GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc4577

Network Working Group E. Rosen Request for Comments: 4577 P. Psenak Updates: 4364 P. Pillay-Esnault Category: Standards Track Cisco Systems, Inc.

                                                             June 2006
          OSPF as the Provider/Customer Edge Protocol for
            BGP/MPLS IP Virtual Private Networks (VPNs)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements.  Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 Many Service Providers offer Virtual Private Network (VPN) services
 to their customers, using a technique in which customer edge routers
 (CE routers) are routing peers of provider edge routers (PE routers).
 The Border Gateway Protocol (BGP) is used to distribute the
 customer's routes across the provider's IP backbone network, and
 Multiprotocol Label Switching (MPLS) is used to tunnel customer
 packets across the provider's backbone.  This is known as a "BGP/MPLS
 IP VPN".  The base specification for BGP/MPLS IP VPNs presumes that
 the routing protocol on the interface between a PE router and a CE
 router is BGP.  This document extends that specification by allowing
 the routing protocol on the PE/CE interface to be the Open Shortest
 Path First (OSPF) protocol.
 This document updates RFC 4364.

Rosen, et al. Standards Track [Page 1] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

Table of Contents

 1. Introduction ....................................................2
 2. Specification of Requirements ...................................3
 3. Requirements ....................................................4
 4. BGP/OSPF Interaction Procedures for PE Routers ..................6
    4.1. Overview ...................................................6
         4.1.1. VRFs and OSPF Instances .............................6
         4.1.2. VRFs and Routes .....................................6
         4.1.3. Inter-Area, Intra-Area, and External Routes .........7
         4.1.4. PEs and OSPF Area 0 .................................8
         4.1.5. Prevention of Loops .................................9
    4.2. Details ....................................................9
         4.2.1. Independent OSPF Instances in PEs ...................9
         4.2.2. Router ID ..........................................10
         4.2.3. OSPF Areas .........................................10
         4.2.4. OSPF Domain Identifiers ............................10
         4.2.5. Loop Prevention ....................................12
                4.2.5.1. The DN Bit ................................12
                4.2.5.2. Use of OSPF Route Tags ....................12
                4.2.5.3. Other Possible Loops ......................13
         4.2.6. Handling LSAs from the CE ..........................14
         4.2.7. Sham Links .........................................16
                4.2.7.1. Intra-Area Routes .........................16
                4.2.7.2. Creating Sham Links .......................17
                4.2.7.3. OSPF Protocol on Sham Links ...............18
                4.2.7.4. Routing and Forwarding on Sham Links ......19
         4.2.8. VPN-IPv4 Routes Received via BGP ...................19
                4.2.8.1. External Routes ...........................20
                4.2.8.2. Summary Routes ............................22
                4.2.8.3. NSSA Routes ...............................22
 5. IANA Considerations ............................................22
 6. Security Considerations ........................................23
 7. Acknowledgements ...............................................23
 8. Normative References ...........................................23
 9. Informative References .........................................24

1. Introduction

 [VPN] describes a method by which a Service Provider (SP) can use its
 IP backbone to provide a VPN (Virtual Private Network) service to
 customers.  In that method, a customer's edge devices (CE devices)
 are connected to the provider's edge routers (PE routers).  If the CE
 device is a router, then the PE router may become a routing peer of
 the CE router (in some routing protocol) and may, as a result, learn
 the routes that lead to the CE's site and that need to be distributed
 to other PE routers that attach to the same VPN.

Rosen, et al. Standards Track [Page 2] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

 The PE routers that attach to a common VPN use BGP (Border Gateway
 Protocol) to distribute the VPN's routes to each other.  A CE router
 can then learn the routes to other sites in the VPN by peering with
 its attached PE router in a routing protocol.  CE routers at
 different sites do not, however, peer with each other.
 It can be expected that many VPNs will use OSPF (Open Shortest Path
 First) as their IGP (Interior Gateway Protocol), i.e., the routing
 protocol used by a network for the distribution of internal routes
 within that network.  This does not necessarily mean that the PE
 routers need to use OSPF to peer with the CE routers.  Each site in a
 VPN can use OSPF as its intra-site routing protocol, while using, for
 example, BGP [BGP] or RIP (Routing Information Protocol) [RIP] to
 distribute routes to a PE router.  However, it is certainly
 convenient, when OSPF is being used intra-site, to use it on the
 PE-CE link as well, and [VPN] explicitly allows this.
 Like anything else, the use of OSPF on the PE-CE link has advantages
 and disadvantages.  The disadvantage to using OSPF on the PE-CE link
 is that it gets the SP's PE router involved, however peripherally, in
 a VPN site's IGP.  The advantages though are:
  1. The administrators of the CE router need not have any expertise

in any routing protocol other than OSPF.

  1. The CE routers do not need to have support for any routing

protocols other than OSPF.

  1. If a customer is transitioning his network from a traditional

OSPF backbone to the VPN service described in [VPN], the use of

       OSPF on the PE-CE link eases the transitional issues.
 It seems likely that some SPs and their customers will resolve these
 trade-offs in favor of the use of OSPF on the PE-CE link.  Thus, we
 need to specify the procedures that must be implemented by a PE
 router in order to make this possible.  (No special procedures are
 needed in the CE router though; CE routers just run whatever OSPF
 implementations they may have.)

2. Specification of Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Rosen, et al. Standards Track [Page 3] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

3. Requirements

 Consider a set of VPN sites that are thought of as being in the same
 "OSPF domain".  Two sites are considered to be in the same OSPF
 domain if it is intended that routes from one site to the other be
 considered intra-network routes.  A set of OSPF sites in the same
 domain will almost certainly be a set of sites that together
 constitute an "intranet", each of which runs OSPF as its intra-site
 routing protocol.
 Per [VPN], the VPN routes are distributed among the PE routers by
 BGP.  If the PE uses OSPF to distribute routes to the CE router, the
 standard procedures governing BGP/OSPF interactions [OSPFv2] would
 cause routes from one site to be delivered to another in type 5 LSAs
 (Link State Advertisements), as "AS-external" routes.  This is
 undesirable; it would be much better to deliver such routes in type 3
 LSAs (as inter-area routes), so that they can be distinguished from
 any "real" AS-external routes that may be circulating in the VPN
 (that is, so that they can be distinguished by OSPF from routes that
 really do not come from within the VPN).  Hence, it is necessary for
 the PE routers to implement a modified version of the BGP/OSPF
 interaction procedures.
 In fact, we would like to have a very general set of procedures that
 allows a customer to replace a legacy private OSPF backbone easily
 with the VPN service.  We would like this procedure to meet the
 following set of requirements:
  1. The procedures should not make assumptions about the OSPF

topology. In particular, it should not be assumed that

       customer sites are OSPF stub sites or NSSA (Not So Stubby Area)
       sites.  Nor should it be assumed that a customer site contains
       only one OSPF area, or that it has no area 0 routers.
  1. If VPN sites A and B are in the same OSPF domain, then routes

from one should be presented to the other as OSPF intra-network

       routes.  In general, this can be done by presenting such routes
       as inter-area routes in type 3 LSAs.
       Note that this allows two VPN sites to be connected via an
       "OSPF backdoor link".  That is, one can have an OSPF link
       between the two sites that is used only when the VPN backbone
       is unavailable.  (This would not be possible with the ordinary
       BGP/OSPF interaction procedures.  The ordinary procedures would
       present routes via the VPN backbone as AS-external routes, and
       these could never be preferred to intra-network routes.)  This
       may be very useful during a period of transition from a legacy
       OSPF backbone to a VPN backbone.

Rosen, et al. Standards Track [Page 4] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

  1. It should be possible to make use of an "OSPF backdoor link"

between two sites, even if the two sites are in the same OSPF

       area and neither of the routers attached to the inter-site
       backdoor link is an area 0 router.  This can also be very
       useful during a transition period, and it eliminates any need
       to reconfigure the sites' routers to be ABRs (Area Border
       Routers).
       Assuming that it is desired to have the route via the VPN
       backbone be preferred to the backdoor route, the VPN backbone
       itself must be presented to the CE routers at each site as a
       link between the two PE routers to which the CE routers are
       respectively attached.
  1. CE routers, connected to PE routers of the VPN service, may

themselves function as OSPF backbone (area 0) routers. An OSPF

       backbone may even consist of several "segments" that are
       interconnected themselves only via the VPN service.  In such a
       scenario, full intercommunication between sites connected to
       different segments of the OSPF backbone should still be
       possible.
  1. The transition from the legacy private OSPF backbone to the VPN

service must be simple and straightforward. The transition is

       likely to be phased, such that customer sites are migrated one
       by one from the legacy private OSPF backbone to the VPN
       service.  During the transition, any given site might be
       connected to the VPN service, to the legacy OSPF backbone, or
       to both.  Complete connectivity among all such sites must be
       maintained.
       Since the VPN service is to replace the legacy backbone, it
       must be possible, by suitable adjustment of the OSPF metrics,
       to make OSPF prefer routes that traverse the SP's VPN backbone
       to alternative routes that do not.
  1. The OSPF metric assigned to a given route should be carried

transparently over the VPN backbone.

 Routes from sites that are not in the same OSPF domain will appear as
 AS-external routes.
 We presuppose familiarity with the contents of [OSPFv2], including
 the OSPF LSA types, and will refer without further exegesis to type
 1, 2, 3, etc. LSAs.  Familiarity with [VPN] is also presupposed.

Rosen, et al. Standards Track [Page 5] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

4. BGP/OSPF Interaction Procedures for PE Routers

4.1. Overview

4.1.1. VRFs and OSPF Instances

 A PE router that attaches to more than one OSPF domain MUST run an
 independent instance of OSPF for each domain.  If the PE is running
 OSPF as its IGP (Interior Gateway Protocol), the instance of OSPF
 running as the IGP must be separate and independent from any other
 instance of OSPF that the PE is running.  (Whether these instances
 are realized as separate processes or merely as separate contexts of
 a common process is an implementation matter.)  Each interface that
 attaches to a VPN site belongs to no more than one OSPF instance.
 [VPN] defines the notion of a Per-Site Routing and Forwarding Table,
 or VRF.  Each VRF is associated with a set of interfaces.  If a VRF
 is associated with a particular interface, and that interface belongs
 to a particular OSPF instance, then that OSPF instance is said to be
 associated with the VRF.  If two interfaces belong to the same OSPF
 instance, then both interfaces must be associated with the same VRF.
 If an interface attaches a PE to a CE, and that interface is
 associated with a VRF, we will speak of the CE as being associated
 with the VRF.

4.1.2. VRFs and Routes

 OSPF is used to distribute routes from a CE to a PE.  The standard
 OSPF decision process is used to install the best OSPF-distributed
 routes in the VRF.
 Per [VPN], BGP is used to distribute VPN-IPv4 routes among PE
 routers.  An OSPF route installed in a VRF may be "exported" by being
 redistributed into BGP as a VPN-IPv4 route.  It may then be
 distributed by BGP to other PEs.  At the other PEs, a VPN-IPv4 route
 may be "imported" by a VRF and may then be redistributed into one or
 more of the OSPF instances associated with that VRF.
 Import from and export to particular VRFs is controlled by the use of
 the Route Target Extended Communities attribute (or, more simply,
 Route Target or RT), as specified in [VPN].
 A VPN-IPv4 route is "eligible for import" into a particular VRF if
 its Route Target is identical to one of the VRF's import Route
 Targets.  The standard BGP decision process is used to select, from
 among the routes eligible for import, the set of VPN-IPv4 routes to
 be "installed" in the VRF.

Rosen, et al. Standards Track [Page 6] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

 If a VRF contains both an OSPF-distributed route and a VPN-IPv4 route
 for the same IPv4 prefix, then the OSPF-distributed route is
 preferred.  In general, this means that forwarding is done according
 to the OSPF route.  The one exception to this rule has to do with the
 "sham link".  If the next hop interface for an installed (OSPF-
 distributed) route is the sham link, forwarding is done according to
 a corresponding BGP route.  This is detailed in Section 4.2.7.4.
 To meet the requirements of Section 3, a PE that installs a
 particular route into a particular VRF needs to know whether that
 route was originally an OSPF route and, if so, whether the OSPF
 instance from which it was redistributed into BGP is in the same
 domain as the OSPF instances into which the route may be
 redistributed.  Therefore, a domain identifier is encoded as a BGP
 Extended Communities attribute [EXTCOMM] and distributed by BGP along
 with the VPN-IPv4 route.  The route's OSPF metric and OSPF route type
 are also carried as BGP attributes of the route.

4.1.3. Inter-Area, Intra-Area, and External Routes

 If a PE installs a particular VPN-IPv4 route (learned via BGP) in a
 VRF, and if this is the preferred BGP route for the corresponding
 IPv4 prefix, the corresponding IPv4 route is then "eligible for
 redistribution" into each OSPF instance that is associated with the
 VRF.  As a result, it may be advertised to each CE in an LSA.
 Whether a route that is eligible for redistribution into OSPF is
 actually redistributed into a particular OSPF instance may depend
 upon the configuration.  For instance, the PE may be configured to
 distribute only the default route into a given OSPF instance.  In
 this case, the routes that are eligible for redistribution would not
 actually be redistributed.
 In the following, we discuss the procedures for redistributing a
 BGP-distributed VPN-IPv4 route into OSPF; these are the procedures to
 be followed whenever such a route is eligible to be redistributed
 into OSPF and the configuration does not prevent such redistribution.
 If the route is from an OSPF domain different from that of the OSPF
 instance into which it is being redistributed, or if the route is not
 from an OSPF domain at all, then the route is considered an external
 route.
 If the route is from the same OSPF domain as the OSPF instance into
 which it is being redistributed, and if it was originally advertised
 to a PE as an OSPF external route or an OSPF NSSA route, it will be
 treated as an external route.  Following the normal OSPF procedures,
 external routes may be advertised to the CE in type 5 LSAs, or in

Rosen, et al. Standards Track [Page 7] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

 type 7 LSAs, or not at all, depending on the type of area to which
 the PE/CE link belongs.
 If the route is from the same OSPF domain as the OSPF instance into
 which it is being redistributed, and if it was originally advertised
 to a PE as an inter-area or intra-area route, the route will
 generally be advertised to the CE as an inter-area route (in a type 3
 LSA).
 As a special case, suppose that PE1 attaches to CE1, and that PE2
 attaches to CE2, where:
  1. the OSPF instance containing the PE1-CE1 link and the OSPF

instance containing the PE2-CE2 link are in the same OSPF

       domain, and
  1. the PE1-CE1 and PE2-CE2 links are in the same OSPF area A (as

determined by the configured OSPF area number),

 then, PE1 may flood to CE1 a type 1 LSA advertising a link to PE2,
 and PE2 may flood to CE2 a type 1 LSA advertising a link to PE1.  The
 link advertised in these LSAs is known as a "sham link", and it is
 advertised as a link in area A.  This makes it look to routers within
 area A as if the path from CE1 to PE1 across the service provider's
 network to PE2 to CE2 is an intra-area path.  Sham links are an
 OPTIONAL feature of this specification and are used only when it is
 necessary to have the service provider's network treated as an
 intra-area link.  See Section 4.2.7 for further details about the
 sham link.
 The precise details by which a PE determines the type of LSA used to
 advertise a particular route to a CE are specified in Section 4.2.8.
 Note that if the VRF is associated with multiple OSPF instances, the
 type of LSA used to advertise the route might be different in
 different instances.
 Note that if a VRF is associated with several OSPF instances, a given
 route may be redistributed into some or all of those OSPF instances,
 depending on the characteristics of each instance.  If redistributed
 into two or more OSPF instances, it may be advertised within each
 instance using a different type of LSA, again depending on the
 characteristics of each instance.

4.1.4. PEs and OSPF Area 0

 Within a given OSPF domain, a PE may attach to multiple CEs.  Each
 PE/CE link is assigned (by configuration) to an OSPF area.  Any link
 can be assigned to any area, including area 0.

Rosen, et al. Standards Track [Page 8] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

 If a PE attaches to a CE via a link that is in a non-zero area, then
 the PE serves as an ABR for that area.
 PEs can thus be considered OSPF "area 0 routers", i.e., they can be
 considered part of the "OSPF backbone".  Thus, they are allowed to
 distribute inter-area routes to the CE via Type 3 LSAs.
 If the OSPF domain has any area 0 routers other than the PE routers,
 then at least one of those MUST be a CE router and MUST have an area
 0 link to at least one PE router.  This adjacency MAY be via an OSPF
 virtual link.  (The ability to use an OSPF virtual link in this way
 is an OPTIONAL feature.)  This is necessary to ensure that inter-area
 routes and AS-external routes can be leaked between the PE routers
 and the non-PE OSPF backbone.
 Two sites that are not in the same OSPF area will see the VPN
 backbone as being an integral part of the OSPF backbone.  However, if
 there are area 0 routers that are NOT PE routers, then the VPN
 backbone actually functions as a sort of higher-level backbone,
 providing a third level of hierarchy above area 0.  This allows a
 legacy OSPF backbone to become disconnected during a transition
 period, as long as the various segments all attach to the VPN
 backbone.

4.1.5. Prevention of Loops

 If a route sent from a PE router to a CE router could then be
 received by another PE router from one of its own CE routers, it
 would be possible for routing loops to occur.  To prevent this, a PE
 sets the DN bit [OSPF-DN] in any LSA that it sends to a CE, and a PE
 ignores any LSA received from a CE that already has the DN bit sent.
 Older implementations may use an OSPF Route Tag instead of the DN
 bit, in some cases.  See Sections 4.2.5.1 and 4.2.5.2.

4.2. Details

4.2.1. Independent OSPF Instances in PEs

 The PE MUST support one OSPF instance for each OSPF domain to which
 it attaches.  These OSPF instances function independently and do not
 leak routes to each other.  Each instance of OSPF MUST be associated
 with a single VRF.  If n CEs associated with that VRF are running
 OSPF on their respective PE/CE links, then those n CEs are OSPF
 adjacencies of the PE in the corresponding instance of OSPF.
 Generally, though not necessarily, if the PE attaches to several CEs
 in the same OSPF domain, it will associate the interfaces to those
 PEs with a single VRF.

Rosen, et al. Standards Track [Page 9] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

4.2.2. Router ID

 If a PE and a CE are communicating via OSPF, the PE will have an OSPF
 Router ID that is valid (i.e., unique) within the OSPF domain.  More
 precisely, each OSPF instance has a Router ID.  Different OSPF
 instances may have different Router IDs.

4.2.3. OSPF Areas

 A PE-CE link may be in any area, including area 0; this is a matter
 of the OSPF configuration.
 If a PE has a link that belongs to a non-zero area, the PE functions
 as an Area Border Router (ABR) for that area.
 PEs do not pass along the link state topology from one site to
 another (except in the case where a sham link is used; see Section
 4.2.7).
 Per [OSPFv2, Section 3.1], "the OSPF backbone always contains all
 area border routers".  The PE routers are therefore considered area 0
 routers.  Section 3.1 of [OSPFv2] also requires that area 0 be
 contiguous.  It follows that if the OSPF domain has any area 0
 routers other than the PE routers, at least one of those MUST be a CE
 router, and it MUST have an area 0 link (possibly a virtual link) to
 at least one PE router.

4.2.4. OSPF Domain Identifiers

 Each OSPF instance MUST be associated with one or more Domain
 Identifiers.  This MUST be configurable, and the default value (if
 none is configured) SHOULD be NULL.
 If an OSPF instance has multiple Domain Identifiers, one of these is
 considered its "primary" Domain Identifier; this MUST be determinable
 by configuration.  If an OSPF instance has exactly one Domain
 Identifier, this is of course its primary Domain Identifier.  If an
 OSPF instance has more than one Domain Identifier, the NULL Domain
 Identifier MUST NOT be one of them.
 If a route is installed in a VRF by a particular OSPF instance, the
 primary Domain Identifier of that OSPF instance is considered the
 route's Domain Identifier.
 Consider a route, R, that is installed in a VRF by OSPF instance I1,
 then redistributed into BGP as a VPN-IPv4 route, and then installed
 by BGP in another VRF.  If R needs to be redistributed into OSPF
 instance I2, associated with the latter VRF, the way in which R is

Rosen, et al. Standards Track [Page 10] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

 advertised in I2 will depend upon whether R's Domain Identifier is
 one of I2's Domain Identifiers.  If R's Domain Identifier is not one
 of I2's Domain Identifiers, then, if R is redistributed into I2, R
 will be advertised as an AS-external route, no matter what its OSPF
 route type is.  If, on the other hand, R's Domain Identifier is one
 of I2's Domain Identifiers, how R is advertised will depend upon R's
 OSPF route type.
 If two OSPF instances are in the same OSPF domain, then either:
    1. They both have the NULL Domain Identifier, OR
    2. Each OSPF instance has the primary Domain Identifier of the
       other as one of its own Domain Identifiers.
 If two OSPF instances are in different OSPF domains, then either:
    3. They both have the NULL Domain Identifier, OR
    4. Neither OSPF instance has the Primary Domain Identifier of the
       other as one of its own Domain Identifiers.
 (Note that if two OSPF instances each have the NULL Domain
 Identifier, we cannot tell from the Domain Identifier whether they
 are in the same OSPF Domain.  If they are in different domains, and
 if routes from one are distributed into the other, the routes will
 appear as intra-network routes, which may not be what is intended.)
 A Domain Identifier is an eight-byte quantity that is a valid BGP
 Extended Communities attribute, as specified in Section 4.2.4.  If a
 particular OSPF instance has a non-NULL Domain Identifier, when
 routes from that OSPF instance are distributed by BGP as VPN-IPv4
 routes, the routes MUST carry the Domain Identifier Extended
 Communities attribute that corresponds to the OSPF instance's Primary
 Domain Identifier.  If the OSPF instance's Domain Identifier is NULL,
 the Domain Identifier Extended Communities attribute MAY be omitted
 when routes from that OSPF instance are distributed by BGP;
 alternatively, a value of the Domain Identifier Extended Communities
 attribute that represents NULL (see Section 4.2.4) MAY be carried
 with the route.
 If the OSPF instances of an OSPF domain are given one or more non-
 NULL Domain Identifiers, this procedure allows us to determine
 whether a particular OSPF-originated VPN-IPv4 route belongs to the
 same domain as a given OSPF instance.  We can then determine whether
 the route should be redistributed to that OSPF instance as an inter-
 area route or as an OSPF AS-external route.  Details can be found in
 Sections 4.2.4 and 4.2.8.1.

Rosen, et al. Standards Track [Page 11] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

4.2.5. Loop Prevention

4.2.5.1. The DN Bit

 When a type 3 LSA is sent from a PE router to a CE router, the DN bit
 [OSPF-DN] in the LSA Options field MUST be set.  This is used to
 ensure that if any CE router sends this type 3 LSA to a PE router,
 the PE router will not redistribute it further.
 When a PE router needs to distribute to a CE router a route that
 comes from a site outside the latter's OSPF domain, the PE router
 presents itself as an ASBR (Autonomous System Border Router), and
 distributes the route in a type 5 LSA.  The DN bit [OSPF-DN] MUST be
 set in these LSAs to ensure that they will be ignored by any other PE
 routers that receive them.
 There are deployed implementations that do not set the DN bit, but
 instead use OSPF route tagging to ensure that a type 5 LSA generated
 by a PE router will be ignored by any other PE router that may
 receive it.  A special OSPF route tag, which we will call the VPN
 Route Tag (see Section 4.2.5.2), is used for this purpose.  To ensure
 backward compatibility, all implementations adhering to this
 specification MUST by default support the VPN Route Tag procedures
 specified in Sections 4.2.5.2, 4.2.8.1, and 4.2.8.2.  When it is no
 longer necessary to use the VPN Route Tag in a particular deployment,
 its use (both sending and receiving) may be disabled by
 configuration.

4.2.5.2. Use of OSPF Route Tags

 If a particular VRF in a PE is associated with an instance of OSPF,
 then by default it MUST be configured with a special OSPF route tag
 value, which we call the VPN Route Tag.  By default, this route tag
 MUST be included in the Type 5 LSAs that the PE originates (as the
 result of receiving a BGP-distributed VPN-IPv4 route, see Section
 4.2.8) and sends to any of the attached CEs.
 The configuration and inclusion of the VPN Route Tag is required for
 backward compatibility with deployed implementations that do not set
 the DN bit in type 5 LSAs.  The inclusion of the VPN Route Tag may be
 disabled by configuration if it has been determined that it is no
 longer needed for backward compatibility.
 The value of the VPN Route Tag is arbitrary but must be distinct from
 any OSPF Route Tag being used within the OSPF domain.  Its value MUST
 therefore be configurable.  If the Autonomous System number of the
 VPN backbone is two bytes long, the default value SHOULD be an
 automatically computed tag based on that Autonomous System number:

Rosen, et al. Standards Track [Page 12] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

 Tag = <Automatic = 1, Complete = 1, PathLength = 01>
     0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|1|0|1|     ArbitraryTag      |       AutonomousSystem        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 _AS number of the VPN Backbone_
 If the Autonomous System number is four bytes long, then a Route Tag
 value MUST be configured, and it MUST be distinct from any Route Tag
 used within the VPN itself.
 If a PE router needs to use OSPF to distribute to a CE router a route
 that comes from a site outside the CE router's OSPF domain, the PE
 router SHOULD present itself to the CE router as an Autonomous System
 Border Router (ASBR) and SHOULD report such routes as AS-external
 routes.  That is, these PE routers originate Type 5 LSAs reporting
 the extra-domain routes as AS-external routes.  Each such Type 5 LSA
 MUST contain an OSPF route tag whose value is that of the VPN Route
 Tag.  This tag identifies the route as having come from a PE router.
 The VPN Route Tag MUST be used to ensure that a Type 5 LSA originated
 by a PE router is not redistributed through the OSPF area to another
 PE router.

4.2.5.3. Other Possible Loops

 The procedures specified in this document ensure that if routing
 information derived from a BGP-distributed VPN-IPv4 route is
 distributed into OSPF, it cannot be redistributed back into BGP as a
 VPN-IPv4 route, as long as the DN bit and/or VPN route tag is
 maintained within the OSPF domain.  This does not eliminate all
 possible sources of loops.  For example, if a BGP VPN-IPv4 route is
 distributed into OSPF, then distributed into RIP (where all the
 information needed to prevent looping is lost), and then distributed
 back into OSPF, then it is possible that it could be distributed back
 into BGP as a VPN-IPv4 route, thereby causing a loop.
 Therefore, extreme care must be taken if there is any mutual
 redistribution of routes between the OSPF domain and any third
 routing domain (i.e., not the VPN backbone).  If the third routing
 domain is a BGP domain (e.g., the public Internet), the ordinary BGP
 loop prevention measures will prevent the route from reentering the
 OSPF domain.

Rosen, et al. Standards Track [Page 13] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

4.2.6. Handling LSAs from the CE

 This section specifies the way in which a PE router handles the OSPF
 LSAs it receives from a CE router.
 When a PE router receives, from a CE router, any LSA with the DN bit
 [OSPF-DN] set, the information from that LSA MUST NOT be used by the
 route calculation.  If a Type 5 LSA is received from the CE, and if
 it has an OSPF route tag value equal to the VPN Route Tag (see
 Section 4.2.5.2), then the information from that LSA MUST NOT be used
 by the route calculation.
 Otherwise, the PE must examine the corresponding VRF.  For every
 address prefix that was installed in the VRF by one of its associated
 OSPF instances, the PE must create a VPN-IPv4 route in BGP.  Each
 such route will have some of the following Extended Communities
 attributes:
  1. The OSPF Domain Identifier Extended Communities attribute. If

the OSPF instance that installed the route has a non-NULL

       primary Domain Identifier, this MUST be present; if that OSPF
       instance has only a NULL Domain Identifier, it MAY be omitted.
       This attribute is encoded with a two-byte type field, and its
       type is 0005, 0105, or 0205.  For backward compatibility, the
       type 8005 MAY be used as well and is treated as if it were
       0005.  If the OSPF instance has a NULL Domain Identifier, and
       the OSPF Domain Identifier Extended Communities attribute is
       present, then the attribute's value field must be all zeroes,
       and its type field may be any of 0005, 0105, 0205, or 8005.
  1. OSPF Route Type Extended Communities Attribute. This attribute

MUST be present. It is encoded with a two-byte type field, and

       its type is 0306.  To ensure backward compatibility, the type
       8000 SHOULD be accepted as well and treated as if it were type
       0306.  The remaining six bytes of the Attribute are encoded as
       follows:
          +-------+-------+-------+-------+-------+-------+
          |        Area Number            | Route |Options|
          |                               | Type  |       |
          +-------+-------+-------+-------+-------+-------+
  • Area Number: 4 bytes, encoding a 32-bit area number. For

AS-external routes, the value is 0. A non-zero value

          identifies the route as being internal to the OSPF domain,
          and as being within the identified area.  Area numbers are
          relative to a particular OSPF domain.

Rosen, et al. Standards Track [Page 14] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

  • OSPF Route Type: 1 byte, encoded as follows:
  • * 1 or 2 for intra-area routes (depending on whether the

route came from a type 1 or a type 2 LSA).

  • * 3 for inter-area routes.
  • * 5 for external routes (area number must be 0).
  • * 7 for NSSA routes.
       Note that the procedures of Section 4.2.8 do not make any
       distinction between routes types 1, 2, and 3.  If BGP installs
       a route of one of these types in the VRF, and if that route is
       selected for redistribution into OSPF, it will be advertised by
       OSPF in either a type 3 or a type 5 LSA, depending on the
       domain identifier.
  • Options: 1 byte. Currently, this is only used if the route

type is 5 or 7. Setting the least significant bit in the

          field indicates that the route carries a type 2 metric.
  1. OSPF Router ID Extended Communities Attribute. This OPTIONAL

attribute specifies the OSPF Router ID of the system that is

       identified in the BGP Next Hop attribute.  More precisely, it
       specifies the OSPF Router Id of the PE in the OSPF instance
       that installed the route into the VRF from which this route was
       exported.  This attribute is encoded with a two-byte type
       field, and its type is 0107, with the Router ID itself carried
       in the first 4 bytes of the value field.  The type 8001 SHOULD
       be accepted as well, to ensure backward compatibility, and
       should be treated as if it were 0107.
  1. MED (Multi_EXIT_DISC attribute). By default, this SHOULD be

set to the value of the OSPF distance associated with the

       route, plus 1.
 The intention of all this is the following.  OSPF Routes from one
 site are converted to BGP, distributed across the VPN backbone, and
 possibly converted back to OSPF routes before being distributed into
 another site.  With these attributes, BGP carries enough information
 about the route to enable the route to be converted back into OSPF
 "transparently", just as if BGP had not been involved.
 Routes that a PE receives in type 4 LSAs MUST NOT be redistributed to
 BGP.

Rosen, et al. Standards Track [Page 15] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

 The attributes specified above are in addition to any other
 attributes that routes must carry in accordance with [VPN].
 The Site of Origin attribute, which is usually required by [VPN], is
 OPTIONAL for routes that a PE learns from a CE via OSPF.
 Use of the Site of Origin attribute would, in the case of a multiply
 homed site (i.e., a site attached to several PE routers), prevent an
 intra-site route from being reinjected into a site from the VPN
 backbone.  Such a reinjection would not harm the routing, because the
 route via the VPN backbone would be advertised in a type 3 LSA, and
 hence would appear to be an inter-area route; the real intra-area
 route would be preferred.  But unnecessary overhead would be
 introduced.  On the other hand, if the Site of Origin attribute is
 not used, a partitioned site will find itself automatically repaired,
 since traffic from one partition to the other will automatically
 travel via the VPN backbone.  Therefore, the use of a Site of Origin
 attribute is optional, so that a trade-off can be made between the
 cost of the increased overhead and the value of automatic partition
 repair.

4.2.7. Sham Links

 This section describes the protocol and procedures necessary for the
 support of "Sham Links," as defined herein.  Support for sham links
 is an OPTIONAL feature of this specification.

4.2.7.1. Intra-Area Routes

 Suppose that there are two sites in the same OSPF area.  Each site is
 attached to a different PE router, and there is also an intra-area
 OSPF link connecting the two sites.
 It is possible to treat these two sites as a single VPN site that
 just happens to be multihomed to the backbone.  This is in fact the
 simplest thing to do and is perfectly adequate, provided that the
 preferred route between the two sites is via the intra-area OSPF link
 (a "backdoor link"), rather than via the VPN backbone.  There will be
 routes between sites that go through the PE routers, but these routes
 will appear to be inter-area routes, and OSPF will consider them less
 preferable than the intra-area routes through the backdoor link.
 If it is desired to have OSPF prefer the routes through the backbone
 over the routes through the backdoor link, then the routes through
 the backbone must be appear to be intra-area routes.  To make a route
 through the backbone appear to be an intra-area route, it is
 necessary to make it appear as if there is an intra-area link

Rosen, et al. Standards Track [Page 16] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

 connecting the two PE routers.  This is what we refer to as a "sham
 link".  (If the two sites attach to the same PE router, this is of
 course not necessary.)
 A sham link can be thought of as a relation between two VRFs.  If two
 VRFs are to be connected by a sham link, each VRF must be associated
 with a "Sham Link Endpoint Address", a 32-bit IPv4 address that is
 treated as an address of the PE router containing that VRF.  The Sham
 Link Endpoint Address is an address in the VPN's address space, not
 the SP's address space.  The Sham Link Endpoint Address associated
 with a VRF MUST be configurable.  If the VRF is associated with only
 a single OSPF instance, and if the PE's router id in that OSPF
 instance is an IP address, then the Sham Link Endpoint Address MAY
 default to that Router ID.  If a VRF is associated with several OSPF
 instances, each sham link belongs to a single OSPF instance.
 For a given OSPF instance, a VRF needs only a single Sham Link
 Endpoint Address, no matter how many sham links it has.  The Sham
 Link Endpoint Address MUST be distributed by BGP as a VPN-IPv4
 address whose IPv4 address prefix part is 32 bits long.  The Sham
 Link Endpoint Address MUST NOT be advertised by OSPF; if there is no
 BGP route to the Sham Link Endpoint Address, that address is to
 appear unreachable, so that the sham link appears to be down.

4.2.7.2. Creating Sham Links

 Sham links are manually configured.
 For a sham link to exist between two VRFs, each VRF has to be
 configured to create a sham link to the other, where the "other" is
 identified by its sham link endpoint address.  No more than one sham
 link with the same pair of sham link endpoint addresses will ever be
 created.  This specification does not include procedures for single-
 ended manual configuration of the sham link.
 Note that sham links may be created for any area, including area 0.
 A sham link connecting two VRFs is considered up if and only if a
 route to the 32-bit remote endpoint address of the sham link has been
 installed in VRF.
 The sham link endpoint address MUST NOT be used as the endpoint
 address of an OSPF Virtual Link.

Rosen, et al. Standards Track [Page 17] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

4.2.7.3. OSPF Protocol on Sham Links

 An OSPF protocol packet sent on a Sham Link from one PE to another
 must have as its IP source address the Sham Link Endpoint Address of
 the sender, and as its IP destination address the Sham Link Endpoint
 Address of the receiver.  The packet will travel from one PE router
 to the other over the VPN backbone, which means that it can be
 expected to traverse multiple hops.  As such, its TTL (Time to Live)
 field must be set appropriately.
 An OSPF protocol packet is regarded as having been received on a
 particular sham link if and only if the following three conditions
 hold:
  1. The packet arrives as an MPLS packet, and its MPLS label stack

causes it to be "delivered" to the local sham link endpoint

       address.
  1. The packet's IP destination address is the local sham link

endpoint address.

  1. The packet's IP source address is the remote sham link endpoint

address.

 Sham links SHOULD be treated by OSPF as OSPF Demand Circuits.  This
 means that LSAs will be flooded over them, but periodic refresh
 traffic is avoided.  Note that, as long as the backdoor link is up,
 flooding the LSAs over the sham link serves no purpose.  However, if
 the backdoor link goes down, OSPF does not have mechanisms enabling
 the routers in one site to rapidly flush the LSAs from the other
 site.  Therefore, it is still necessary to maintain synchronization
 among the LSA databases at the two sites, hence the flooding over the
 sham link.
 The sham link is an unnumbered point-to-point intra-area link and is
 advertised as a type 1 link in a type 1 LSA.
 The OSPF metric associated with a sham link MUST be configurable (and
 there MUST be a configurable default).  Whether traffic between the
 sites flows via a backdoor link or via the VPN backbone (i.e., via
 the sham link) depends on the settings of the OSPF link metrics.  The
 metrics can be set so that the backdoor link is not used unless
 connectivity via the VPN backbone fails, for example.
 The default Hello Interval for sham links is 10 seconds, and the
 default Router Dead Interval for sham links is 40 seconds.

Rosen, et al. Standards Track [Page 18] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

4.2.7.4. Routing and Forwarding on Sham Links

 If a PE determines that the next hop interface for a particular route
 is a sham link, then the PE SHOULD NOT redistribute that route into
 BGP as a VPN-IPv4 route.
 Any other route advertised in an LSA that is transmitted over a sham
 link MUST also be redistributed (by the PE flooding the LSA over the
 sham link) into BGP.  This means that if the preferred (OSPF) route
 for a given address prefix has the sham link as its next hop
 interface, then there will also be a "corresponding BGP route", for
 that same address prefix, installed in the VRF.  Per Section 4.1.2,
 the OSPF route is preferred.  However, when forwarding a packet, if
 the preferred route for that packet has the sham link as its next hop
 interface, then the packet MUST be forwarded according to the
 corresponding BGP route.  That is, it will be forwarded as if the
 corresponding BGP route had been the preferred route.  The
 "corresponding BGP route" is always a VPN-IPv4 route; the procedure
 for forwarding a packet over a VPN-IPv4 route is described in [VPN].
 This same rule applies to any packet whose IP destination address is
 the remote endpoint address of a sham link.  Such packets MUST be
 forwarded according to the corresponding BGP route.

4.2.8. VPN-IPv4 Routes Received via BGP

 This section describes how the PE router handles VPN-IPv4 routes
 received via BGP.
 If a received BGP VPN-IPv4 route is not installed in the VRF, nothing
 is reported to the CE.  A received route will not be installed into
 the VRF if the BGP decision process regards some other route as
 preferable.  When installed in the VRF, the route appears to be an
 IPv4 route.
 A BGP route installed in the VRF is not necessarily used for
 forwarding.  If an OSPF route for the same IPv4 address prefix has
 been installed in the VRF, the OSPF route will be used for
 forwarding, except in the case where the OSPF route's next-hop
 interface is a sham link.
 If a BGP route installed in the VRF is used for forwarding, then the
 BGP route is redistributed into OSPF and possibly reported to the CEs
 in an OSPF LSA.  The sort of LSA, if any, to be generated depends on
 various characteristics of the BGP route, as detailed in subsequent
 sections of this document.

Rosen, et al. Standards Track [Page 19] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

 The procedure for forwarding a packet over a VPN-IPv4 route is
 described in [VPN].
 In the following, we specify what is reported, in OSPF LSAs, by the
 PE to the CE, assuming that the PE is not configured to do any
 further summarization or filtering of the routing information before
 reporting it to the CE.
 When sending an LSA to the CE, it may be necessary to set the DN bit.
 See Section 4.2.5.1 for the rules regarding the DN bit.
 When sending an LSA to the CE, it may be necessary to set the OSPF
 Route Tag.  See Section 4.2.5.2 for the rules about setting the OSPF
 Route Tag.
 When type 5 LSAs are sent, the Forwarding Address is set to 0.

4.2.8.1. External Routes

 With respect to a particular OSPF instance associated with a VRF, a
 VPN-IPv4 route that is installed in the VRF and then selected as the
 preferred route is treated as an External Route if one of the
 following conditions holds:
  1. The route type field of the OSPF Route Type Extended Community

has an OSPF route type of "external".

  1. The route is from a different domain from the domain of the

OSPF instance.

 The rules for determining whether a route is from a domain different
 from that of a particular OSPF instance are the following.  The OSPF
 Domain Identifier Extended Communities attribute carried by the route
 is compared with the OSPF Domain Identifier Extended Communities
 attribute(s) with which the OSPF instance has been configured (if
 any).  In general, when two such attributes are compared, all eight
 bytes must be compared.  Thus, two OSPF Domain Identifier Extended
 Communities attributes are regarded as equal if and only if one of
 the following three conditions holds:
    1. They are identical in all eight bytes.
    2. They are identical in their lower-order six bytes (value
       field), but one attribute has two high-order bytes (type field)
       of 0005 and the other has two high-order bytes (type field) of
       8005.  (This condition is for backward compatibility.)

Rosen, et al. Standards Track [Page 20] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

    3. The lower-order six bytes (value field) of both attributes
       consist entirely of zeroes.  In this case, the two attributes
       are considered identical irrespective of their type fields, and
       they are regarded as representing the NULL Domain Identifier.
 If a VPN-IPv4 route has an OSPF Domain Identifier Extended
 Communities attribute, we say that that route is in the identified
 domain.  If the value field of the Extended Communities attribute
 consists of all zeroes, then the identified domain is the NULL
 domain, and the route is said to belong to the NULL domain.  If the
 route does not have an OSPF Domain Identified Extended Communities
 attribute, then the route belongs to the NULL domain.
 Every OSPF instance is associated with one or more Domain
 Identifiers, though possibly only with the NULL domain identifier.
 If an OSPF instance is associated with a particular Domain
 Identifier, we will say that it belongs to the identified domain.
 If a VPN-IPv4 route is to be redistributed to a particular instance,
 it must be determined whether that route and that OSPF instance
 belong to the same domain.  A route and an OSPF instance belong to
 the same domain if and only if one of the following conditions holds:
    1. The route and the OSPF instance each belong to the NULL domain.
    2. The domain to which the route belongs is the domain to which
       the OSPF instance belongs.  (That is, the route's Domain
       Identifier is equal to the OSPF instance's domain identifier,
       as determined by the definitions given earlier in this
       section.)
 If the route and the VRF do not belong to the same domain, the route
 is treated as an external route.
 If an external route is redistributed into an OSPF instance, the
 route may or may not be advertised to a particular CE, depending on
 the configuration and on the type of area to which the PE/CE link
 belongs.  If the route is advertised, and the PE/CE link belongs to a
 NSSA area, it is advertised in a type 7 LSA.  Otherwise, if the route
 is advertised, it is advertised in a type 5 LSA.  The LSA will be
 originated by the PE.
 The DN bit (Section 4.2.5.1) MUST be set in the LSA.  The VPN Route
 Tag (see Section 4.2.5.2) MUST be placed in the LSA, unless the use
 of the VPN Route Tag has been turned off by configuration.

Rosen, et al. Standards Track [Page 21] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

 By default, a type 2 metric value is included in the LSA, unless the
 options field of the OSPF Route Type Extended Communities attribute
 of the VPN-IPv4 route specifies that the metric should be type 1.
 By default, the value of the metric is taken from the MED attribute
 of the VPN-IPv4 route.  If the MED is not present, a default metric
 value is used.  (The default type 1 metric and the default type 2
 metric MAY be different.)
 Note that this way of handling external routes makes every PE appear
 to be an ASBR attached to all the external routes.  In a multihomed
 site, this can result in a number of type 5 LSAs containing the same
 information.

4.2.8.2. Summary Routes

 If a route and the VRF into which it is imported belong to the same
 domain, then the route should be treated as if it had been received
 in an OSPF type 3 LSA.  This means that the PE will report the route
 in a type 3 LSA to the CE.  (Note that this case is possible even if
 the VPN-IPv4 route carries an area number identical to that of the CE
 router.  This means that if an area is "partitioned" such that the
 two pieces are connected only via the VPN backbone, it appears to be
 two areas, with inter-area routes between them.)

4.2.8.3. NSSA Routes

 NSSA routes are treated the same as external routes, as described in
 Section 4.2.8.1.

5. IANA Considerations

 Section 11 of [EXTCOMM] calls upon IANA to create a registry for BGP
 Extended Communities Type Field and Extended Type Field values.
 Section 4.2.6 of this document assigns new values for the BGP
 Extended Communities Extended Type Field.  These values all fall
 within the range of values that [EXTCOMM] states "are to be assigned
 by IANA, using the 'First Come, First Served' policy defined in RFC
 2434".
 The BGP Extended Communities Extended Type Field values assigned in
 Section 4.2.6 of this document are as follows:
  1. OSPF Domain Identifier: Extended Types 0005, 0105, and 0205.
  1. OSPF Route Type: Extended Type 0306
  1. OSPF Router ID: Extended Type 0107

Rosen, et al. Standards Track [Page 22] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

6. Security Considerations

 Security considerations that are relevant in general to BGP/MPLS IP
 VPNS are discussed in [VPN] and [VPN-AS].  We discuss here only those
 security considerations that are specific to the use of OSPF as the
 PE/CE protocol.
 A single PE may be running OSPF as the IGP of the SP backbone
 network, as well as running OSPF as the IGP of one or more VPNs.
 This requires the use of multiple, independent OSPF instances, so
 that routes are not inadvertently leaked between the backbone and any
 VPN.  The OSPF instances for different VPNs must also be independent
 OSPF instances, to prevent inadvertent leaking of routes between
 VPNs.
 OSPF provides a number of procedures that allow the OSPF control
 messages between a PE and a CE to be authenticated.  OSPF
 "cryptographic authentication" SHOULD be used between a PE and a CE.
 It MUST be implemented on each PE.
 In the absence of such authentication, it is possible that the CE
 might not really belong to the VPN to which the PE assigns it.  It
 may also be possible for an attacker to insert spoofed messages on
 the PE/CE link, in either direction.  Spoofed messages sent to the CE
 could compromise the routing at the CE's site.  Spoofed messages sent
 to the PE could result in improper VPN routing, or in a denial-of-
 service attack on the VPN.

7. Acknowledgements

 Major contributions to this work have been made by Derek Yeung and
 Yakov Rekhter.
 Thanks to Ross Callon, Ajay Singhal, Russ Housley, and Alex Zinin for
 their review and comments.

8. Normative References

 [EXTCOMM] Sangli, S., Tappan, D., and Y. Rekhter, "BGP Extended
           Communities Attribute", RFC 4360, February 2006.
 [OSPFv2]  Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
 [OSPF-DN] Rosen, E., Psenak, P., and P. Pillay-Esnault, "Using a Link
           State Advertisement (LSA) Options Bit to Prevent Looping in
           BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4576,
           June 2006.

Rosen, et al. Standards Track [Page 23] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
           Requirement Levels", BCP 14, RFC 2119, March 1997.
 [VPN]     Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
           Networks (VPNs)", RFC 4364, February 2006.

9. Informative References

 [BGP]     Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
           Protocol 4 (BGP-4)", RFC 4271, January 2006.
 [RIP]     Malkin, G., "RIP Version 2", STD 56, RFC 2453, November
           1998.
 [VPN-AS]  Rosen, E., "Applicability Statement for BGP/MPLS IP Virtual
           Private Networks (VPNs)", RFC 4365, February 2006.

Authors' Addresses

 Eric C. Rosen
 Cisco Systems, Inc.
 1414 Massachusetts Avenue
 Boxborough, MA 01719
 EMail: erosen@cisco.com
 Peter Psenak
 Cisco Systems
 BA Business Center, 9th Floor
 Plynarenska 1
 Bratislava 82109
 Slovakia
 EMail: ppsenak@cisco.com
 Padma Pillay-Esnault
 Cisco Systems
 3750 Cisco Way
 San Jose, CA 95134
 EMail: ppe@cisco.com

Rosen, et al. Standards Track [Page 24] RFC 4577 OSPF for BGP/MPLS IP VPNs June 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).
 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.
 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights.  Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.
 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.
 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard.  Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Rosen, et al. Standards Track [Page 25]

/data/webs/external/dokuwiki/data/pages/rfc/rfc4577.txt · Last modified: 2006/06/16 17:08 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki