines the encapsulation and forwarding functions
 applicable to packets traversing an MPLS-TP Label Switched Path
 (LSP), pseudowire (PW), or section (see Section 3 for the definitions
 of these transport entities).  Encapsulation and forwarding functions
 for packets outside an MPLS-TP LSP, PW, or section, and mechanisms
 for delivering packets to or from MPLS-TP LSPs, PWs, and sections,
 are outside the scope of this document.

Frost, et al. Standards Track [Page 3] RFC 5960 MPLS-TP Data Plane Architecture August 2010

1.2. Terminology

 Term    Definition
 ------- -------------------------------------------
 ACH     Associated Channel Header
 G-ACh   Generic Associated Channel
 GAL     G-ACh Label
 LER     Label Edge Router
 LSE     Label Stack Entry
 LSP     Label Switched Path
 LSR     Label Switching Router
 MPLS-TP MPLS Transport Profile
 OAM     Operations, Administration, and Maintenance
 PW      Pseudowire
 QoS     Quality of Service
 S-PE    PW Switching Provider Edge
 T-PE    PW Terminating Provider Edge
 TTL     Time To Live
 Additional definitions and terminology can be found in [RFC5921] and
 [RFC5654].

1.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. MPLS-TP Packet Encapsulation and Forwarding

 MPLS-TP packet encapsulation and forwarding SHALL operate according
 to the MPLS data plane architecture described in [RFC3031] and
 [RFC3032] and to the data plane architectures for single-segment
 pseudowires and multi-segment pseudowires (see Section 3.3), except
 as noted otherwise in this document.  The MPLS-TP data plane
 satisfies the requirements specified in [RFC5654].
 Since an MPLS-TP packet is an MPLS packet as defined in [RFC3031] and
 [RFC3032], it will have an associated label stack, and the 'push',
 'pop', and 'swap' label processing operations specified in those
 documents apply.  The label stack represents a hierarchy of Label
 Switched Paths (LSPs).  A label is pushed to introduce an additional
 level of LSP hierarchy and popped to remove it.  Such an additional
 level may be introduced by any pair of LSRs, whereupon they become
 adjacent at this new level, and are then known as Label Edge Routers
 (LERs) with respect to the new LSP.

Frost, et al. Standards Track [Page 4] RFC 5960 MPLS-TP Data Plane Architecture August 2010

 In contrast to, for example, Section 3.10 of [RFC3031], support for
 Internet Protocol (IP) host and router data plane functionality by
 MPLS-TP interfaces and in MPLS-TP networks is OPTIONAL.
 MPLS-TP forwarding is based on the label that identifies an LSP or
 PW.  The label value specifies the processing operation to be
 performed by the next hop at that level of encapsulation.  A swap of
 this label is an atomic operation in which the contents of the packet
 (after the swapped label) are opaque to the forwarding function.  The
 only event that interrupts a swap operation is Time To Live (TTL)
 expiry.
 At an LSR, S-PE, or T-PE, further processing to determine the context
 of a packet occurs when a swap operation is interrupted by TTL
 expiry.  If the TTL of an LSP label expires, then the label with the
 S (Bottom of Stack) bit set is inspected to determine if it is a
 reserved label.  If it is a reserved label, the packet is processed
 according to the rules of that reserved label.  For example, if it is
 a Generic Associated Channel Label (GAL), then it is processed as a
 packet on the Generic Associated Channel (G-ACh); see Section 4.  If
 the TTL of a PW expires at an S-PE or T-PE, then the packet is
 examined to determine if a Generic Associated Channel Header (ACH) is
 present immediately below the PW label.  If so, then the packet is
 processed as a packet on the G-ACh.
 Similarly, if a pop operation at an LER exposes a reserved label at
 the top of the label stack, then the packet is processed according to
 the rules of that reserved label.
 If no such exception occurs, the packet is forwarded according to the
 procedures in [RFC3031] and [RFC3032].

3. MPLS-TP Transport Entities

 The MPLS Transport Profile includes the following data plane
 transport entities:
 o  Label Switched Paths (LSPs)
 o  sections
 o  pseudowires (PWs)

3.1. Label Switched Paths

 MPLS-TP LSPs are ordinary MPLS LSPs as defined in [RFC3031], except
 as specifically noted otherwise in this document.

Frost, et al. Standards Track [Page 5] RFC 5960 MPLS-TP Data Plane Architecture August 2010

3.1.1. LSP Packet Encapsulation and Forwarding

 Encapsulation and forwarding of packets traversing MPLS-TP LSPs MUST
 follow standard MPLS packet encapsulation and forwarding as defined
 in [RFC3031], [RFC3032], [RFC5331], and [RFC5332], except as
 explicitly stated otherwise in this document.
 Data plane Quality of Service capabilities are included in the
 MPLS-TP in the form of Traffic Engineered (TE) LSPs [RFC3209] and the
 MPLS Differentiated Services (Diffserv) architecture [RFC3270].  Both
 E-LSP and L-LSP MPLS Diffserv modes are included.  The Traffic Class
 field (formerly the EXP field) of an MPLS label follows the
 definition of [RFC5462] and [RFC3270] and MUST be processed according
 to the rules specified in those documents.
 Except for transient packet reordering that may occur, for example,
 during fault conditions, packets are delivered in order on L-LSPs,
 and on E-LSPs within a specific ordered aggregate.
 The Uniform, Pipe, and Short Pipe Diffserv tunneling and TTL
 processing models described in [RFC3270] and [RFC3443] MAY be used
 for MPLS-TP LSPs.  Note, however, that support for the Pipe or Short
 Pipe models is REQUIRED for typical transport applications in which
 the topology and QoS characteristics of the MPLS-TP server layer are
 independent of the client layer.  Specific applications MAY place
 further requirements on the Diffserv tunneling and TTL processing
 models an LSP can use.
 Per-platform, per-interface, or other context-specific label space
 [RFC5331] MAY be used for MPLS-TP LSPs.  Downstream [RFC3031] or
 upstream [RFC5331] label allocation schemes MAY be used for MPLS-TP
 LSPs.  The requirements of a particular LSP type may, however,
 dictate which label spaces or allocation schemes LSPs of that type
 can use.
 Equal-Cost Multi-Path (ECMP) load-balancing MUST NOT be performed on
 an MPLS-TP LSP.  MPLS-TP LSPs as defined in this document MAY operate
 over a server layer that supports load-balancing, but this load-
 balancing MUST operate in such a manner that it is transparent to
 MPLS-TP.  This does not preclude the future definition of new MPLS-TP
 LSP types that have different requirements regarding the use of ECMP
 in the server layer.
 Penultimate Hop Popping (PHP) MUST be disabled by default on MPLS-TP
 LSPs.

Frost, et al. Standards Track [Page 6] RFC 5960 MPLS-TP Data Plane Architecture August 2010

3.1.2. LSP Payloads

 The MPLS-TP includes support for the following LSP payload types:
 o  Network-layer protocol packets (including MPLS-labeled packets)
 o  Pseudowire packets
 The rules for processing LSP payloads that are network-layer protocol
 packets SHALL be as specified in [RFC3032].
 The rules for processing LSP payloads that are pseudowire packets
 SHALL be as defined in the data plane pseudowire specifications (see
 Section 3.3).
 The payload of an MPLS-TP LSP may be a packet that itself contains an
 MPLS label stack.  This is true, for instance, when the payload is a
 pseudowire or an MPLS LSP.  In such cases, the label stack is
 contiguous between the MPLS-TP LSP and its payload, and exactly one
 LSE in this stack SHALL have the S (Bottom of Stack) bit set to 1.
 This behavior reflects best current practice in MPLS but differs
 slightly from [RFC3032], which uses the S bit to identify when MPLS
 label processing stops and network-layer processing starts.

3.1.3. LSP Types

 The MPLS-TP includes the following LSP types:
 o  Point-to-point unidirectional
 o  Point-to-point associated bidirectional
 o  Point-to-point co-routed bidirectional
 o  Point-to-multipoint unidirectional
 Point-to-point unidirectional LSPs are supported by the basic MPLS
 architecture [RFC3031] and are REQUIRED to function in the same
 manner in the MPLS-TP data plane, except as explicitly stated
 otherwise in this document.
 A point-to-point associated bidirectional LSP between LSRs A and B
 consists of two unidirectional point-to-point LSPs, one from A to B
 and the other from B to A, which are regarded as a pair providing a
 single logical bidirectional transport path.

Frost, et al. Standards Track [Page 7] RFC 5960 MPLS-TP Data Plane Architecture August 2010

 A point-to-point co-routed bidirectional LSP is a point-to-point
 associated bidirectional LSP with the additional constraint that its
 two unidirectional component LSPs in each direction follow the same
 path (in terms of both nodes and links).  An important property of
 co-routed bidirectional LSPs is that their unidirectional component
 LSPs share fate.
 A point-to-multipoint unidirectional LSP functions in the same manner
 in the data plane, with respect to basic label processing and packet-
 switching operations, as a point-to-point unidirectional LSP, with
 one difference: an LSR may have more than one (egress interface,
 outgoing label) pair associated with the LSP, and any packet it
 transmits on the LSP is transmitted out all associated egress
 interfaces.  Point-to-multipoint LSPs are described in [RFC4875] and
 [RFC5332].  TTL processing and exception handling for point-to-
 multipoint LSPs is the same as for point-to-point LSPs and is
 described in Section 2.

3.2. Sections

 Two MPLS-TP LSRs are considered to be topologically adjacent at a
 particular layer n >= 0 of the MPLS-TP LSP hierarchy if there exists
 connectivity between them at the next lowest network layer, and if
 there is no MPLS layer processing at layer n between the two LSRs
 (other than at the LSRs themselves).  Such connectivity, if it
 exists, will be either an MPLS-TP LSP (if n > 0) or a data-link
 provided by the underlying server layer network (if n = 0), and is
 referred to as an MPLS-TP section at layer n of the MPLS-TP LSP
 hierarchy.  Thus, the links traversed by a layer n+1 MPLS-TP LSP are
 layer n MPLS-TP sections.  Such an LSP is referred to as a client of
 the section layer, and the section layer is referred to as the server
 layer with respect to its clients.
 The MPLS label stack associated with an MPLS-TP section at layer n
 consists of n labels, in the absence of stack optimization
 mechanisms.  In order for two LSRs to exchange non-IP MPLS-TP control
 packets over a section, an additional label, the G-ACh Label (GAL)
 (see Section 4) MUST appear at the bottom of the label stack.
 An MPLS-TP section may provide one or more of the following types of
 service to its client layer:
 o  Point-to-point bidirectional
 o  Point-to-point unidirectional
 o  Point-to-multipoint unidirectional

Frost, et al. Standards Track [Page 8] RFC 5960 MPLS-TP Data Plane Architecture August 2010

 The manner in which a section provides such a service is outside the
 scope of the MPLS-TP.
 An LSP of any of the types listed in Section 3.1.3 may serve as a
 section for a client-layer transport entity as long as it supports
 the type of service the client requires.
 A section MUST provide a means of identifying the type of payload it
 carries.  If the section is a data-link, link-specific mechanisms
 such as a protocol type indication in the data-link header MAY be
 used.  If the section is an LSP, this information MAY be implied by
 the LSP label or, if the LSP payload is MPLS-labeled, by the setting
 of the S bit.  Additional labels MAY also be used if necessary to
 distinguish different payload types; see [RFC5921] for examples and
 further discussion.

3.3. Pseudowires

 The data plane architectures for single-segment pseudowires [RFC3985]
 and multi-segment pseudowires [RFC5659] are included in the MPLS-TP.
 Data plane processing procedures for pseudowires are defined and
 described in a number of IETF documents.  Some example pseudowire
 data plane procedures include:
 o  Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over
    an MPLS PSN [RFC4385]
 o  Encapsulation Methods for Transport of Ethernet over MPLS Networks
    [RFC4448]
 o  Structure-Agnostic Time Division Multiplexing (TDM) over Packet
    (SAToP) [RFC4553]
 o  Encapsulation Methods for Transport of PPP/High-Level Data Link
    Control (HDLC) over MPLS Networks [RFC4618]
 o  Encapsulation Methods for Transport of Frame Relay over
    Multiprotocol Label Switching (MPLS) Networks [RFC4619]
 o  Encapsulation Methods for Transport of Asynchronous Transfer Mode
    (ATM) over MPLS Networks [RFC4717]
 o  Pseudowire Emulation Edge-to-Edge (PWE3) Asynchronous Transfer
    Mode (ATM) Transparent Cell Transport Service [RFC4816]
 o  Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/
    SDH) Circuit Emulation over Packet (CEP) [RFC4842]

Frost, et al. Standards Track [Page 9] RFC 5960 MPLS-TP Data Plane Architecture August 2010

 o  Structure-Aware Time Division Multiplexed (TDM) Circuit Emulation
    Service over Packet Switched Network (CESoPSN) [RFC5086]
 o  Time Division Multiplexing over IP (TDMoIP) [RFC5087]
 o  Encapsulation Methods for Transport of Fibre Channel frames Over
    MPLS Networks [FC-ENCAP]
 This document specifies no modifications or extensions to pseudowire
 data plane architectures or protocols.

4. MPLS-TP Generic Associated Channel

 The MPLS Generic Associated Channel (G-ACh) mechanism is specified in
 [RFC5586] and included in the MPLS-TP.  The G-ACh provides an
 auxiliary logical data channel associated with MPLS-TP sections,
 LSPs, and PWs in the data plane.  The primary purpose of the G-ACh in
 the context of MPLS-TP is to support control, management, and
 Operations, Administration, and Maintenance (OAM) traffic associated
 with MPLS-TP transport entities.  The G-ACh MUST NOT be used to
 transport client layer network traffic in MPLS-TP networks.
 For pseudowires, the G-ACh uses the first four bits of the PW control
 word to provide the initial discrimination between data packets and
 packets belonging to the associated channel, as described in
 [RFC4385].  When this first nibble of a packet, immediately following
 the label at the bottom of stack, has a value of '1', then this
 packet belongs to a G-ACh.  The first 32 bits following the bottom of
 stack label then have a defined format called an Associated Channel
 Header (ACH), which further defines the content of the packet.  The
 ACH is therefore both a demultiplexer for G-ACh traffic on the PW,
 and a discriminator for the type of G-ACh traffic.
 When the control message is carried over a section or an LSP, rather
 than over a PW, it is necessary to provide an indication in the
 packet that the payload is something other than a client data packet.
 This is achieved by including a reserved label with a value of 13 at
 the bottom of the label stack.  This reserved label is referred to as
 the G-ACh Label (GAL) and is defined in [RFC5586].  When a GAL is
 found, it indicates that the payload begins with an ACH.  The GAL is
 thus a demultiplexer for G-ACh traffic on the section or the LSP, and
 the ACH is a discriminator for the type of traffic carried on the
 G-ACh.  MPLS-TP forwarding follows the normal MPLS model, and thus a
 GAL is invisible to an LSR unless it is the top label in the label
 stack.  The only other circumstance under which the label stack may
 be inspected for a GAL is when the TTL has expired.  Normal packet

Frost, et al. Standards Track [Page 10] RFC 5960 MPLS-TP Data Plane Architecture August 2010

 forwarding MAY continue concurrently with this inspection.  All
 operations on the label stack are in accordance with [RFC3031] and
 [RFC3032].
 An application processing a packet received over the G-ACh may
 require packet-specific context (such as the receiving interface or
 received label stack).  Data plane implementations MUST therefore
 provide adequate context to the application that is to process a
 G-ACh packet.  The definition of the context required MUST be
 provided as part of the specification of the application using the
 G-ACh.

5. Server-Layer Considerations

 The MPLS-TP network has no awareness of the internals of the server
 layer of which it is a client; it requires only that the server layer
 be capable of delivering the type of service required by the MPLS-TP
 transport entities that make use of it.  Note that what appears to be
 a single server-layer link to the MPLS-TP network may be a
 complicated construct underneath, such as an LSP or a collection of
 underlying links operating as a bundle.  Special care may be needed
 in network design and operation when such constructs are used as a
 server layer for MPLS-TP.
 Encapsulation of MPLS-TP packets for transport over specific server-
 layer media is outside the scope of this document.

6. Security Considerations

 The MPLS data plane (and therefore the MPLS-TP data plane) does not
 provide any security mechanisms in and of itself.  Client layers that
 wish to secure data carried over MPLS-TP transport entities are
 REQUIRED to apply their own security mechanisms.
 Where management or control plane protocols are used to install
 label-switching operations necessary to establish MPLS-TP transport
 paths, those protocols are equipped with security features that
 network operators may use to securely create the transport paths.
 Where enhanced security is desirable, and a trust relationship exists
 between an LSR and its peer, the LSR MAY choose to implement the
 following policy for the processing of MPLS packets received from one
 or more of its neighbors:
    Upon receipt of an MPLS packet, discard the packet unless one of
    the following two conditions holds:

Frost, et al. Standards Track [Page 11] RFC 5960 MPLS-TP Data Plane Architecture August 2010

    1.  Any MPLS label in the packet's label stack processed at the
        receiving LSR, such as an LSP or PW label, has a label value
        that the receiving LSR has distributed to that neighbor; or
    2.  Any MPLS label in the packet's label stack processed at the
        receiving LSR, such as an LSP or PW label, has a label value
        that the receiving LSR has previously distributed to the peer
        beyond that neighbor (i.e., when it is known that the path
        from the system to which the label was distributed to the
        receiving system is via that neighbor).
 Further details of MPLS and MPLS-TP security can be found in
 [RFC5921] and [RFC5920].

7. References

7.1. Normative References

 [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.
 [RFC3031]   Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
             Label Switching Architecture", RFC 3031, January 2001.
 [RFC3032]   Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
             Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
             Encoding", RFC 3032, January 2001.
 [RFC3209]   Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
             and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
             Tunnels", RFC 3209, December 2001.
 [RFC3270]   Le Faucheur, F., Wu, L., Davie, B., Davari, S., Vaananen,
             P., Krishnan, R., Cheval, P., and J. Heinanen, "Multi-
             Protocol Label Switching (MPLS) Support of Differentiated
             Services", RFC 3270, May 2002.
 [RFC3443]   Agarwal, P. and B. Akyol, "Time To Live (TTL) Processing
             in Multi-Protocol Label Switching (MPLS) Networks",
             RFC 3443, January 2003.
 [RFC4385]   Bryant, S., Swallow, G., Martini, L., and D. McPherson,
             "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word
             for Use over an MPLS PSN", RFC 4385, February 2006.
 [RFC4448]   Martini, L., Rosen, E., El-Aawar, N., and G. Heron,
             "Encapsulation Methods for Transport of Ethernet over
             MPLS Networks", RFC 4448, April 2006.

Frost, et al. Standards Track [Page 12] RFC 5960 MPLS-TP Data Plane Architecture August 2010

 [RFC4553]   Vainshtein, A. and YJ. Stein, "Structure-Agnostic Time
             Division Multiplexing (TDM) over Packet (SAToP)",
             RFC 4553, June 2006.
 [RFC4618]   Martini, L., Rosen, E., Heron, G., and A. Malis,
             "Encapsulation Methods for Transport of PPP/High-Level
             Data Link Control (HDLC) over MPLS Networks", RFC 4618,
             September 2006.
 [RFC4619]   Martini, L., Kawa, C., and A. Malis, "Encapsulation
             Methods for Transport of Frame Relay over Multiprotocol
             Label Switching (MPLS) Networks", RFC 4619,
             September 2006.
 [RFC4717]   Martini, L., Jayakumar, J., Bocci, M., El-Aawar, N.,
             Brayley, J., and G. Koleyni, "Encapsulation Methods for
             Transport of Asynchronous Transfer Mode (ATM) over MPLS
             Networks", RFC 4717, December 2006.
 [RFC4816]   Malis, A., Martini, L., Brayley, J., and T. Walsh,
             "Pseudowire Emulation Edge-to-Edge (PWE3) Asynchronous
             Transfer Mode (ATM) Transparent Cell Transport Service",
             RFC 4816, February 2007.
 [RFC4842]   Malis, A., Pate, P., Cohen, R., and D. Zelig,
             "Synchronous Optical Network/Synchronous Digital
             Hierarchy (SONET/SDH) Circuit Emulation over Packet
             (CEP)", RFC 4842, April 2007.
 [RFC4875]   Aggarwal, R., Papadimitriou, D., and S. Yasukawa,
             "Extensions to Resource Reservation Protocol - Traffic
             Engineering (RSVP-TE) for Point-to-Multipoint TE Label
             Switched Paths (LSPs)", RFC 4875, May 2007.
 [RFC5331]   Aggarwal, R., Rekhter, Y., and E. Rosen, "MPLS Upstream
             Label Assignment and Context-Specific Label Space",
             RFC 5331, August 2008.
 [RFC5332]   Eckert, T., Rosen, E., Aggarwal, R., and Y. Rekhter,
             "MPLS Multicast Encapsulations", RFC 5332, August 2008.
 [RFC5462]   Andersson, L. and R. Asati, "Multiprotocol Label
             Switching (MPLS) Label Stack Entry: "EXP" Field Renamed
             to "Traffic Class" Field", RFC 5462, February 2009.
 [RFC5586]   Bocci, M., Vigoureux, M., and S. Bryant, "MPLS Generic
             Associated Channel", RFC 5586, June 2009.

Frost, et al. Standards Track [Page 13] RFC 5960 MPLS-TP Data Plane Architecture August 2010

 [RFC5654]   Niven-Jenkins, B., Brungard, D., Betts, M., Sprecher, N.,
             and S. Ueno, "Requirements of an MPLS Transport Profile",
             RFC 5654, September 2009.

7.2. Informative References

 [FC-ENCAP]  Black, D. and L. Dunbar, "Encapsulation Methods for
             Transport of Fibre Channel frames Over MPLS Networks",
             Work in Progress, June 2010.
 [RFC3985]   Bryant, S. and P. Pate, "Pseudo Wire Emulation Edge-to-
             Edge (PWE3) Architecture", RFC 3985, March 2005.
 [RFC5086]   Vainshtein, A., Sasson, I., Metz, E., Frost, T., and P.
             Pate, "Structure-Aware Time Division Multiplexed (TDM)
             Circuit Emulation Service over Packet Switched Network
             (CESoPSN)", RFC 5086, December 2007.
 [RFC5087]   Stein, Y(J)., Shashoua, R., Insler, R., and M. Anavi,
             "Time Division Multiplexing over IP (TDMoIP)", RFC 5087,
             December 2007.
 [RFC5659]   Bocci, M. and S. Bryant, "An Architecture for Multi-
             Segment Pseudowire Emulation Edge-to-Edge", RFC 5659,
             October 2009.
 [RFC5920]   Fang, L., "Security Framework for MPLS and GMPLS
             Networks", RFC 5920, July 2010.
 [RFC5921]   Bocci, M., Bryant, S., Frost, D., Levrau, L., and L.
             Berger, "A Framework for MPLS in Transport Networks",
             RFC 5921, July 2010.

Frost, et al. Standards Track [Page 14] RFC 5960 MPLS-TP Data Plane Architecture August 2010

Authors' Addresses

 Dan Frost (editor)
 Cisco Systems
 EMail: danfrost@cisco.com
 Stewart Bryant (editor)
 Cisco Systems
 EMail: stbryant@cisco.com
 Matthew Bocci (editor)
 Alcatel-Lucent
 EMail: matthew.bocci@alcatel-lucent.com

Frost, et al. Standards Track [Page 15]

/data/webs/external/dokuwiki/data/pages/rfc/rfc5960.txt · Last modified: 2010/08/19 22:22 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki