GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc5392

Network Working Group M. Chen Request for Comments: 5392 R. Zhang Category: Standards Track Huawei Technologies Co., Ltd.

                                                              X. Duan
                                                         China Mobile
                                                         January 2009
    OSPF Extensions in Support of Inter-Autonomous System (AS)
                MPLS and GMPLS Traffic Engineering

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements.  Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors.  All rights reserved.
 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (http://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 This document describes extensions to the OSPF version 2 and 3
 protocols to support Multiprotocol Label Switching (MPLS) and
 Generalized MPLS (GMPLS) Traffic Engineering (TE) for multiple
 Autonomous Systems (ASes).  OSPF-TE v2 and v3 extensions are defined
 for the flooding of TE information about inter-AS links that can be
 used to perform inter-AS TE path computation.
 No support for flooding information from within one AS to another AS
 is proposed or defined in this document.

Chen, et al. Standards Track [Page 1] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

Table of Contents

 1. Introduction ....................................................2
    1.1. Conventions Used in This Document ..........................3
 2. Problem Statement ...............................................3
    2.1. A Note on Non-Objectives ...................................4
    2.2. Per-Domain Path Determination ..............................4
    2.3. Backward Recursive Path Computation ........................6
 3. Extensions to OSPF ..............................................7
    3.1. LSA Definitions ............................................8
         3.1.1. Inter-AS-TE-v2 LSA ..................................8
         3.1.2. Inter-AS-TE-v3 LSA ..................................8
    3.2. LSA Payload ................................................9
         3.2.1. Link TLV ............................................9
    3.3. Sub-TLV Details ...........................................10
         3.3.1. Remote AS Number Sub-TLV ...........................10
         3.3.2. IPv4 Remote ASBR ID Sub-TLV ........................11
         3.3.3. IPv6 Remote ASBR ID Sub-TLV ........................11
 4. Procedure for Inter-AS TE Links ................................12
    4.1. Origin of Proxied TE Information ..........................13
 5. Security Considerations ........................................14
 6. IANA Considerations ............................................14
    6.1. Inter-AS TE OSPF LSA ......................................14
         6.1.1. Inter-AS-TE-v2 LSA .................................14
         6.1.2. Inter-AS-TE-v3 LSA .................................14
    6.2. OSPF LSA Sub-TLVs Type ....................................15
 7. Acknowledgments ................................................15
 8. References .....................................................15
    8.1. Normative References ......................................15
    8.2. Informative References ....................................16

1. Introduction

 [OSPF-TE] defines extensions to the OSPF protocol [OSPF] to support
 intra-area Traffic Engineering (TE).  The extensions provide a way of
 encoding the TE information for TE-enabled links within the network
 (TE links) and flooding this information within an area.  Type 10
 Opaque Link State Advertisements (LSAs) [RFC5250] are used to carry
 such TE information.  Two top-level Type Length Values (TLVs) are
 defined in [OSPF-TE]: Router Address TLV and Link TLV.  The Link TLV
 has several nested sub-TLVs that describe the TE attributes for a TE
 link.

Chen, et al. Standards Track [Page 2] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

 [OSPF-V3-TE] defines similar extensions to OSPFv3 [OSPFV3].  It
 defines a new LSA, which is referred to as the Intra-Area-TE LSA, to
 advertise TE information.  [OSPF-V3-TE] uses "Traffic Engineering
 Extensions to OSPF" [OSPF-TE] as a base for TLV definitions and
 defines some new TLVs and sub-TLVs to extend TE capabilities to IPv6
 networks.
 Requirements for establishing Multiprotocol Label Switching Traffic
 Engineering (MPLS-TE) Label Switched Paths (LSPs) that cross multiple
 Autonomous Systems (ASes) are described in [INTER-AS-TE-REQ].  As
 described in [INTER-AS-TE-REQ], a method SHOULD provide the ability
 to compute a path spanning multiple ASes.  So a path computation
 entity that may be the head-end Label Switching Router (LSR), an AS
 Border Router (ASBR), or a Path Computation Element [PCE] needs to
 know the TE information not only of the links within an AS, but also
 of the links that connect to other ASes.
 In this document, two new separate LSAs are defined to advertise
 inter-AS TE information for OSPFv2 and OSPFv3, respectively, and
 three new sub-TLVs are added to the existing Link TLV to extend TE
 capabilities for inter-AS Traffic Engineering.  The detailed
 definitions and procedures are discussed in the following sections.
 This document does not propose or define any mechanisms to advertise
 any other extra-AS TE information within OSPF.  See Section 2.1 for a
 full list of non-objectives for this work.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Problem Statement

 As described in [INTER-AS-TE-REQ], in the case of establishing an
 inter-AS TE LSP traversing multiple ASes, the Path message [RFC3209]
 may include the following elements in the Explicit Route Object (ERO)
 in order to describe the path of the LSP:
  1. a set of AS numbers as loose hops; and/or
  1. a set of LSRs including ASBRs as loose hops.
 Two methods for determining inter-AS paths are currently being
 discussed.  The per-domain method [PD-PATH] determines the path one
 domain at a time.  The backward recursive method [BRPC] uses
 cooperation between PCEs to determine an optimum inter-domain path.

Chen, et al. Standards Track [Page 3] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

 The sections that follow examine how inter-AS TE link information
 could be useful in both cases.

2.1. A Note on Non-Objectives

 It is important to note that this document does not make any change
 to the confidentiality and scaling assumptions surrounding the use of
 ASes in the Internet.  In particular, this document is conformant to
 the requirements set out in [INTER-AS-TE-REQ].
 The following features are explicitly excluded:
    o There is no attempt to distribute TE information from within one
      AS to another AS.
    o There is no mechanism proposed to distribute any form of TE
      reachability information for destinations outside the AS.
    o There is no proposed change to the PCE architecture or usage.
    o TE aggregation is not supported or recommended.
    o There is no exchange of private information between ASes.
    o No OSPF adjacencies are formed on the inter-AS link.
 Note also that the extensions proposed in this document are used only
 to advertise information about inter-AS TE links.  As such these
 extensions address an entirely different problem from L1VPN Auto-
 Discovery [L1VPN-OSPF-AD], which defines how TE information about
 links between Customer Edge (CE) equipment and Provider Edge (PE)
 equipment can be advertised in OSPF-TE alongside the auto-discovery
 information for the CE-PE links.  There is no overlap between this
 document and [L1VPN-OSPF-AD].

2.2. Per-Domain Path Determination

 In the per-domain method of determining an inter-AS path for an
 MPLS-TE LSP, when an LSR that is an entry point to an AS receives a
 Path message from an upstream AS with an ERO containing a next hop
 that is an AS number, it needs to find which LSRs (ASBRs) within the
 local AS are connected to the downstream AS so that it can compute a
 TE LSP segment across the local AS to one of those LSRs and forward
 the Path message to it and hence into the next AS.  See Figure 1 for
 an example:

Chen, et al. Standards Track [Page 4] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

          R1------R3----R5-----R7------R9-----R11
                  |     | \    |      / |
                  |     |  \   |  ----  |
                  |     |   \  | /      |
          R2------R4----R6   --R8------R10----R12
                     :              :
          <-- AS1 -->:<---- AS2 --->:<--- AS3 --->
            Figure 1: Inter-AS Reference Model
 The figure shows three ASes (AS1, AS2, and AS3) and twelve LSRs (R1
 through R12).  R3 and R4 are ASBRs in AS1.  R5, R6, R7, and R8 are
 ASBRs in AS2.  R9 and R10 are ASBRs in AS3.
 If an inter-AS TE LSP is planned to be established from R1 to R12,
 the AS sequence will be: AS1, AS2, AS3.
 Suppose that the Path message enters AS2 from R3.  The next hop in
 the ERO shows AS3, and R5 must determine a path segment across AS2 to
 reach AS3.  It has a choice of three exit points from AS2 (R6, R7,
 and R8) and it needs to know which of these provide TE connectivity
 to AS3, and whether the TE connectivity (for example, available
 bandwidth) is adequate for the requested LSP.
 Alternatively, if the next hop in the ERO is the entry ASBR for AS3
 (say R9), R5 needs to know which of its exit ASBRs has a TE link that
 connects to R9.  Since there may be multiple ASBRs that are connected
 to R9 (both R7 and R8 in this example), R5 also needs to know the TE
 properties of the inter-AS TE links so that it can select the correct
 exit ASBR.
 Once the path message reaches the exit ASBR, any choice of inter-AS
 TE link can be made by the ASBR if not already made by the entry ASBR
 that computed the segment.
 More details can be found in Section 4 of [PD-PATH], which clearly
 points out why the advertising of inter-AS links is desired.
 To enable R5 to make the correct choice of exit ASBR, the following
 information is needed:
    o List of all inter-AS TE links for the local AS.
    o TE properties of each inter-AS TE link.
    o AS number of the neighboring AS to which each inter-AS TE link
      is connected.

Chen, et al. Standards Track [Page 5] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

    o Identity (TE Router ID) of the neighboring ASBR to which each
      inter-AS TE link is connected.
 In GMPLS networks, further information may also be required to select
 the correct TE links as defined in [GMPLS-TE].
 The example above shows how this information is needed at the entry
 point ASBRs for each AS (or the PCEs that provide computation
 services for the ASBRs), but this information is also needed
 throughout the local AS if path computation function is fully
 distributed among LSRs in the local AS, for example, to support LSPs
 that have start points (ingress nodes) within the AS.

2.3. Backward Recursive Path Computation

 Another scenario using PCE techniques has the same problem.  [BRPC]
 defines a PCE-based TE LSP computation method (called Backward
 Recursive Path Computation) to compute optimal inter-domain
 constrained MPLS-TE or GMPLS LSPs.  In this path computation method,
 a specific set of traversed domains (ASes) are assumed to be selected
 before computation starts.  Each downstream PCE in domain(i) returns
 to its upstream neighbor PCE in domain(i-1) a multipoint-to-point
 tree of potential paths.  Each tree consists of the set of paths from
 all Boundary Nodes located in domain(i) to the destination where each
 path satisfies the set of required constraints for the TE LSP
 (bandwidth, affinities, etc.).
 So a PCE needs to select Boundary Nodes (that is, ASBRs) that provide
 connectivity from the upstream AS.  In order that the tree of paths
 provided by one PCE to its neighbor can be correlated, the identities
 of the ASBRs for each path need to be referenced, so the PCE must
 know the identities of the ASBRs in the remote AS reached by any
 inter-AS TE link, and, in order that it provides only suitable paths
 in the tree, the PCE must know the TE properties of the inter-AS TE
 links.  See the following figure as an example:
                 PCE1<------>PCE2<-------->PCE3
                 /       :             :
                /        :             :
              R1------R3----R5-----R7------R9-----R11
                      |     | \    |      / |
                      |     |  \   |  ----  |
                      |     |   \  | /      |
              R2------R4----R6   --R8------R10----R12
                         :              :
              <-- AS1 -->:<---- AS2 --->:<--- AS3 --->
            Figure 2: BRPC for Inter-AS Reference Model

Chen, et al. Standards Track [Page 6] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

 The figure shows three ASes (AS1, AS2, and AS3), three PCEs (PCE1,
 PCE2, and PCE3), and twelve LSRs (R1 through R12).  R3 and R4 are
 ASBRs in AS1.  R5, R6, R7, and R8 are ASBRs in AS2.  R9 and R10 are
 ASBRs in AS3.  PCE1, PCE2, and PCE3 cooperate to perform inter-AS
 path computation and are responsible for path segment computation
 within their own domain(s).
 If an inter-AS TE LSP is planned to be established from R1 to R12,
 the traversed domains are assumed to be selected: AS1->AS2->AS3, and
 the PCE chain is: PCE1->PCE2->PCE3.  First, the path computation
 request originated from the Path Computation Client (R1) is relayed
 by PCE1 and PCE2 along the PCE chain to PCE3, then PCE3 begins to
 compute the path segments from the entry boundary nodes that provide
 connection from AS2 to the destination (R12).  But, to provide
 suitable path segments, PCE3 must determine which entry boundary
 nodes provide connectivity to its upstream neighbor AS (identified by
 its AS number), and must know the TE properties of the inter-AS TE
 links.  In the same way, PCE2 also needs to determine the entry
 boundary nodes according to its upstream neighbor AS and the inter-AS
 TE link capabilities.
 Thus, to support Backward Recursive Path Computation the same
 information listed in Section 2.2 is required.  The AS number of the
 neighboring AS to which each inter-AS TE link is connected is
 particularly important.

3. Extensions to OSPF

 Note that this document does not define mechanisms for distribution
 of TE information from one AS to another, does not distribute any
 form of TE reachability information for destinations outside the AS,
 does not change the PCE architecture or usage, does not suggest or
 recommend any form of TE aggregation, and does not feed private
 information between ASes.  See Section 2.1.
 The extensions defined in this document allow an inter-AS TE link
 advertisement to be easily identified as such by the use of two new
 types of LSA, which are referred to as Inter-AS-TE-v2 LSA and
 Inter-AS-TE-v3 LSA.  Three new sub-TLVs are added to the Link TLV to
 carry the information about the neighboring AS and the remote ASBR.
 While some of the TE information of an inter-AS TE link may be
 available within the AS from other protocols, in order to avoid any
 dependency on where such protocols are processed, this mechanism
 carries all the information needed for the required TE operations.

Chen, et al. Standards Track [Page 7] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

3.1. LSA Definitions

3.1.1. Inter-AS-TE-v2 LSA

 For the advertisement of OSPFv2 inter-AS TE links, a new Opaque LSA,
 the Inter-AS-TE-v2 LSA, is defined in this document.  The
 Inter-AS-TE-v2 LSA has the same format as "Traffic Engineering LSA",
 which is defined in [OSPF-TE].
 The inter-AS TE link advertisement SHOULD be carried in a Type 10
 Opaque LSA [RFC5250] if the flooding scope is to be limited to within
 the single IGP area to which the ASBR belongs, or MAY be carried in a
 Type 11 Opaque LSA [RFC5250] if the information is intended to reach
 all routers (including area border routers, ASBRs, and PCEs) in the
 AS.  The choice between the use of a Type 10 (area-scoped) or Type 11
 (AS-scoped) Opaque LSA is an AS-wide policy choice, and configuration
 control of it SHOULD be provided in ASBR implementations that support
 the advertisement of inter-AS TE links.
 The Link State ID of an Opaque LSA as defined in [RFC5250] is divided
 into two parts.  One of them is the Opaque type (8-bit), the other is
 the Opaque ID (24-bit).  The value for the Opaque type of
 Inter-AS-TE-v2 LSA is 6 and has been assigned by IANA (see Section
 6.1).  The Opaque ID of the Inter-AS-TE-v2 LSA is an arbitrary value
 used to uniquely identify Traffic Engineering LSAs.  The Link State
 ID has no topological significance.
 The TLVs within the body of an Inter-AS-TE-v2 LSA have the same
 format as used in OSPF-TE.  The payload of the TLVs consists of one
 or more nested Type/Length/Value triplets.  New sub-TLVs specifically
 for inter-AS TE Link advertisement are described in Section 3.2.

3.1.2. Inter-AS-TE-v3 LSA

 In this document, a new LS type is defined for OSPFv3 inter-AS TE
 link advertisement.  The new LS type function code is 13 (see Section
 6.1).
 The format of an Inter-AS-TE-v3 LSA follows the standard definition
 of an OSPFv3 LSA as defined in [OSPFV3].
 The high-order three bits of the LS type field of the OSPFv3 LSA
 header encode generic properties of the LSA and are termed the U-bit,
 S2-bit, and S1-bit [OSPFV3].  The remainder of the LS type carries
 the LSA function code.

Chen, et al. Standards Track [Page 8] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

 For the Inter-AS-TE-v3-LSA, the bits are set as follows:
 The U-bit is always set to 1 to indicate that an OSPFv3 router MUST
 flood the LSA at its defined flooding scope even if it does not
 recognize the LS type.
 The S2 and S1 bits indicate the flooding scope of an LSA.  For the
 Inter-AS-TE-v3-LSA, the S2 and S1 bits SHOULD be set to 01 to
 indicate that the flooding scope is to be limited to within the
 single IGP area to which the ASBR belongs, but MAY be set to 10 if
 the information should reach all routers (including area border
 routers, ASBRs, and PCEs) in the AS.  The choice between the use of
 01 or 10 is a network-wide policy choice, and configuration control
 SHOULD be provided in ASBR implementations that support the
 advertisement of inter-AS TE links.
 The Link State ID of the Inter-AS-TE-v3 LSA is an arbitrary value
 used to uniquely identify Traffic Engineering LSAs.  The LSA ID has
 no topological significance.
 The TLVs within the body of an Inter-AS-TE-v3 LSA have the same
 format and semantics as those defined in [OSPF-V3-TE].  New sub-TLVs
 specifically for inter-AS TE Link advertisement are described in
 Section 3.2.

3.2. LSA Payload

 Both the Inter-AS-TE-v2 LSA and Inter-AS-TE-v3 LSA contain one top
 level TLV:
    2 - Link TLV
 For the Inter-AS-TE-v2 LSA, this TLV is defined in [OSPF-TE], and for
 the Inter-AS-TE-v3 LSA, this TLV is defined in [OSPF-V3-TE].  The
 sub-TLVs carried in this TLV are described in the following sections.

3.2.1. Link TLV

 The Link TLV describes a single link and consists a set of sub-TLVs.
 The sub-TLVs for inclusion in the Link TLV of the Inter-AS-TE-v2 LSA
 and Inter-AS-TE-v3 LSA are defined, respectively, in [OSPF-TE] and
 [OSPF-V3-TE], and the list of sub-TLVs may be extended by other
 documents.  However, this document defines the following exceptions.

Chen, et al. Standards Track [Page 9] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

 The Link ID sub-TLV [OSPF-TE] MUST NOT be used in the Link TLV of an
 Inter-AS-TE-v2 LSA, and the Neighbor ID sub-TLV [OSPF-V3-TE] MUST NOT
 be used in the Link TLV of an Inter-AS-TE-v3 LSA.  Given that OSPF is
 an IGP and should only be utilized between routers in the same
 routing domain, the OSPF specific Link ID and Neighbor ID sub-TLVs
 are not applicable to inter-AS links.
 Instead, the remote ASBR is identified by the inclusion of the
 following new sub-TLVs defined in this document and described in the
 subsequent sections.
    21 - Remote AS Number sub-TLV
    22 - IPv4 Remote ASBR ID sub-TLV
    23 - IPv6 Remote ASBR ID sub-TLV
 The Remote-AS-Number sub-TLV MUST be included in the Link TLV of both
 the Inter-AS-TE-v2 LSA and Inter-AS-TE-v3 LSA.  At least one of the
 IPv4-Remote-ASBR-ID sub-TLV and the IPv6-Remote-ASBR-ID sub-TLV
 SHOULD be included in the Link TLV of the Inter-AS-TE-v2 LSA and
 Inter-AS-TE-v3 LSA.  Note that it is possible to include the
 IPv6-Remote-ASBR-ID sub-TLV in the Link TLV of the Inter-AS-TE-v2
 LSA, and to include the IPv4-Remote-ASBR-ID sub-TLV in the Link TLV
 of the Inter-AS-TE-v3 LSA because the sub-TLVs refer to ASBRs that
 are in a different addressing scope (that is, a different AS) from
 that where the OSPF LSA is used.

3.3. Sub-TLV Details

3.3.1. Remote AS Number Sub-TLV

 A new sub-TLV, the Remote AS Number sub-TLV is defined for inclusion
 in the Link TLV when advertising inter-AS links.  The Remote AS
 Number sub-TLV specifies the AS number of the neighboring AS to which
 the advertised link connects.  The Remote AS Number sub-TLV is
 REQUIRED in a Link TLV that advertises an inter-AS TE link.
 The Remote AS Number sub-TLV is TLV type 21 (see Section 6.2), and is
 four octets in length.  The format is as follows:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |              Type             |             Length            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                       Remote AS Number                        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Chen, et al. Standards Track [Page 10] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

 The Remote AS Number field has 4 octets.  When only two octets are
 used for the AS number, as in current deployments, the left (high-
 order) two octets MUST be set to zero.

3.3.2. IPv4 Remote ASBR ID Sub-TLV

 A new sub-TLV, which is referred to as the IPv4 Remote ASBR ID sub-
 TLV, can be included in the Link TLV when advertising inter-AS links.
 The IPv4 Remote ASBR ID sub-TLV specifies the IPv4 identifier of the
 remote ASBR to which the advertised inter-AS link connects.  This
 could be any stable and routable IPv4 address of the remote ASBR.
 Use of the TE Router Address TE Router ID as specified in the Router
 Address TLV [OSPF-TE] is RECOMMENDED.
 The IPv4 Remote ASBR ID sub-TLV is TLV type 22 (see Section 6.2), and
 is four octets in length.  Its format is as follows:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |              Type             |             Length            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                       Remote ASBR ID                          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 In OSPFv2 advertisements, the IPv4 Remote ASBR ID sub-TLV MUST be
 included if the neighboring ASBR has an IPv4 address.  If the
 neighboring ASBR does not have an IPv4 address (not even an IPv4 TE
 Router ID), the IPv6 Remote ASBR ID sub-TLV MUST be included instead.
 An IPv4 Remote ASBR ID sub-TLV and IPv6 Remote ASBR ID sub-TLV MAY
 both be present in a Link TLV in OSPFv2 or OSPFv3.

3.3.3. IPv6 Remote ASBR ID Sub-TLV

 A new sub-TLV, which is referred to as the IPv6 Remote ASBR ID sub-
 TLV, can be included in the Link TLV when advertising inter-AS links.
 The IPv6 Remote ASBR ID sub-TLV specifies the identifier of the
 remote ASBR to which the advertised inter-AS link connects.  This
 could be any stable, routable, and global IPv6 address of the remote
 ASBR.  Use of the TE Router IPv6 Address IPv6 TE Router ID as
 specified in the IPv6 Router Address, which is specified in the IPv6
 Router Address TLV [OSPF-V3-TE], is RECOMMENDED.
 The IPv6 Remote ASBR ID sub-TLV is TLV type 24 (see Section 6.2), and
 is sixteen octets in length.  Its format is as follows:

Chen, et al. Standards Track [Page 11] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |              Type             |             Length            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                       Remote ASBR ID                          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                       Remote ASBR ID (continued)              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                       Remote ASBR ID (continued)              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                       Remote ASBR ID (continued)              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 In OSPFv3 advertisements, the IPv6 Remote ASBR ID sub-TLV MUST be
 included if the neighboring ASBR has an IPv6 address.  If the
 neighboring ASBR does not have an IPv6 address, the IPv4 Remote ASBR
 ID sub-TLV MUST be included instead.  An IPv4 Remote ASBR ID sub-TLV
 and IPv6 Remote ASBR ID sub-TLV MAY both be present in a Link TLV in
 OSPFv2 or OSPFv3.

4. Procedure for Inter-AS TE Links

 When TE is enabled on an inter-AS link and the link is up, the ASBR
 SHOULD advertise this link using the normal procedures for OSPF-TE
 [OSPF-TE].  When either the link is down or TE is disabled on the
 link, the ASBR SHOULD withdraw the advertisement.  When there are
 changes to the TE parameters for the link (for example, when the
 available bandwidth changes), the ASBR SHOULD re-advertise the link,
 but the ASBR MUST take precautions against excessive re-
 advertisements as described in [OSPF-TE].
 Hellos MUST NOT be exchanged over the inter-AS link, and
 consequently, an OSPF adjacency MUST NOT be formed.
 The information advertised comes from the ASBR's knowledge of the TE
 capabilities of the link, the ASBR's knowledge of the current status
 and usage of the link, and configuration at the ASBR of the remote AS
 number and remote ASBR TE Router ID.
 Legacy routers receiving an advertisement for an inter-AS TE link are
 able to ignore it because the Link Type carries an unknown value.
 They will continue to flood the LSA, but will not attempt to use the
 information received as if the link were an intra-AS TE link.
 In the current operation of TE OSPF, the LSRs at each end of a TE
 link emit LSAs describing the link.  The databases in the LSRs then
 have two entries (one locally generated, the other from the peer)

Chen, et al. Standards Track [Page 12] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

 that describe the different 'directions' of the link.  This enables
 Constrained Shortest Path First (CSPF) to do a two-way check on the
 link when performing path computation and eliminate it from
 consideration unless both directions of the link satisfy the required
 constraints.
 In the case we are considering here (i.e., of a TE link to another
 AS), there is, by definition, no IGP peering and hence no
 bidirectional TE link information.  In order for the CSPF route
 computation entity to include the link as a candidate path, we have
 to find a way to get LSAs describing its (bidirectional) TE
 properties into the TE database.
 This is achieved by the ASBR advertising, internally to its AS,
 information about both directions of the TE link to the next AS.  The
 ASBR will normally generate an LSA describing its own side of a link;
 here we have it 'proxy' for the ASBR at the edge of the other AS and
 generate an additional LSA that describes that device's 'view' of the
 link.
 Only some essential TE information for the link needs to be
 advertised; i.e., the Link Type, the Remote AS number, and the Remote
 ASBR ID.  Routers or PCEs that are capable of processing
 advertisements of inter-AS TE links SHOULD NOT use such links to
 compute paths that exit an AS to a remote ASBR and then immediately
 re-enter the AS through another TE link.  Such paths would constitute
 extremely rare occurrences and SHOULD NOT be allowed except as the
 result of specific policy configurations at the router or PCE
 computing the path.

4.1. Origin of Proxied TE Information

 Section 4 describes how an ASBR advertises TE link information as a
 proxy for its neighbor ASBR, but does not describe where this
 information comes from.
 Although the source of this information is outside the scope of this
 document, it is possible that it will be a configuration requirement
 at the ASBR, as are other, local, properties of the TE link.
 Further, where BGP is used to exchange IP routing information between
 the ASBRs, a certain amount of additional local configuration about
 the link and the remote ASBR is likely to be available.
 We note further that it is possible, and may be operationally
 advantageous, to obtain some of the required configuration
 information from BGP.  Whether and how to utilize these possibilities
 is an implementation matter.

Chen, et al. Standards Track [Page 13] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

5. Security Considerations

 The protocol extensions defined in this document are relatively minor
 and can be secured within the AS in which they are used by the
 existing OSPF security mechanisms.
 There is no exchange of information between ASes, and no change to
 the OSPF security relationship between the ASes.  In particular,
 since no OSPF adjacency is formed on the inter-AS links, there is no
 requirement for OSPF security between the ASes.
 Some of the information included in these new advertisements (e.g.,
 the remote AS number and the remote ASBR ID) is obtained manually
 from a neighboring administration as part of commercial relationship.
 The source and content of this information should be carefully
 checked before it is entered as configuration information at the ASBR
 responsible for advertising the inter-AS TE links.
 It is worth noting that, in the scenario we are considering, a Border
 Gateway Protocol (BGP) peering may exist between the two ASBRs, and
 this could be used to detect inconsistencies in configuration (e.g.,
 the administration that originally supplied the information may be
 lying, or some manual misconfigurations or mistakes are made by the
 operators).  For example, if a different remote AS number is received
 in a BGP OPEN [BGP] from that locally configured into OSPF-TE, as we
 describe here, then local policy SHOULD be applied to determine
 whether to alert the operator to a potential misconfiguration or to
 suppress the OSPF advertisement of the inter-AS TE link.  Note,
 further, that if BGP is used to exchange TE information as described
 in Section 4.1, the inter-AS BGP session SHOULD be secured using
 mechanisms as described in [BGP] to provide authentication and
 integrity checks.

6. IANA Considerations

 IANA has made the following allocations from registries under its
 control.

6.1. Inter-AS TE OSPF LSA

6.1.1. Inter-AS-TE-v2 LSA

 IANA has assigned a new Opaque LSA type (6) to Inter-AS-TE-v2 LSA.

6.1.2. Inter-AS-TE-v3 LSA

 IANA has assigned a new OSPFv3 LSA type function code (13) to Inter-
 AS-TE-v3 LSA.

Chen, et al. Standards Track [Page 14] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

6.2. OSPF LSA Sub-TLVs Type

 IANA maintains the "Open Shortest Path First (OSPF) Traffic
 Engineering TLVs" registry with sub-registry "Types for sub-TLVs in a
 TE Link TLV".  IANA has assigned three new sub-TLVs as follows (see
 Section 3.3 for details):
 Value     Meaning
 21        Remote AS Number sub-TLV
 22        IPv4 Remote ASBR ID sub-TLV
 24        IPv6 Remote ASBR ID sub-TLV

7. Acknowledgments

 The authors would like to thank Adrian Farrel, Acee Lindem, JP
 Vasseur, Dean Cheng, and Jean-Louis Le Roux for their review and
 comments to this document.

8. References

8.1. Normative References

 [GMPLS-TE]        Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF
                   Extensions in Support of Generalized Multi-Protocol
                   Label Switching (GMPLS)", RFC 4203, October 2005.
 [OSPF]            Moy, J., "OSPF Version 2", STD 54, RFC 2328, April
                   1998.
 [OSPF-TE]         Katz, D., Kompella, K., and D. Yeung, "Traffic
                   Engineering (TE) Extensions to OSPF Version 2", RFC
                   3630, September 2003.
 [OSPF-V3-TE]      Ishiguro, K., Manral, V., Davey, A., and A. Lindem,
                   Ed., "Traffic Engineering Extensions to OSPF
                   Version 3", RFC 5329, September 2008.
 [OSPFV3]          Coltun, R., Ferguson, D., Moy, J., and A. Lindem,
                   "OSPF for IPv6", RFC 5340, July 2008.
 [RFC2119]         Bradner, S., "Key words for use in RFCs to Indicate
                   Requirement Levels", BCP 14, RFC 2119, March 1997.

Chen, et al. Standards Track [Page 15] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

 [RFC3209]         Awduche, D., Berger, L., Gan, D., Li, T.,
                   Srinivasan, V., and G. Swallow, "RSVP-TE:
                   Extensions to RSVP for LSP Tunnels", RFC 3209,
                   December 2001.
 [RFC5250]         Berger, L., Bryskin, I., Zinin, A., and R. Coltun,
                   "The OSPF Opaque LSA Option", RFC 5250, July 2008.

8.2. Informative References

 [BGP]             Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed.,
                   "A Border Gateway Protocol 4 (BGP-4)", RFC 4271,
                   January 2006.
 [BRPC]            Vasseur, JP., Ed., Zhang, R., Bitar, N., and JL. Le
                   Roux, "A Backward Recursive PCE-Based Computation
                   (BRPC) Procedure to Compute Shortest Inter-Domain
                   Traffic Engineering Label Switched Paths", Work in
                   Progress, April 2008.
 [INTER-AS-TE-REQ] Zhang, R., Ed., and J.-P. Vasseur, Ed., "MPLS
                   Inter-Autonomous System (AS) Traffic Engineering
                   (TE) Requirements", RFC 4216, November 2005.
 [L1VPN-OSPF-AD]   Bryskin, I. and L. Berger, "OSPF-Based Layer 1 VPN
                   Auto-Discovery", RFC 5252, July 2008.
 [PCE]             Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
                   Computation Element (PCE)-Based Architecture", RFC
                   4655, August 2006.
 [PD-PATH]         Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang,
                   "A Per-Domain Path Computation Method for
                   Establishing Inter-Domain Traffic Engineering (TE)
                   Label Switched Paths (LSPs)", RFC 5152, February
                   2008.

Chen, et al. Standards Track [Page 16] RFC 5392 OSPF Extensions for Inter-AS TE January 2009

Authors' Addresses

 Mach(Guoyi) Chen
 Huawei Technologies Co., Ltd.
 KuiKe Building, No.9 Xinxi Rd.
 Hai-Dian District
 Beijing, 100085
 P.R. China
 EMail: mach@huawei.com
 Renhai Zhang
 Huawei Technologies Co., Ltd.
 KuiKe Building, No.9 Xinxi Rd.
 Hai-Dian District
 Beijing, 100085
 P.R. China
 EMail: zhangrenhai@huawei.com
 Xiaodong Duan
 China Mobile
 53A,Xibianmennei Ave,Xunwu District
 Beijing, China
 EMail: duanxiaodong@chinamobile.com

Chen, et al. Standards Track [Page 17]

/data/webs/external/dokuwiki/data/pages/rfc/rfc5392.txt · Last modified: 2009/01/07 22:46 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki