GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc5777

Internet Engineering Task Force (IETF) J. Korhonen Request for Comments: 5777 H. Tschofenig Category: Standards Track Nokia Siemens Networks ISSN: 2070-1721 M. Arumaithurai

                                              University of Goettingen
                                                         M. Jones, Ed.
                                                               A. Lior
                                                   Bridgewater Systems
                                                         February 2010
        Traffic Classification and Quality of Service (QoS)
                      Attributes for Diameter

Abstract

 This document defines a number of Diameter attribute-value pairs
 (AVPs) for traffic classification with actions for filtering and
 Quality of Service (QoS) treatment.  These AVPs can be used in
 existing and future Diameter applications where permitted by the
 Augmented Backus-Naur Form (ABNF) specification of the respective
 Diameter command extension policy.

Status of This Memo

 This is an Internet Standards Track document.
 This document is a product of the Internet Engineering Task Force
 (IETF).  It represents the consensus of the IETF community.  It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG).  Further information on
 Internet Standards is available in Section 2 of RFC 5741.
 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5777.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors.  All rights reserved.
 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document.  Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.  Code Components extracted from this document must

Korhonen, et al. Standards Track [Page 1] RFC 5777 QoS Attributes for Diameter February 2010

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.
 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008.  The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction ....................................................3
 2. Terminology .....................................................4
 3. Rule Sets and Rules .............................................4
    3.1. QoS-Resources AVP ..........................................5
    3.2. Filter-Rule AVP ............................................5
    3.3. Filter-Rule-Precedence AVP .................................6
 4. Conditions ......................................................6
    4.1. Traffic Classifiers ........................................6
         4.1.1. Classifier AVP ......................................8
         4.1.2. Classifier-ID AVP ...................................9
         4.1.3. Protocol AVP ........................................9
         4.1.4. Direction AVP .......................................9
         4.1.5. From-Spec AVP .......................................9
         4.1.6. To-Spec AVP ........................................10
         4.1.7. Source and Destination AVPs ........................11
         4.1.8. Header Option AVPs .................................15
    4.2. Time Of Day AVPs ..........................................22
         4.2.1. Time-Of-Day-Condition AVP ..........................22
         4.2.2. Time-Of-Day-Start AVP ..............................23
         4.2.3. Time-Of-Day-End AVP ................................23
         4.2.4. Day-Of-Week-Mask AVP ...............................23
         4.2.5. Day-Of-Month-Mask AVP ..............................24
         4.2.6. Month-Of-Year-Mask AVP .............................24
         4.2.7. Absolute-Start-Time AVP ............................25
         4.2.8. Absolute-Start-Fractional-Seconds AVP ..............25
         4.2.9. Absolute-End-Time AVP ..............................25
         4.2.10. Absolute-End-Fractional-Seconds AVP ...............25
         4.2.11. Timezone-Flag AVP .................................25
         4.2.12. Timezone-Offset AVP ...............................26
 5. Actions ........................................................26

Korhonen, et al. Standards Track [Page 2] RFC 5777 QoS Attributes for Diameter February 2010

    5.1. Treatment-Action AVP ......................................26
    5.2. QoS-Profile-Id AVP ........................................27
    5.3. QoS-Profile-Template AVP ..................................27
    5.4. QoS-Semantics .............................................28
    5.5. QoS-Parameters AVP ........................................29
    5.6. Excess-Treatment AVP ......................................29
 6. QoS Capability Indication ......................................29
 7. Examples .......................................................30
    7.1. Diameter EAP with QoS Information .........................30
    7.2. Diameter NASREQ with QoS Information ......................32
    7.3. QoS Authorization .........................................33
    7.4. Diameter Server Initiated Re-Authorization of QoS .........33
    7.5. Diameter Credit Control (CC) with QoS Information .........34
    7.6. Classifier Examples .......................................35
    7.7. QoS Parameter Examples ....................................37
 8. Acknowledgments ................................................37
 9. Contributors ...................................................37
 10. IANA Considerations ...........................................38
    10.1. AVP Codes ................................................38
    10.2. QoS-Semantics IANA Registry ..............................39
    10.3. Action ...................................................40
 11. Security Considerations .......................................40
 12. References ....................................................40
    12.1. Normative References .....................................40
    12.2. Informative References ...................................41
 Appendix A.  MAC and EUI64 Address Mask Usage Considerations ......42

1. Introduction

 This document defines a number of Diameter attribute-value pairs
 (AVPs) for traffic classification with actions for filtering and
 Quality of Service (QoS) treatment.  These AVPs can be used in
 existing and future Diameter applications where permitted by the
 Augmented Backus-Naur Form (ABNF) specification of the respective
 Diameter command extension policy.
 The work on Quality of Service treatment and filtering via Diameter
 dates back to the base protocol described in RFC 3588 [RFC3588].  The
 filtering and QoS functionality was provided by the IPFilterRule AVP
 and the QoSFilterRule AVP.  Both AVPs relied on syntax based on the
 FreeBSD ipfw tool for traffic classification.  The functionality of
 the QoSFilterRule AVP was underspecified in RFC 3588 [RFC3588] and
 was later updated by RFC 4005 [RFC4005].
 As part of the work on updating RFC 3588, the functionality of the
 IPFilterRule and the QoSFilterRule was revised by the functionality
 offered by this document with the goals of a uniform and extensible
 traffic classification mechanism in a native Diameter syntax (instead

Korhonen, et al. Standards Track [Page 3] RFC 5777 QoS Attributes for Diameter February 2010

 of the free text previously used).  Additionally, an extensible set
 of actions is provided that offers the ability for filtering and for
 QoS treatment, whereby the QoS functionality was extended to meet the
 needs of today's networking environments.
 The QoS-Resources AVP represents a complete rule set with each rule
 represented by a Filter-Rule AVP.  Each rule consists of information
 for handling conflict resolution, a conditions part and the
 corresponding actions to be performed if the conditions are
 satisfied.  The AVPs responsible for expressing a condition are
 defined in Section 4.  The capability to match all or a subset of the
 data traffic is provided.  This includes the ability to match on
 Ethernet specific attributes, which was not possible with the QoS-
 Filter-Rule AVP.  Service differentiation may be based on Ethernet
 priority bits, a single layer of VLAN-IDs or stacked VLAN-IDs,
 Logical Link Control (LLC) attributes, MAC addresses, or any
 combination thereof.  The header fields used for Ethernet
 classification are defined in the IEEE802 series of specifications:
 [IEEE802.2], [IEEE802.1ad], [IEEE802.1Q], and [IEEE802.1D].
 Additionally, time-based conditions can be expressed based on the
 functionality offered by the attributes in Section 4.2.
 The action part of a rule contains the type of traffic treatment and
 further description regarding QoS-related actions.
 The QoS policy rules are defined as Diameter encoded attribute-value
 pairs (AVPs) described using a modified version of the Augmented
 Backus-Naur Form (ABNF) (see [RFC3588]).  The AVP datatypes are also
 taken from [RFC3588].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Rule Sets and Rules

 As mentioned in the introduction, the top-level element is the QoS-
 Resources AVP that encapsulates one or more Filter-Rule AVPs.

Korhonen, et al. Standards Track [Page 4] RFC 5777 QoS Attributes for Diameter February 2010

3.1. QoS-Resources AVP

 The QoS-Resources AVP (AVP Code 508) is of type Grouped and contains
 a list of filter policy rules.
 QoS-Resources ::= < AVP Header: 508 >
                 1*{ Filter-Rule }
                 * [ AVP ]

3.2. Filter-Rule AVP

 The Filter-Rule AVP (AVP Code 509) is of type Grouped and defines a
 specific condition and action combination.
                     Filter-Rule ::= < AVP Header: 509 >
                                  [ Filter-Rule-Precedence ]
                                  ; Condition part of a Rule
                                  ; ------------------------
                                  [ Classifier ]
                                * [ Time-Of-Day-Condition ]
                                  ; Action and Meta-Data
                                  ; --------------------
                                  [ Treatment-Action ]
                                  ; Info about QoS related Actions
                                  ; ------------------------------
                                  [ QoS-Semantics ]
                                  [ QoS-Profile-Template ]
                                  [ QoS-Parameters ]
                                  [ Excess-Treatment ]
                                  ; Extension Point
                                  ; ---------------
                                * [ AVP ]
 If the QoS-Profile-Template AVP is not included in the Filter-Rule
 AVP and the Treatment-Action AVP is set to 'shape' or 'mark' then the
 default setting is assumed, namely, a setting of the Vendor-Id AVP to
 0 (for IETF) and the QoS-Profile-Id AVP to zero (0) (for the profile
 defined in [RFC5624]).  Note that the content of the QoS-Parameters
 are defined in the respective specification defining the QoS
 parameters.  When the Vendor-Id AVP is set to 0 (for IETF) and the

Korhonen, et al. Standards Track [Page 5] RFC 5777 QoS Attributes for Diameter February 2010

 QoS-Profile-Id AVP is set to zero (0), then the AVPs included in the
 QoS-Parameters AVP are the AVPs defined in [RFC5624].

3.3. Filter-Rule-Precedence AVP

 The Filter-Rule-Precedence AVP (AVP Code 510) is of type Unsigned32
 and specifies the execution order of the rules expressed in the QoS-
 Resources AVP.  The lower the numerical value of Filter-Rule-
 Precedence AVP, the higher the rule precedence.  Rules with equal
 precedence MAY be executed in parallel if supported by the Resource
 Management Function.  If the Filter-Rule-Precedence AVP is absent
 from the Filter-Rule AVP, the rules SHOULD be executed in the order
 in which they appear in the QoS-Resources AVP.

4. Conditions

 This section describes the condition part of a rule.  Two condition
 types are introduced by this document: packet classification
 conditions represented by the Classifier AVP and time of day
 conditions represented by the Time-Of-Day-Condition AVP.
 If more than one instance of the Time-Of-Day-Condition AVP is present
 in the Filter-Rule AVP, the current time at rule evaluation MUST be
 within at least one of the time windows specified in one of the Time-
 Of-Day-Condition AVPs.
 When the Time-Of-Day-Condition AVP and Classifier AVP are present in
 the same Filter-Rule AVP, both the time of day and packet
 classification conditions MUST match for the traffic treatment action
 to be applied.

4.1. Traffic Classifiers

 Classifiers are used in many applications to specify how to select a
 subset of data packets for subsequent treatment as indicated in the
 action part of a rule.  For example, in a QoS application, if a
 packet matches a classifier then that packet will be treated in
 accordance with a QoS specification associated with that classifier.
 Figure 1 shows a typical deployment.

Korhonen, et al. Standards Track [Page 6] RFC 5777 QoS Attributes for Diameter February 2010

                                                         +-----------+
                                                        +-----------+|
     +--------+          +-------------+              +------------+||
     |        |   IN     |             |              |            |||
     |        +--------->|             +------------->|            |||
     |Managed |          | Classifying |              | Unmanaged  |||
     |Terminal|   OUT    | Entity      |              | Terminal   |||
     |        |<---------+             |<-------------+            ||+
     |        |          |             |              |            |+
     +--------+          +-------------+              +------------+
                                ^
                                | Classifiers
                                |
                         +------+------+
                         |             |
                         |     AAA     |
                         |             |
                         +-------------+
            Figure 1: Example of a Classifier Architecture
 The managed terminal, the terminal for which the classifiers are
 being specified, is located on the left of the Classifying Entity.
 The unmanaged terminals, the terminals that receive packets from the
 managed terminal or send packets to the managed terminal, are located
 to the right side of the Classifying Entity.
 The Classifying Entity is responsible for classifying packets that
 are incoming (IN) from the managed terminal or packets outgoing (OUT)
 to the managed terminal.
 A classifier consists of a group of attributes that specify how to
 match a packet.  Each set of attributes expresses values about
 aspects of the packet -- typically the packet header.  Different
 protocols therefore would use different attributes.
 In general, a classifier consists of the following:
 Identifier:
    The identifier uniquely identifies this classifier and may be used
    to reference the classifier from another structure.
 From:
    Specifies the rule for matching the protocol-specific source
    address(es) part of the packet.

Korhonen, et al. Standards Track [Page 7] RFC 5777 QoS Attributes for Diameter February 2010

 To:
    Specifies the rule for matching the protocol-specific destination
    address(es) part of the packet.
 Protocol:
    Specifies the matching protocol of the packet.
 Direction:
    Specifies whether the classifier is to apply to packets flowing
    from the managed terminal (IN) or to packets flowing to the
    managed terminal (OUT) or to packets flowing in both directions.
 Options:
    Attributes or properties associated with each protocol or layer,
    or various values specific to the header of the protocol or layer.
    Options allow matching on those values.
 Each protocol type will have a specific set of attributes that can be
 used to specify a classifier for that protocol.  These attributes
 will be grouped under a grouped AVP called a Classifier AVP.

4.1.1. Classifier AVP

 The Classifier AVP (AVP Code 511) is a grouped AVP that consists of a
 set of attributes that specify how to match a packet.
 Classifier ::= < AVP Header: 511 >
                { Classifier-ID }
                [ Protocol ]
                [ Direction ]
              * [ From-Spec ]
              * [ To-Spec ]
              * [ Diffserv-Code-Point ]
                [ Fragmentation-Flag ]
              * [ IP-Option ]
              * [ TCP-Option ]
                [ TCP-Flags ]
              * [ ICMP-Type ]
              * [ ETH-Option ]
              * [ AVP ]

Korhonen, et al. Standards Track [Page 8] RFC 5777 QoS Attributes for Diameter February 2010

4.1.2. Classifier-ID AVP

 The Classifier-ID AVP (AVP Code 512) is of type OctetString and
 uniquely identifies the classifier.  Each application will define the
 uniqueness scope of this identifier, e.g., unique per terminal or
 globally unique.  Exactly one Classifier-ID AVP MUST be contained
 within a Classifier AVP.

4.1.3. Protocol AVP

 The Protocol AVP (AVP Code 513) is of type Enumerated and specifies
 the protocol being matched.  The attributes included in the
 Classifier AVP MUST be consistent with the value of the Protocol AVP.
 Exactly zero or one Protocol AVP may be contained within a Classifier
 AVP.  If the Protocol AVP is omitted from the classifier, then
 comparison of the protocol of the packet is irrelevant.  The values
 for this AVP are managed by IANA under the Protocol Numbers registry
 as defined in [RFC2780].

4.1.4. Direction AVP

 The Direction AVP (AVP Code 514) is of type Enumerated and specifies
 in which direction to apply the classifier.  The values of the
 enumeration are "IN","OUT","BOTH".  In the "IN" and "BOTH"
 directions, the From-Spec refers to the address of the managed
 terminal and the To-Spec refers to the unmanaged terminal.  In the
 "OUT" direction, the From-Spec refers to the unmanaged terminal
 whereas the To-Spec refers to the managed terminal.  If the Direction
 AVP is omitted, the classifier matches packets flowing in both
 directions.
   Value | Name and Semantic
   ------+--------------------------------------------------
     0   | IN - The classifier applies to flows from the
         | managed terminal.
     1   | OUT - The classifier applies to flows to the
         | managed terminal.
     2   | BOTH - The classifier applies to flows both to
         | and from the managed terminal.

4.1.5. From-Spec AVP

 The From-Spec AVP (AVP Code 515) is a grouped AVP that specifies the
 Source Specification used to match the packet.  Zero or more of these
 AVPs may appear in the classifier.  If this AVP is absent from the
 classifier, then all packets are matched regardless of the source

Korhonen, et al. Standards Track [Page 9] RFC 5777 QoS Attributes for Diameter February 2010

 address.  If more than one instance of this AVP appears in the
 classifier, then the source of the packet can match any From-Spec
 AVP.  The contents of this AVP are protocol specific.
 If one instance (or multiple instances) of the IP address AVP (IP-
 Address, IP-Address-Range, IP-Address-Mask, Use-Assigned-Address)
 appears in the From-Spec AVP, then the source IP address of the
 packet MUST match one of the addresses represented by these AVPs.
 If more than one instance of the layer 2 address AVPs (MAC-Address,
 MAC-Address-Mask, EUI64-Address, EUI64-Address-Mask) appears in the
 From-Spec, then the source layer 2 address of the packet MUST match
 one of the addresses represented in these AVPs.
 If more than one instance of the port AVPs (Port, Port-Range) appears
 in the From-Spec AVP, then the source port number MUST match one of
 the port numbers represented in these AVPs.
 If the IP address, MAC address, and port AVPs appear in the same
 From-Spec AVP, then the source packet MUST match all the
 specifications, i.e., match the IP address AND MAC address AND port
 number.
 From-Spec ::= < AVP Header: 515 >
             * [ IP-Address ]
             * [ IP-Address-Range ]
             * [ IP-Address-Mask ]
             * [ MAC-Address ]
             * [ MAC-Address-Mask]
             * [ EUI64-Address ]
             * [ EUI64-Address-Mask]
             * [ Port ]
             * [ Port-Range ]
               [ Negated ]
               [ Use-Assigned-Address ]
             * [ AVP ]

4.1.6. To-Spec AVP

 The To-Spec AVP (AVP Code 516) is a grouped AVP that specifies the
 Destination Specification used to match the packet.  Zero or more of
 these AVPs may appear in the classifier.  If this AVP is absent from
 the classifier, then all packets are matched regardless of the
 destination address.  If more than one instance of this AVP appears
 in the classifier, then the destination of the packet can match any
 To-Spec AVP.  The contents of this AVP are protocol specific.

Korhonen, et al. Standards Track [Page 10] RFC 5777 QoS Attributes for Diameter February 2010

 If one instance (or multiple instances) of the IP address AVP (IP-
 Address, IP-Address-Range, IP-Address-Mask, Use-Assigned-Address)
 appears in the To-Spec AVP, then the destination IP address of the
 packet MUST match one of the addresses represented by these AVPs.
 If more than one instance of the layer 2 address AVPs (MAC-Address,
 MAC-Address-Mask, EUI64-Address, EUI64-Address-Mask) appears in the
 To-Spec, then the destination layer 2 address of the packet MUST
 match one of the addresses represented in these AVPs.
 If more than one instance of the port AVPs (Port, Port-Range) appears
 in the To-Spec AVP, then the destination port number MUST match one
 of the port numbers represented in these AVPs.
 If the IP address, MAC address, and port AVPs appear in the same To-
 Spec AVP, then the destination packet MUST match all the
 specifications, i.e., match the IP address AND MAC address AND port
 number.
 To-Spec ::= < AVP Header: 516 >
           * [ IP-Address ]
           * [ IP-Address-Range ]
           * [ IP-Address-Mask ]
           * [ MAC-Address ]
           * [ MAC-Address-Mask]
           * [ EUI64-Address ]
           * [ EUI64-Address-Mask]
           * [ Port ]
           * [ Port-Range ]
             [ Negated ]
             [ Use-Assigned-Address ]
           * [ AVP ]

4.1.7. Source and Destination AVPs

 For packet classification, the contents of the From-Spec and To-Spec
 can contain the AVPs listed in the subsections below.

4.1.7.1. Negated AVP

 The Negated AVP (AVP Code 517) is of type Enumerated containing the
 values of True or False.  Exactly zero or one of these AVPs may
 appear in the From-Spec or To-Spec AVP.

Korhonen, et al. Standards Track [Page 11] RFC 5777 QoS Attributes for Diameter February 2010

 When set to True, the meaning of the match is inverted and the
 classifier will match addresses other than those specified by the
 From-Spec or To-Spec AVP.  When set to False, or when the Negated AVP
 is not present, the classifier will match the addresses specified by
 the From-Spec or To-Spec AVP.
 Note that the negation does not impact the port comparisons.
   Value | Name
   ------+--------
     0   | False
     1   | True

4.1.7.2. IP-Address AVP

 The IP-Address AVP (AVP Code 518) is of type Address and specifies a
 single IP address (IPv4 or IPv6) to match.

4.1.7.3. IP-Address-Range AVP

 The IP-Address-Range AVP (AVP Code 519) is of type Grouped and
 specifies an inclusive IP address range.
 IP-Address-Range ::= < AVP Header: 519 >
                      [ IP-Address-Start ]
                      [ IP-Address-End ]
                    * [ AVP ]
 If the IP-Address-Start AVP is not included, then the address range
 starts from the first valid IP address up to and including the
 specified IP-Address-End address.
 If the IP-Address-End AVP is not included, then the address range
 starts at the address specified by the IP-Address-Start AVP and
 includes all the remaining valid IP addresses.
 For the IP-Address-Range AVP to be valid, the IP-Address-Start AVP
 MUST contain a value that is less than that of the IP-Address-End
 AVP.

4.1.7.4. IP-Address-Start AVP

 The IP-Address-Start AVP (AVP Code 520) is of type Address and
 specifies the first IP address (IPv4 or IPv6) of an IP address range.

Korhonen, et al. Standards Track [Page 12] RFC 5777 QoS Attributes for Diameter February 2010

4.1.7.5. IP-Address-End AVP

 The IP-Address-End AVP (AVP Code 521) is of type Address and
 specifies the last IP address (IPv4 or IPv6) of an address range.

4.1.7.6. IP-Address-Mask AVP

 The IP-Address-Mask AVP (AVP Code 522) is of type Grouped and
 specifies an IP address range using a base IP address and the bit-
 width of the mask.  For example, a range expressed as 192.0.2.0/24
 will match all IP addresses from 192.0.2.0 up to and including
 192.0.2.255.  The bit-width MUST be valid for the type of IP address.
 IP-Address-Mask ::= < AVP Header: 522 >
                     { IP-Address }
                     { IP-Bit-Mask-Width }
                   * [ AVP ]

4.1.7.7. IP-Mask-Bit-Mask-Width AVP

 The IP-Bit-Mask-Width AVP (AVP Code 523) is of type Unsigned32.  The
 value specifies the width of an IP address bit mask.

4.1.7.8. MAC-Address AVP

 The MAC-Address AVP (AVP Code 524) is of type OctetString and
 specifies a single layer 2 address in MAC-48 format.  The value is a
 6-octet encoding of the address as it would appear in the frame
 header.

4.1.7.9. MAC-Address-Mask AVP

 The MAC-Address-Mask AVP (AVP Code 525) is of type Grouped and
 specifies a set of MAC addresses using a bit mask to indicate the
 bits of the MAC addresses that must fit to the specified MAC address
 attribute.  For example, a MAC-Address-Mask with the MAC-Address as
 00-10-A4-23-00-00 and with a MAC-Address-Mask-Pattern of FF-FF-FF-FF-
 00-00 will match all MAC addresses from 00-10-A4-23-00-00 up to and
 including 00-10-A4-23-FF-FF.
 Appendix A describes the considerations that should be given to the
 use of MAC address masks in constructing classifiers.
 MAC-Address-Mask ::= < AVP Header: 525 >
                      { MAC-Address }
                      { MAC-Address-Mask-Pattern }
                    * [ AVP ]

Korhonen, et al. Standards Track [Page 13] RFC 5777 QoS Attributes for Diameter February 2010

4.1.7.10. MAC-Address-Mask-Pattern AVP

 The MAC-Address-Mask-Pattern AVP (AVP Code 526) is of type
 OctetString.  The value is 6 octets specifying the bit positions of a
 MAC address that are taken for matching.

4.1.7.11. EUI64-Address AVP

 The EUI64-Address AVP (AVP Code 527) is of type OctetString and
 specifies a single layer 2 address in EUI-64 format.  The value is an
 8-octet encoding of the address as it would appear in the frame
 header.

4.1.7.12. EUI64-Address-Mask AVP

 The EUI64-Address-Mask AVP (AVP Code 528) is of type Grouped and
 specifies a set of EUI64 addresses using a bit mask to indicate the
 bits of the EUI64 addresses that must fit to the specified EUI64
 address attribute.  For example, a EUI64-Address-Mask with the EUI64-
 Address as 00-10-A4-FF-FE-23-00-00 and with a EUI64-Address-Mask-
 Pattern of FF-FF-FF-FF-FF-FF-00-00 will match all EUI64 addresses
 from 00-10-A4-FF-FE-23-00-00 up to and including 00-10-A4-FF-FE-23-
 FF-FF.
 Appendix A describes the considerations that should be given to the
 use of EUI64 address masks in constructing classifiers.
 EUI64-Address-Mask ::= < AVP Header: 528 >
                        { EUI64-Address }
                        { EUI64-Address-Mask-Pattern }
                      * [ AVP ]

4.1.7.13. EUI64-Address-Mask-Pattern AVP

 The EUI64-Address-Mask-Pattern AVP (AVP Code 529) is of type
 OctetString.  The value is 8 octets specifying the bit positions of a
 EUI64 address that are taken for matching.

4.1.7.14. Port AVP

 The Port AVP (AVP Code 530) is of type Integer32 in the range of 0 to
 65535 and specifies port numbers to match.  The type of port is
 indicated by the value of the Protocol AVP; i.e., if Protocol AVP
 value is 6 (TCP), then the Port AVP represents a TCP port.

Korhonen, et al. Standards Track [Page 14] RFC 5777 QoS Attributes for Diameter February 2010

4.1.7.15. Port-Range AVP

 The Port-Range AVP (AVP Code 531) is of type Grouped and specifies an
 inclusive range of ports.  The type of the ports is indicated by the
 value of the Protocol AVP; i.e., if Protocol AVP value is 6 (TCP),
 then the Port-Range AVP represents an inclusive range of TCP ports.
 Port-Range ::= < AVP Header: 531 >
                [ Port-Start ]
                [ Port-End ]
              * [ AVP ]
 If the Port-Start AVP is omitted, then port 0 is assumed.  If the
 Port-End AVP is omitted, then port 65535 is assumed.

4.1.7.16. Port-Start AVP

 The Port-Start AVP (AVP Code 532) is of type Integer32 and specifies
 the first port number of an IP port range.

4.1.7.17. Port-End AVP

 The Port-End AVP (AVP Code 533) is of type Integer32 and specifies
 the last port number of an IP port range.

4.1.7.18. Use-Assigned-Address AVP

 In some scenarios, the AAA does not know the IP address assigned to
 the managed terminal at the time that the classifier is sent to the
 Classifying Entity.  The Use-Assigned-Address AVP (AVP Code 534) is
 of type Enumerated containing the values of True or False.  When
 present and set to True, it represents the IP address assigned to the
 managed terminal.
   Value | Name
   ------+--------
     0   | False
     1   | True

4.1.8. Header Option AVPs

 The Classifier AVP may contain one or more of the following AVPs to
 match on the various possible IP, TCP, or ICMP header options.

Korhonen, et al. Standards Track [Page 15] RFC 5777 QoS Attributes for Diameter February 2010

4.1.8.1. Diffserv-Code-Point AVP

 The Diffserv-Code-Point AVP (AVP Code 535) is of type Enumerated and
 specifies the Differentiated Services Field Codepoints to match in
 the IP header.  The values are managed by IANA under the
 Differentiated Services Field Codepoints registry as defined in
 [RFC2474].

4.1.8.2. Fragmentation-Flag AVP

 The Fragmentation-Flag AVP (AVP Code 536) is of type Enumerated and
 specifies the packet fragmentation flags to match in the IP header.
   Value | Name and Semantic
   ------+------------------------------------------------------------
     0   | Don't Fragment (DF)
     1   | More Fragments (MF)

4.1.8.3. IP-Option AVP

 The IP-Option AVP (AVP Code 537) is of type Grouped and specifies an
 IP header option that must be matched.
 IP-Option ::= < AVP Header: 537 >
               { IP-Option-Type }
             * [ IP-Option-Value ]
               [ Negated ]
             * [ AVP ]
 If one or more IP-Option-Value AVPs are present, one of the values
 MUST match the value in the IP header option.  If the IP-Option-Value
 AVP is absent, the option type MUST be present in the IP header but
 the value is wild carded.
 The Negated AVP is used in conjunction with the IP-Option-Value AVPs
 to specify IP header options that do not match specific values.  The
 Negated AVP is used without the IP-Option-Value AVP to specify IP
 headers that do not contain the option type.

4.1.8.4. IP-Option-Type AVP

 The IP-Option-Type AVP (AVP Code 538) is of type Enumerated and the
 values are managed by IANA under the IP Option Numbers registry as
 defined in [RFC2780].

Korhonen, et al. Standards Track [Page 16] RFC 5777 QoS Attributes for Diameter February 2010

4.1.8.5. IP-Option-Value AVP

 The IP-Option-Value AVP (AVP Code 539) is of type OctetString and
 contains the option value that must be matched.

4.1.8.6. TCP-Option AVP

 The TCP-Option AVP (AVP Code 540) is of type Grouped and specifies a
 TCP header option that must be matched.
 TCP-Option ::= < AVP Header: 540 >
                { TCP-Option-Type }
              * [ TCP-Option-Value ]
                [ Negated ]
              * [ AVP ]
 If one or more TCP-Option-Value AVPs are present, one of the values
 MUST match the value in the TCP header option.  If the TCP-Option-
 Value AVP is absent, the option type MUST be present in the TCP
 header but the value is wild carded.
 The Negated AVP is used in conjunction that the TCP-Option-Value AVPs
 to specify TCP header options that do not match specific values.  The
 Negated AVP is used without the TCP-Option-Value AVP to specify TCP
 headers that do not contain the option type.

4.1.8.7. TCP-Option-Type AVP

 The TCP-Option-Type AVP (AVP Code 541) is of type Enumerated and the
 values are managed by IANA under the TCP Option Numbers registry as
 defined in [RFC2780].

4.1.8.8. TCP-Option-Value AVP

 The TCP-Option-Value AVP (AVP Code 542) is of type OctetString and
 contains the option value that must be matched.

4.1.8.9. TCP-Flags AVP

 The TCP-Flags AVP (AVP Code 543) is of type Grouped and specifies a
 set of TCP control flags that must be matched.
 TCP-Flags ::= < AVP Header: 543 >
               { TCP-Flag-Type }
               [ Negated ]
             * [ AVP ]

Korhonen, et al. Standards Track [Page 17] RFC 5777 QoS Attributes for Diameter February 2010

 If the Negated AVP is not present or present but set to False, the
 TCP-Flag-Type AVP specifies which flags MUST be set.  If the Negated
 AVP is set to True, the TCP-Flag-Type AVP specifies which flags MUST
 be cleared.

4.1.8.10. TCP-Flag-Type AVP

 The TCP-Flag-Type AVP (AVP Code 544) is of type Unsigned32 and
 specifies the TCP control flag types that must be matched.  The first
 16 bits match the TCP header format defined in [RFC3168], and the
 subsequent 16 bits are unused.  Within the first 16 bits, bits 0 to 3
 are unused and bits 4 to 15 are managed by IANA under the TCP Header
 Flag registry as defined in [RFC3168].

4.1.8.11. ICMP-Type

 The ICMP-Type AVP (AVP Code 545) is of type Grouped and specifies an
 ICMP message type that must be matched.
 ICMP-Type ::= < AVP Header: 545 >
               { ICMP-Type-Number }
             * [ ICMP-Code ]
               [ Negated ]
             * [ AVP ]
 If the ICMP-Code AVP is present, the value MUST match that in the
 ICMP header.  If the ICMP-Code AVP is absent, the ICMP type MUST be
 present in the ICMP header but the code is wild carded.
 The Negated AVP is used in conjunction with the ICMP-Code AVPs to
 specify ICMP codes that do not match specific values.  The Negated
 AVP is used without the ICMP-Code AVP to specify ICMP headers that do
 not contain the ICMP type.  As such, the Negated AVP feature applies
 to ICMP-Code AVP if the ICMP-Code AVP is present.  If the ICMP-Code
 AVP is absent, the Negated AVP feature applies to the ICMP-Type-
 Number.

4.1.8.12. ICMP-Type-Number AVP

 The ICMP-Type-Number AVP (AVP Code 546) is of type Enumerated and the
 values are managed by IANA under the ICMP Type Numbers registry as
 defined in [RFC2780].

Korhonen, et al. Standards Track [Page 18] RFC 5777 QoS Attributes for Diameter February 2010

4.1.8.13. ICMP-Code AVP

 The ICMP-Code AVP (AVP Code 547) is of type Enumerated and the values
 are managed by IANA under the ICMP Type Numbers registry as defined
 in [RFC2780].

4.1.8.14. ETH-Option AVP

 The ETH-Option AVP (AVP Code 548) is of type Grouped and specifies
 Ethernet specific attributes.
 ETH-Option ::= < AVP Header: 548 >
                { ETH-Proto-Type }
              * [ VLAN-ID-Range ]
              * [ User-Priority-Range ]
              * [ AVP ]

4.1.8.15. ETH-Proto-Type AVP

 The Eth-Proto-Type AVP (AVP Code 549) is of type Grouped and
 specifies the encapsulated protocol type.  ETH-Ether-Type and ETH-SAP
 are mutually exclusive.
 ETH-Proto-Type ::= < AVP Header: 549 >
                  * [ ETH-Ether-Type ]
                  * [ ETH-SAP ]
                  * [ AVP ]

4.1.8.16. ETH-Ether-Type AVP

 The ETH-Ether-Type AVP (AVP Code 550) is of type OctetString.  The
 value is a double octet that contains the value of the Ethertype
 field in the packet to match.  This AVP MAY be present in the case of
 Digital, Intel, and Xerox (DIX) or if the Subnetwork Access Protocol
 (SNAP) is present at 802.2, but the ETH-SAP AVP MUST NOT be present
 in this case.

4.1.8.17. ETH-SAP AVP

 The ETH-SAP AVP (AVP Code 551) is of type OctetString.  The value is
 a double octet representing the 802.2 SAP as specified in
 [IEEE802.2].  The first octet contains the Destination Service Access
 Point (DSAP) and the second the Source Service Access Point (SSAP).

Korhonen, et al. Standards Track [Page 19] RFC 5777 QoS Attributes for Diameter February 2010

4.1.8.18. VLAN-ID-Range AVP

 The VLAN-ID-Range AVP (AVP Code 552) is of type Grouped and specifies
 the VLAN range to match.  VLAN identities are specified either by a
 single VLAN-ID according to [IEEE802.1Q] or by a combination of
 Customer and Service VLAN-IDs according to [IEEE802.1ad].
 The single VLAN-ID is represented by the C-VID-Start and C-VID-End
 AVPs, and the S-VID-Start and S-VID-End AVPs SHALL be omitted in this
 case.  If the VLAN-ID-Range AVP is omitted from the classifier, then
 comparison of the VLAN identity of the packet is irrelevant.
 VLAN-ID-Range ::= < AVP Header: 552 >
                   [ S-VID-Start ]
                   [ S-VID-End ]
                   [ C-VID-Start ]
                   [ C-VID-End ]
                 * [ AVP ]
 The following is the list of possible combinations of the S-VID-Start
 and S-VID-End AVPs and their inference:
 o  If S-VID-Start AVP is present but the S-VID-End AVP is absent, the
    S-VID-Start AVP value MUST equal the value of the IEEE 802.1ad
    S-VID bits specified in [IEEE802.1ad] for a successful match.
 o  If S-VID-Start AVP is absent but the S-VID-End AVP is present, the
    S-VID-End AVP value MUST equal the value of the IEEE 802.1ad S-VID
    bits for a successful match.
 o  If both S-VID-Start and S-VID-End AVPs are present and their
    values are equal, the S-VID-Start AVP value MUST equal the value
    of the IEEE 802.1ad S-VID bits for a successful match.
 o  If both S-VID-Start and S-VID-End AVPs are present and the value
    of S-VID-End AVP is greater than the value of the S-VID-Start AVP,
    the value of the IEEE 802.1ad S-VID bits MUST be greater than or
    equal to the S-VID-Start AVP value and less than or equal to the
    S-VID-End AVP value for a successful match.  If the S-VID-Start
    and S-VID-End AVPs are specified, then Ethernet packets without
    IEEE 802.1ad encapsulation MUST NOT match this classifier.
 o  If the S-VID-Start and S-VID-End AVPs are omitted, then existence
    of IEEE802.1ad encapsulation or comparison of the IEEE 802.1ad
    S-VID bits is irrelevant for this classifier.
 The following is the list of possible combinations of the C-VID-Start
 and C-VID-End AVPs and their inference:

Korhonen, et al. Standards Track [Page 20] RFC 5777 QoS Attributes for Diameter February 2010

 o  If C-VID-Start AVP is present but the C-VID-End AVP is absent, the
    C-VID-Start AVP value MUST equal the value of the IEEE 802.1ad
    C-VID bits specified in [IEEE802.1ad] or the IEEE 802.1Q VLAN-ID
    bits specified in [IEEE802.1Q] for a successful match.
 o  If C-VID-Start AVP is absent but the C-VID-End AVP is present, the
    C-VID-End AVP value MUST equal the value of the IEEE 802.1ad C-VID
    bits or the IEEE 802.1Q VLAN-ID bits for a successful match.
 o  If both C-VID-Start and C-VID-End AVPs are present and their
    values are equal, the C-VID-Start AVP value MUST equal the value
    of the IEEE 802.1ad C-VID bits or the IEEE 802.1Q VLAN-ID bits for
    a successful match.
 o  If both C-VID-Start and C-VID-End AVPs are present and the value
    of C-VID-End AVP is greater than the value of the C-VID-Start AVP,
    the value of the IEEE 802.1ad C-VID bits or the IEEE 802.1Q
    VLAN-ID bits MUST be greater than or equal to the C-VID-Start AVP
    value and less than or equal to the C-VID-End AVP value for a
    successful match.  If the C-VID-Start and C-VID-End AVPs are
    specified, then Ethernet packets without IEEE 802.1ad or IEEE
    802.1Q encapsulation MUST NOT match this classifier.
 o  If the C-VID-Start and C-VID-End AVPs are omitted, the comparison
    of the IEEE 802.1ad C-VID bits or IEEE 802.1Q VLAN-ID bits for
    this classifier is irrelevant.

4.1.8.19. S-VID-Start AVP

 The S-VID-Start AVP (AVP Code 553) is of type Unsigned32.  The value
 MUST be in the range from 0 to 4095.  The value of this AVP specifies
 the start value of the range of S-VID VLAN-IDs to be matched.

4.1.8.20. S-VID-End AVP

 The S-VID-End AVP (AVP Code 554) is of type Unsigned32.  The value
 MUST be in the range from 0 to 4095.  The value of this AVP specifies
 the end value of the range of S-VID VLAN-IDs to be matched.

4.1.8.21. C-VID-Start AVP

 The C-VID-Start AVP (AVP Code 555) is of type Unsigned32.  The value
 MUST be in the range from 0 to 4095.  The value of this AVP specifies
 the start value of the range of C-VID VLAN-IDs to be matched.

Korhonen, et al. Standards Track [Page 21] RFC 5777 QoS Attributes for Diameter February 2010

4.1.8.22. C-VID-End AVP

 The C-VID-End AVP (AVP Code 556) is of type Unsigned32.  The value
 MUST be in the range from 0 to 4095.  The value of this AVP specifies
 the end value of the range of C-VID VLAN-IDs to be matched.

4.1.8.23. User-Priority-Range AVP

 The User-Priority-Range AVP (AVP Code 557) is of type Grouped and
 specifies an inclusive range to match the user_priority parameter
 specified in [IEEE802.1D].  An Ethernet packet containing the
 user_priority parameter matches this classifier if the value is
 greater than or equal to Low-User-Priority and less than or equal to
 High-User-Priority.  If this AVP is omitted, then comparison of the
 IEEE 802.1D user_priority parameter for this classifier is
 irrelevant.
 User-Priority-Range ::= < AVP Header: 557 >
                       * [ Low-User-Priority ]
                       * [ High-User-Priority ]
                       * [ AVP ]

4.1.8.24. Low-User-Priority AVP

 The Low-User-Priority AVP (AVP Code 558) is of type Unsigned32.  The
 value MUST be in the range from 0 to 7.

4.1.8.25. High-User-Priority AVP

 The High-User-Priority AVP (AVP Code 559) is of type Unsigned32.  The
 value MUST be in the range from 0 to 7.

4.2. Time Of Day AVPs

 In many QoS applications, the QoS specification applied to the
 traffic flow is conditional upon the time of day when the flow was
 observed.  The following sections define AVPs that can be used to
 express one or more time windows that determine when a traffic
 treatment action is applicable to a traffic flow.

4.2.1. Time-Of-Day-Condition AVP

 The Time-Of-Day-Condition AVP (AVP Code 560) is of type Grouped and
 specifies one or more time windows.

Korhonen, et al. Standards Track [Page 22] RFC 5777 QoS Attributes for Diameter February 2010

 Time-Of-Day-Condition ::= < AVP Header: 560 >
                           [ Time-Of-Day-Start ]
                           [ Time-Of-Day-End ]
                           [ Day-Of-Week-Mask ]
                           [ Day-Of-Month-Mask ]
                           [ Month-Of-Year-Mask ]
                           [ Absolute-Start-Time ]
                           [ Absolute-End-Time ]
                           [ Timezone-Flag ]
                         * [ AVP ]
 For example, a time window for 9 a.m. to 5 p.m. (local time) from
 Monday to Friday would be expressed as:
 Time-Of-Day-Condition = {
     Time-Of-Day-Start = 32400;
     Time-Of-Day-End = 61200;
     Day-Of-Week-Mask =
         ( MONDAY | TUESDAY | WEDNESDAY | THURSDAY | FRIDAY );
     Timezone-Flag = LOCAL;
 }

4.2.2. Time-Of-Day-Start AVP

 The Time-Of-Day-Start AVP (AVP Code 561) is of type Unsigned32.  The
 value MUST be in the range from 0 to 86400.  The value of this AVP
 specifies the start of an inclusive time window expressed as the
 offset in seconds from midnight.  If this AVP is absent from the
 Time-Of-Day-Condition AVP, the time window starts at midnight.

4.2.3. Time-Of-Day-End AVP

 The Time-Of-Day-End AVP (AVP Code 562) is of type Unsigned32.  The
 value MUST be in the range from 1 to 86400.  The value of this AVP
 specifies the end of an inclusive time window expressed as the offset
 in seconds from midnight.  If this AVP is absent from the Time-Of-
 Day-Condition AVP, the time window ends one second before midnight.

4.2.4. Day-Of-Week-Mask AVP

 The Day-Of-Week-Mask AVP (AVP Code 563) is of type Unsigned32.  The
 value is a bit mask that specifies the day of the week for the time
 window to match.  This document specifies the following bits:

Korhonen, et al. Standards Track [Page 23] RFC 5777 QoS Attributes for Diameter February 2010

    Bit  | Name
   ------+------------
     0   | SUNDAY
     1   | MONDAY
     2   | TUESDAY
     3   | WEDNESDAY
     4   | THURSDAY
     5   | FRIDAY
     6   | SATURDAY
 The bit MUST be set for the time window to match on the corresponding
 day of the week.  Bit 0 is the least significant bit and unused bits
 MUST be cleared.  If this AVP is absent from the Time-Of-Day-
 Condition AVP, the time windows match on all days of the week.

4.2.5. Day-Of-Month-Mask AVP

 The Day-Of-Month AVP (AVP Code 564) is of type Unsigned32.  The value
 MUST be in the range from 0 to 2147483647.  The value is a bit mask
 that specifies the days of the month where bit 0 represents the first
 day of the month through to bit 30, which represents the last day of
 the month.  The bit MUST be set for the time window to match on the
 corresponding day of the month.  Bit 0 is the least significant bit
 and unused bits MUST be cleared.  If this AVP is absent from the
 Time-Of-Day-Condition AVP, the time windows match on all days of the
 month.

4.2.6. Month-Of-Year-Mask AVP

 The Month-Of-Year-Mask AVP (AVP Code 565) is of type Unsigned32.  The
 value is a bit mask that specifies the months of the year for the
 time window to match.  This document specifies the following bits:
    Bit  | Name
   ------+-----------
     0   | JANUARY
     1   | FEBRUARY
     2   | MARCH
     3   | APRIL
     4   | MAY
     5   | JUNE
     6   | JULY
     7   | AUGUST
     8   | SEPTEMBER
     9   | OCTOBER
     10  | NOVEMBER
     11  | DECEMBER

Korhonen, et al. Standards Track [Page 24] RFC 5777 QoS Attributes for Diameter February 2010

 The bit MUST be set for the time window to match on the corresponding
 month of the year.  Bit 0 is the least significant bit and unused
 bits MUST be cleared.  If this AVP is absent from the Time-Of-Day-
 Condition AVP, the time windows match during all months of the year.

4.2.7. Absolute-Start-Time AVP

 The Absolute-Start-Time AVP (AVP Code 566) is of type Time.  The
 value of this AVP specifies the time in seconds since January 1,
 1900, 00:00 UTC when the time window starts.  If this AVP is absent
 from the Time-Of-Day-Condition AVP, the time window starts on January
 1, 1900, 00:00 UTC.

4.2.8. Absolute-Start-Fractional-Seconds AVP

 The Absolute-Start-Fractional-Seconds AVP (AVP Code 567) is of type
 Unsigned32.  The value specifies the fractional seconds that are
 added to Absolute-Start-Time value in order to determine when the
 time window starts.  If this AVP is absent from the Time-Of-Day-
 Condition AVP, then the fractional seconds are assumed to be zero.

4.2.9. Absolute-End-Time AVP

 The Time-Of-Day-End AVP (AVP Code 568) is of type Time.  The value of
 this AVP specifies the time in seconds since January 1, 1900, 00:00
 UTC when the time window ends.  If this AVP is absent from the Time-
 Of-Day-Condition AVP, then the time window is open-ended.

4.2.10. Absolute-End-Fractional-Seconds AVP

 The Absolute-End-Fractional-Seconds AVP (AVP Code 569) is of type
 Unsigned32.  The value specifies the fractional seconds that are
 added to Absolute-End-Time value in order to determine when the time
 window ends.  If this AVP is absent from the Time-Of-Day-Condition
 AVP, then the fractional seconds are assumed to be zero.

4.2.11. Timezone-Flag AVP

 The Timezone-Flag AVP (AVP Code 570) is of type Enumerated and
 indicates whether the time windows are specified in UTC, local time,
 at the managed terminal or as an offset from UTC.  If this AVP is
 absent from the Time-Of-Day-Condition AVP, then the time windows are
 in UTC.

Korhonen, et al. Standards Track [Page 25] RFC 5777 QoS Attributes for Diameter February 2010

 This document defines the following values:
   Value | Name and Semantic
   ------+--------------------------------------------------
     0   | UTC - The time windows are expressed in UTC.
     1   | LOCAL - The time windows are expressed in local
         | time at the managed terminal.
     2   | OFFSET - The time windows are expressed as an
         | offset from UTC (see Timezone-Offset AVP).

4.2.12. Timezone-Offset AVP

 The Timezone-Offset AVP (AVP Code 571) is of type Integer32.  The
 value of this AVP MUST be in the range from -43200 to 43200.  It
 specifies the offset in seconds from UTC that was used to express
 Time-Of-Day-Start, Time-Of-Day-End, Day-Of-Week-Mask, Day-Of-Month-
 Mask, and Month-Of-Year-Mask AVPs.  This AVP MUST be present if the
 Timezone-Flag AVP is set to OFFSET.

5. Actions

 This section defines the actions associated with a rule.

5.1. Treatment-Action AVP

 The Treatment-Action AVP (AVP Code 572) is of type Enumerated and
 lists the actions that are associated with the condition part of a
 rule.  The following actions are defined in this document:
    0: drop
    1: shape
    2: mark
    3: permit
 drop:
    This action indicates that the respective traffic MUST be dropped.
 shape:
    [RFC2475] describes shaping as "the process of delaying packets
    within a traffic stream to cause it to conform to some defined
    traffic profile".  When the action is set to 'shape', the QoS-
    Parameters AVP SHALL contain QoS information AVPs, such as the
    TMOD-1 and Bandwidth AVPs [RFC5624], that indicate how to shape
    the traffic described by the condition part of the rule.

Korhonen, et al. Standards Track [Page 26] RFC 5777 QoS Attributes for Diameter February 2010

 mark:
    [RFC2475] describes marking as "the process of setting the DS
    codepoint in a packet based on defined rules".  When the action is
    set to 'mark', the QoS-Parameters AVP SHALL contain QoS
    information AVPs, such as the PHB-Class AVP [RFC5624], that
    indicate the Diffserv marking to be applied to the traffic
    described by the condition part of the rule.
 permit:
    The 'permit' action is the counterpart to the 'drop' action used
    to allow traffic that matches the condition part of a rule to
    bypass.
 [RFC2475] also describes an action called 'policing' as "the process
 of discarding packets (by a dropper) within a traffic stream in
 accordance with the state of a corresponding meter enforcing a
 traffic profile".  This behavior is modeled in the Filter-Rule
 through the inclusion of the Excess-Treatment AVP containing a
 Treatment-Action AVP set to 'drop'.
 Further action values can be registered, as described in
 Section 10.3.

5.2. QoS-Profile-Id AVP

 The QoS-Profile-Id AVP (AVP Code 573) is of type Unsigned32 and
 contains a QoS profile template identifier.  An initial QoS profile
 template is defined with value of 0 and can be found in [RFC5624].
 The registry for the QoS profile templates is created with the same
 document.

5.3. QoS-Profile-Template AVP

 The QoS-Profile-Template AVP (AVP Code 574) is of type Grouped and
 defines the namespace of the QoS profile (indicated in the Vendor-ID
 AVP) followed by the specific value for the profile.
 The Vendor-Id AVP contains a 32-bit IANA Private Enterprise Number
 (PEN), and the QoS-Profile-Id AVP contains the template identifier
 assigned by the vendor.  The vendor identifier of zero (0) is used
 for the IETF.

Korhonen, et al. Standards Track [Page 27] RFC 5777 QoS Attributes for Diameter February 2010

 QoS-Profile-Template ::= < AVP Header: 574 >
                          { Vendor-Id }
                          { QoS-Profile-Id }
                        * [ AVP ]

5.4. QoS-Semantics

 The QoS-Semantics AVP (AVP Code 575) is of type Enumerated and
 provides the semantics for the QoS-Profile-Template and QoS-
 Parameters AVPs in the Filter-Rule AVP.
 This document defines the following values:
  (0): QoS-Desired
  (1): QoS-Available
  (2): QoS-Delivered
  (3): Minimum-QoS
  (4): QoS-Authorized
 The semantics of the QoS parameters depend on the information
 provided in the list above.  The semantics of the different values
 are as follows:
 Object Type    Direction   Semantic
 ---------------------------------------------------------------------
 QoS-Desired     C->S       Client requests authorization of the
                            indicated QoS.
 QoS-Desired     C<-S       NA
 QoS-Available   C->S       Admission Control at client indicates
                            that this QoS is available. (note 1)
 QoS-Available   C<-S       Admission Control at server indicates
                            that this QoS is available. (note 2)
 QoS-Delivered   C->S       Client is reporting the actual QoS
                            delivered to the terminal.
 QoS-Delivered   C<-S       NA
 Minimum-QoS     C->S       Client is not interested in authorizing
                            QoS that is lower than the indicated QoS.
 Minimum-QoS     C<-S       Client must not provide QoS guarantees
                            lower than the indicated QoS.
 QoS-Authorized  C->S       NA
 QoS-Authorized  C<-S       Server authorizes the indicated QoS.
 Legend:
   C: Diameter client
   S: Diameter server
   NA: Not applicable to this document;
       no semantic defined in this specification

Korhonen, et al. Standards Track [Page 28] RFC 5777 QoS Attributes for Diameter February 2010

 Notes:
  (1) QoS-Available in this direction indicates to the server that
      any QoS-Authorized or Minimum-QoS must be less than this
      indicated QoS.
  (2) QoS-Available in this direction is only useful when the AAA
      server performs admission control and knows about the resources
      in the network.

5.5. QoS-Parameters AVP

 The QoS-Parameters AVP (AVP Code 576) is of type Grouped and contains
 Quality of Service parameters.  These parameters are defined in
 separate documents and depend on the indicated QoS profile template
 of the QoS-Profile-Template AVP.  For an initial QoS parameter
 specification, see [RFC5624].
 QoS-Parameters  ::= < AVP Header: 576 >
                      * [ AVP ]

5.6. Excess-Treatment AVP

 The Excess-Treatment AVP (AVP Code 577) is of type Grouped and
 indicates how out-of-profile traffic, i.e., traffic not covered by
 the original QoS-Profile-Template and QoS-Parameters AVPs, is
 treated.  The additional Treatment-Action, QoS-Profile-Template, and
 QoS-Parameters AVPs carried inside the Excess-Treatment AVP provide
 information about the QoS treatment of the excess traffic.  In case
 the Excess-Treatment AVP is absent, then the treatment of the out-of-
 profile traffic is left to the discretion of the node performing QoS
 treatment.
 Excess-Treatment ::= < AVP Header: 577 >
                      { Treatment-Action }
                      [ QoS-Profile-Template ]
                      [ QoS-Parameters ]
                    * [ AVP ]

6. QoS Capability Indication

 The QoS-Capability AVP (AVP Code 578) is of type Grouped and contains
 a list of supported Quality of Service profile templates (and
 therefore the support of the respective parameter AVPs).
 The QoS-Capability AVP may be used for a simple announcement of the
 QoS capabilities and QoS profiles supported by a peer.  It may also
 be used to negotiate a mutually supported set of QoS capabilities and

Korhonen, et al. Standards Track [Page 29] RFC 5777 QoS Attributes for Diameter February 2010

 QoS profiles between two peers.  In such a case, handling of failed
 negotiations is application and/or deployment specific.
 QoS-Capability ::= < AVP Header: 578 >
                  1*{ QoS-Profile-Template }
                  * [ AVP ]
 The QoS-Profile-Template AVP is defined in Section 5.3.

7. Examples

 This section shows a number of signaling flows where QoS negotiation
 and authorization are part of the conventional NASREQ, EAP, or Credit
 Control applications message exchanges.  The signaling flows for the
 Diameter QoS Application are described in [DIAMETER-QOS].

7.1. Diameter EAP with QoS Information

 Figure 2 shows a simple signaling flow where a Network Access Server
 (NAS) (Diameter Client) announces its QoS awareness and capabilities
 included into the DER message and as part of the access
 authentication procedure.  Upon completion of the EAP exchange, the
 Diameter server provides a pre-provisioned QoS profile with the QoS-
 Semantics in the Filter-Rule AVP set to 'QoS-Authorized', to the NAS
 in the final Diameter-EAP-Answer (DEA) message.

Korhonen, et al. Standards Track [Page 30] RFC 5777 QoS Attributes for Diameter February 2010

  End                           Diameter                      Diameter
  Host                           Client                         Server
   |                               |                                |
   |        (initiate EAP)         |                                |
   |<----------------------------->|                                |
   |                               | Diameter-EAP-Request           |
   |                               | EAP-Payload(EAP Start)         |
   |                               | QoS-Capability                 |
   |                               |------------------------------->|
   |                               |                                |
   |                               |            Diameter-EAP-Answer |
   |                          Result-Code=DIAMETER_MULTI_ROUND_AUTH |
   |                               |    EAP-Payload(EAP Request #1) |
   |                               |<-------------------------------|
   |         EAP Request(Identity) |                                |
   |<------------------------------|                                |
   :                               :                                :
   :                     <<<more message exchanges>>>               :
   :                               :                                :
   |                               |                                |
   | EAP Response #N               |                                |
   |------------------------------>|                                |
   |                               | Diameter-EAP-Request           |
   |                               | EAP-Payload(EAP Response #N)   |
   |                               |------------------------------->|
   |                               |                                |
   |                               |            Diameter-EAP-Answer |
   |                               |   Result-Code=DIAMETER_SUCCESS |
   |                               |       EAP-Payload(EAP Success) |
   |                               |           (authorization AVPs) |
   |                               |  QoS-Resources(QoS-Authorized) |
   |                               |<-------------------------------|
   |                               |                                |
   |                   EAP Success |                                |
   |<------------------------------|                                |
   |                               |                                |
   Figure 2: Example of a Diameter EAP Enhanced with QoS Information

Korhonen, et al. Standards Track [Page 31] RFC 5777 QoS Attributes for Diameter February 2010

7.2. Diameter NASREQ with QoS Information

 Figure 3 shows a similar pre-provisioned QoS signaling as in Figure 2
 but using the NASREQ application instead of EAP application.
    End                                             Diameter
    Host               NAS                            Server
     |                  |                              |
     |  Start Network   |                              |
     |  Attachment      |                              |
     |<---------------->|                              |
     |                  |                              |
     |                  |AA-Request                    |
     |                  |NASREQ-Payload                |
     |                  |QoS-Capability                |
     |                  +----------------------------->|
     |                  |                              |
     |                  |                     AA-Answer|
     |            Result-Code=DIAMETER_MULTI_ROUND_AUTH|
     |                NASREQ-Payload(NASREQ Request #1)|
     |                  |<-----------------------------+
     |                  |                              |
     | Request          |                              |
     |<-----------------+                              |
     |                  |                              |
     :                  :                              :
     :          <<<more message exchanges>>>           :
     :                  :                              :
     | Response #N      |                              |
     +----------------->|                              |
     |                  |                              |
     |                  |AA-Request                    |
     |                  |NASREQ-Payload ( Response #N )|
     |                  +----------------------------->|
     |                  |                              |
     |                  |                     AA-Answer|
     |                  |  Result-Code=DIAMETER_SUCCESS|
     |                  |          (authorization AVPs)|
     |                  | QoS-Resources(QoS-Authorized)|
     |                  |<-----------------------------+
     |                  |                              |
     | Success          |                              |
     |<-----------------+                              |
     |                  |                              |
 Figure 3: Example of a Diameter NASREQ Enhanced with QoS Information

Korhonen, et al. Standards Track [Page 32] RFC 5777 QoS Attributes for Diameter February 2010

7.3. QoS Authorization

 Figure 4 shows an example of authorization-only QoS signaling as part
 of the NASREQ message exchange.  The NAS provides the Diameter server
 with the "QoS-Desired" QoS-Semantics AVP included in the QoS-
 Resources AVP.  The Diameter server then either authorizes the
 indicated QoS or rejects the request and informs the NAS about the
 result.  In this scenario, the NAS does not need to include the QoS-
 Capability AVP in the AAR message as the QoS-Resources AVP implicitly
 does the same and also the NAS is authorizing a specific QoS profile,
 not a pre-provisioned one.
     End                                            Diameter
     Host               NAS                          Server
      |                  |                              |
      |                  |                              |
      |  QoS Request     |                              |
      +----------------->|                              |
      |                  |                              |
      |                  |AA-Request                    |
      |                  |Auth-Request-Type=AUTHORIZE_ONLY
      |                  |NASREQ-Payload                |
      |                  |QoS-Resources(QoS-Desired)    |
      |                  +----------------------------->|
      |                  |                              |
      |                  |                     AA-Answer|
      |                  |       NASREQ-Payload(Success)|
      |                  | QoS-Resources(QoS-Authorized)|
      |                  |<-----------------------------+
      |  Accept          |                              |
      |<-----------------+                              |
      |                  |                              |
      |                  |                              |
      |                  |                              |
        Figure 4: Example of an Authorization-Only Message Flow

7.4. Diameter Server Initiated Re-Authorization of QoS

 Figure 5 shows a message exchange for a Diameter server-initiated QoS
 re-authorization procedure.  The Diameter server sends the NAS a Re-
 Auth Request (RAR) message requesting re-authorization for an
 existing session and the NAS acknowledges it with a RAA message.  The
 NAS is aware of its existing QoS profile and information for the
 ongoing session that the Diameter server requested for re-

Korhonen, et al. Standards Track [Page 33] RFC 5777 QoS Attributes for Diameter February 2010

 authorization.  Thus, the NAS must initiate re-authorization of the
 existing QoS profile.  The re-authorization procedure is the same as
 in Figure 4.
    End                                             Diameter
    Host               NAS                           Server
     |                  |                              |
     |                  |                              |
     :                  :                              :
     :          <<<Initial Message Exchanges>>>        :
     :                  :                              :
     |                  |                              |
     |                  |                   RA-Request |
     |                  |<-----------------------------+
     |                  |                              |
     |                  |RA-Answer                     |
     |                  |Result-Code=DIAMETER_SUCCESS  |
     |                  +----------------------------->|
     |                  |                              |
     |                  |                              |
     |                  |AA-Request                    |
     |                  |NASREQ-Payload                |
     |                  |Auth-Request-Type=AUTHORIZE_ONLY
     |                  |QoS-Resources(QoS-Desired)    |
     |                  +----------------------------->|
     |                  |                              |
     |                  |                     AA-Answer|
     |                  |  Result-Code=DIAMETER_SUCCESS|
     |                  |          (authorization AVPs)|
     |                  | QoS-Resources(QoS-Authorized)|
     |                  |<-----------------------------+
     |                  |                              |
  Figure 5: Example of a Server-Initiated Re-Authorization Procedure

7.5. Diameter Credit Control (CC) with QoS Information

 In this example, the CC client includes a QoS authorization request
 (QoS-Semantics=QoS-Desired) in the initial Credit Control Request
 (CCR).  The CC server responds with a Credit Control Answer (CCA),
 which includes the granted resources with an authorized QoS
 definition (QoS-Semantics=QoS-Authorized) and the CC client proceeds
 to deliver service with the specified QoS.
 At the end of service, the CC client reports the units used and the
 QoS level at which those units were delivered (QoS-Semantics=QoS-
 Delivered).  The end of service could occur because the credit
 resources granted to the user were exhausted or the service was been

Korhonen, et al. Standards Track [Page 34] RFC 5777 QoS Attributes for Diameter February 2010

 successfully delivered or the service was terminated, e.g., because
 the Service Element could not deliver the service at the authorized
 QoS level.
                         Service Element
   End User            (CC Client)                        CC Server
      |                     |                                  |
      |(1) Service Request  |                                  |
      |-------------------->|                                  |
      |                     |(2) CCR (Initial,                 |
      |                     |    QoS-Resources(QoS-Desired))   |
      |                     |--------------------------------->|
      |                     |(3) CCA (Granted-Units,           |
      |                     |    QoS-Resources(QoS-Authorized))|
      |                     |<---------------------------------|
      |(4) Service Delivery |                                  |
      |<------------------->|                                  |
      |                     |                                  |
      |(5) End of Service   |                                  |
      |-------------------->|                                  |
      |                     |(6) CCR (Termination, Used-Units, |
      |                     |    QoS-Resources(QoS-Delivered)) |
      |                     |--------------------------------->|
      |                     |(7) CCA                           |
      |                     |<---------------------------------|
  Figure 6: Example of a Diameter Credit Control with QoS Information

7.6. Classifier Examples

 Example: Classify all packets from hosts on subnet 192.0.2.0/24 to
 ports 80, 8090 or 443 on web servers 192.0.2.123, 192.0.2.124,
 192.0.2.125.

Korhonen, et al. Standards Track [Page 35] RFC 5777 QoS Attributes for Diameter February 2010

 Classifier = {
     Classifier-Id = "web_svr_example";
     Protocol = TCP;
     Direction = OUT;
     From-Spec = {
         IP-Address-Mask = {
             IP-Address = 192.0.2.0;
             IP-Bit-Mask-Width = 24;
         }
     }
     To-Spec = {
         IP-Address = 192.0.2.123;
         IP-Address = 192.0.2.124;
         IP-Address = 192.0.2.125;
         Port = 80;
         Port = 8080;
         Port = 443;
     }
 }
 Example: Any SIP signaling traffic from a device with a MAC address
 of 01:23:45:67:89:ab to servers with IP addresses in the range
 192.0.2.90 to 192.0.2.190.
 Classifier = {
     Classifier-Id = "web_svr_example";
     Protocol = UDP;
     Direction = OUT;
     From-Spec = {
         MAC-Address = 01:23:45:67:89:ab;
     }
     To-Spec = {
         IP-Address-Range = {
             IP-Address-Start = 192.0.2.90;
             IP-Address-End = 192.0.2.190;
         }
         Port = 5060;
         Port = 3478;
         Port-Range = {
             Port-Start = 16348;
             Port-End = 32768;
         }
     }
 }

Korhonen, et al. Standards Track [Page 36] RFC 5777 QoS Attributes for Diameter February 2010

7.7. QoS Parameter Examples

 The following high-level description aims to illustrate the
 interworking between the Diameter QoS AVPs defined in this document
 and the QoS parameters defined in [RFC5624].
 Consider the following example where a rule should be installed that
 limits traffic to 1 Mbit/s and where out-of-profile traffic shall be
 dropped.  The Classifiers are ignored in this example.
 This would require the Treatment-Action AVP to be set to 'shape' and
 the QoS-Parameters AVP carries the Bandwidth AVP indicating the 1
 Mbit/s limit.  The Treatment-Action carried inside the Excess-
 Treatment AVP would be set to 'drop'.
 In a second, more complex scenario, we consider traffic marking with
 Diffserv.  In-profile traffic (of 5 Mbit/s in our example) shall be
 associated with a particular PHB-Class "X".  Out-of-profile traffic
 shall belong to a different PHB-Class, in our example "Y".
 This configuration would require the Treatment-Action AVP to be set
 to 'mark'.  The QoS-Parameters AVPs for the traffic conforming of the
 profile contains two AVPs, namely, the TMOD-1 AVP and the PHB-Class
 AVP.  The TMOD-1 AVP describes the traffic characteristics, namely, 5
 Mbit/s, and the PHB-Class AVP is set to class "X".  Then, the Excess-
 Treatment AVP has to be included with the Treatment-Action AVP set to
 'mark' and the QoS-Parameters AVP to carry another PHB-Class AVP
 indicating PHB-Class AVP setting to class "Y".

8. Acknowledgments

 We would like to thank Victor Fajardo, Tseno Tsenov, Robert Hancock,
 Jukka Manner, Cornelia Kappler, Xiaoming Fu, Frank Alfano, Tolga
 Asveren, Mike Montemurro, Glen Zorn, Avri Doria, Dong Sun, Tina Tsou,
 Pete McCann, Georgios Karagiannis, Elwyn Davies, Max Riegel, Yong Li,
 and Eric Gray for their comments.  We thank Victor Fajardo for his
 job as PROTO document shepherd.  Finally, we would like to thank Lars
 Eggert, Magnus Westerlund, Adrian Farrel, Lisa Dusseault, Ralph
 Droms, and Eric Gray for their feedback during the IESG review phase.

9. Contributors

 Max Riegel contributed the VLAN sections.

Korhonen, et al. Standards Track [Page 37] RFC 5777 QoS Attributes for Diameter February 2010

10. IANA Considerations

10.1. AVP Codes

 IANA has allocated codes from the "AVP Codes" registry under
 Authentication, Authorization, and Accounting (AAA) Parameters for
 the following AVPs that are defined in this document.
 +-------------------------------------------------------------------+
 |                                      AVP  Section                 |
 | Attribute Name                       Code Defined     Data Type   |
 +-------------------------------------------------------------------+
 |QoS-Resources                         508    3.1       Grouped     |
 |Filter-Rule                           509    3.2       Grouped     |
 |Filter-Rule-Precedence                510    3.3       Unsigned32  |
 |Classifier                            511    4.1.1     Grouped     |
 |Classifier-ID                         512    4.1.2     OctetString |
 |Protocol                              513    4.1.3     Enumerated  |
 |Direction                             514    4.1.4     Enumerated  |
 |From-Spec                             515    4.1.5     Grouped     |
 |To-Spec                               516    4.1.6     Grouped     |
 |Negated                               517    4.1.7.1   Enumerated  |
 |IP-Address                            518    4.1.7.2   Address     |
 |IP-Address-Range                      519    4.1.7.3   Grouped     |
 |IP-Address-Start                      520    4.1.7.4   Address     |
 |IP-Address-End                        521    4.1.7.5   Address     |
 |IP-Address-Mask                       522    4.1.7.6   Grouped     |
 |IP-Mask-Bit-Mask-Width                523    4.1.7.7   Unsigned32  |
 |MAC-Address                           524    4.1.7.8   OctetString |
 |MAC-Address-Mask                      525    4.1.7.9   Grouped     |
 |MAC-Address-Mask-Pattern              526    4.1.7.10  OctetString |
 |EUI64-Address                         527    4.1.7.11  OctetString |
 |EUI64-Address-Mask                    528    4.1.7.12  Grouped     |
 |EUI64-Address-Mask-Pattern            529    4.1.7.13  OctetString |
 |Port                                  530    4.1.7.14  Integer32   |
 |Port-Range                            531    4.1.7.15  Grouped     |
 |Port-Start                            532    4.1.7.16  Integer32   |
 |Port-End                              533    4.1.7.17  Integer32   |
 |Use-Assigned-Address                  534    4.1.7.18  Enumerated  |
 |Diffserv-Code-Point                   535    4.1.8.1   Enumerated  |
 |Fragmentation-Flag                    536    4.1.8.2   Enumerated  |
 |IP-Option                             537    4.1.8.3   Grouped     |
 |IP-Option-Type                        538    4.1.8.4   Enumerated  |
 |IP-Option-Value                       539    4.1.8.5   OctetString |
 |TCP-Option                            540    4.1.8.6   Grouped     |
 |TCP-Option-Type                       541    4.1.8.7   Enumerated  |
 |TCP-Option-Value                      542    4.1.8.8   OctetString |
 |TCP-Flags                             543    4.1.8.9   Grouped     |

Korhonen, et al. Standards Track [Page 38] RFC 5777 QoS Attributes for Diameter February 2010

 |TCP-Flag-Type                         544    4.1.8.10  Unsigned32  |
 |ICMP-Type                             545    4.1.8.11  Grouped     |
 |ICMP-Type-Number                      546    4.1.8.12  Enumerated  |
 |ICMP-Code                             547    4.1.8.13  Enumerated  |
 |ETH-Option                            548    4.1.8.14  Grouped     |
 |ETH-Proto-Type                        549    4.1.8.15  Grouped     |
 |ETH-Ether-Type                        550    4.1.8.16  OctetString |
 |ETH-SAP                               551    4.1.8.17  OctetString |
 |VLAN-ID-Range                         552    4.1.8.18  Grouped     |
 |S-VID-Start                           553    4.1.8.19  Unsigned32  |
 |S-VID-End                             554    4.1.8.20  Unsigned32  |
 |C-VID-Start                           555    4.1.8.21  Unsigned32  |
 |C-VID-End                             556    4.1.8.22  Unsigned32  |
 |User-Priority-Range                   557    4.1.8.23  Grouped     |
 |Low-User-Priority                     558    4.1.8.24  Unsigned32  |
 |High-User-Priority                    559    4.1.8.25  Unsigned32  |
 |Time-Of-Day-Condition                 560    4.2.1     Grouped     |
 |Time-Of-Day-Start                     561    4.2.2     Unsigned32  |
 |Time-Of-Day-End                       562    4.2.3     Unsigned32  |
 |Day-Of-Week-Mask                      563    4.2.4     Unsigned32  |
 |Day-Of-Month-Mask                     564    4.2.5     Unsigned32  |
 |Month-Of-Year-Mask                    565    4.2.6     Unsigned32  |
 |Absolute-Start-Time                   566    4.2.7     Time        |
 |Absolute-Start-Fractional-Seconds     567    4.2.8     Unsigned32  |
 |Absolute-End-Time                     568    4.2.9     Time        |
 |Absolute-End-Fractional-Seconds       569    4.2.10    Unsigned32  |
 |Timezone-Flag                         570    4.2.11    Enumerated  |
 |Timezone-Offset                       571    4.2.12    Integer32   |
 |Treatment-Action                      572    5.1       Grouped     |
 |QoS-Profile-Id                        573    5.2       Unsigned32  |
 |QoS-Profile-Template                  574    5.3       Grouped     |
 |QoS-Semantics                         575    5.4       Enumerated  |
 |QoS-Parameters                        576    5.5       Grouped     |
 |Excess-Treatment                      577    5.6       Grouped     |
 |QoS-Capability                        578    6         Grouped     |
 +-------------------------------------------------------------------+

10.2. QoS-Semantics IANA Registry

 IANA has allocated a new registry under Authentication,
 Authorization, and Accounting (AAA) Parameters for the QoS-Semantics
 AVP.  The following values are allocated by this specification:
             (0): QoS-Desired
             (1): QoS-Available
             (2): QoS-Delivered
             (3): Minimum-QoS
             (4): QoS-Authorized

Korhonen, et al. Standards Track [Page 39] RFC 5777 QoS Attributes for Diameter February 2010

 The definition of new values is subject to the Specification Required
 policy [RFC5226].

10.3. Action

 IANA has allocated a new registry under Authentication,
 Authorization, and Accounting (AAA) Parameters for the Treatment-
 Action AVP.  The following values are allocated by this
 specification:
    0: drop
    1: shape
    2: mark
    3: permit
 The definition of new values is subject to the Specification Required
 policy [RFC5226].

11. Security Considerations

 This document describes the extension of Diameter for conveying
 Quality of Service information.  The security considerations of the
 Diameter protocol itself have been discussed in RFC 3588 [RFC3588].
 Use of the AVPs defined in this document MUST take into consideration
 the security issues and requirements of the Diameter base protocol.

12. References

12.1. Normative References

 [IEEE802.1D]    IEEE, "IEEE Standard for Local and metropolitan area
                 networks, Media Access Control (MAC) Bridges", 2004.
 [IEEE802.1Q]    IEEE, "IEEE Standard for Local and metropolitan area
                 networks, Virtual Bridged Local Area Networks", 2005.
 [IEEE802.1ad]   IEEE, "IEEE Standard for Local and metropolitan area
                 networks, Virtual Bridged Local Area Networks,
                 Amendment 4: Provider Bridges", 2005.
 [IEEE802.2]     IEEE, "IEEE Standard for Information technology,
                 Telecommunications and information exchange between
                 systems, Local and metropolitan area networks,
                 Specific requirements, Part 2: Logical Link Control",
                 1998.
 [RFC2119]       Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

Korhonen, et al. Standards Track [Page 40] RFC 5777 QoS Attributes for Diameter February 2010

 [RFC2474]       Nichols, K., Blake, S., Baker, F., and D. Black,
                 "Definition of the Differentiated Services Field (DS
                 Field) in the IPv4 and IPv6 Headers", RFC 2474,
                 December 1998.
 [RFC2780]       Bradner, S. and V. Paxson, "IANA Allocation
                 Guidelines For Values In the Internet Protocol and
                 Related Headers", BCP 37, RFC 2780, March 2000.
 [RFC3168]       Ramakrishnan, K., Floyd, S., and D. Black, "The
                 Addition of Explicit Congestion Notification (ECN) to
                 IP", RFC 3168, September 2001.
 [RFC3588]       Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and
                 J. Arkko, "Diameter Base Protocol", RFC 3588,
                 September 2003.
 [RFC5226]       Narten, T. and H. Alvestrand, "Guidelines for Writing
                 an IANA Considerations Section in RFCs", BCP 26,
                 RFC 5226, May 2008.

12.2. Informative References

 [DIAMETER-QOS]  Sun, D., Ed., McCann, P., Tschofenig, H., Tsou, T.,
                 Doria, A., and G. Zorn, Ed., "Diameter Quality of
                 Service Application", Work in Progress, October 2009.
 [RFC2475]       Blake, S., Black, D., Carlson, M., Davies, E., Wang,
                 Z., and W. Weiss, "An Architecture for Differentiated
                 Services", RFC 2475, December 1998.
 [RFC4005]       Calhoun, P., Zorn, G., Spence, D., and D. Mitton,
                 "Diameter Network Access Server Application",
                 RFC 4005, August 2005.
 [RFC5624]       Korhonen, J., Tschofenig, H., and E. Davies, "Quality
                 of Service Parameters for Usage with Diameter",
                 RFC 5624, August 2009.

Korhonen, et al. Standards Track [Page 41] RFC 5777 QoS Attributes for Diameter February 2010

Appendix A. MAC and EUI64 Address Mask Usage Considerations

 The MAC and EUI64 address bit masks are generally used in classifying
 devices according to Organizationally Unique Identifier (OUI) and/or
 address blocks specific to the OUI assignee.  The bit masks are not
 intended to introduce a structure into the MAC or EUI64 address space
 that was not intended by the IEEE.
 The MAC address bit mask should be defined as a contiguous series of
 "N" set bits followed by a contiguous series of "48 - N" clear bits,
 e.g., the MAC address bit mask of 0xFF00FF000000 would not be valid.
 Similarly, the EUI64 address bit mask should be defined as a
 contiguous series of "N" set bits followed by a contiguous series of
 "64 - N" clear bits.
 It should also be noted that some OUIs are assigned for use in
 applications that require number space management at the organization
 level (e.g., LLC/SNAP encoding), and are not commonly used for MAC
 addresses.

Korhonen, et al. Standards Track [Page 42] RFC 5777 QoS Attributes for Diameter February 2010

Authors' Addresses

 Jouni Korhonen
 Nokia Siemens Networks
 Linnoitustie 6
 Espoo  02600
 Finland
 EMail: jouni.korhonen@nsn.com
 Hannes Tschofenig
 Nokia Siemens Networks
 Linnoitustie 6
 Espoo  02600
 Finland
 Phone: +358 (50) 4871445
 EMail: Hannes.Tschofenig@gmx.net
 URI:   http://www.tschofenig.priv.at
 Mayutan Arumaithurai
 University of Goettingen
 EMail: mayutan.arumaithurai@gmail.com
 Mark Jones (editor)
 Bridgewater Systems
 303 Terry Fox Drive, Suite 500
 Ottawa, Ontario  K2K 3J1
 Canada
 Phone: +1 613-591-6655
 EMail: mark.jones@bridgewatersystems.com
 Avi Lior
 Bridgewater Systems
 303 Terry Fox Drive, Suite 500
 Ottawa, Ontario  K2K 3J1
 Canada
 Phone: +1 613-591-6655
 EMail: avi@bridgewatersystems.com

Korhonen, et al. Standards Track [Page 43]

/data/webs/external/dokuwiki/data/pages/rfc/rfc5777.txt · Last modified: 2010/02/12 20:33 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki