GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc3610

Network Working Group D. Whiting Request for Comments: 3610 Hifn Category: Informational R. Housley

                                                        Vigil Security
                                                           N. Ferguson
                                                             MacFergus
                                                        September 2003
                     Counter with CBC-MAC (CCM)

Status of this Memo

 This memo provides information for the Internet community.  It does
 not specify an Internet standard of any kind.  Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

 Counter with CBC-MAC (CCM) is a generic authenticated encryption
 block cipher mode.  CCM is defined for use with 128-bit block
 ciphers, such as the Advanced Encryption Standard (AES).

1. Introduction

 Counter with CBC-MAC (CCM) is a generic authenticated encryption
 block cipher mode.  CCM is only defined for use with 128-bit block
 ciphers, such as AES [AES].  The CCM design principles can easily be
 applied to other block sizes, but these modes will require their own
 specifications.

1.1. Conventions Used In This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [STDWORDS].

2. CCM Mode Specification

 For the generic CCM mode there are two parameter choices.  The first
 choice is M, the size of the authentication field.  The choice of the
 value for M involves a trade-off between message expansion and the
 probability that an attacker can undetectably modify a message.
 Valid values are 4, 6, 8, 10, 12, 14, and 16 octets.  The second

Whiting, et al. Informational [Page 1] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 choice is L, the size of the length field.  This value requires a
 trade-off between the maximum message size and the size of the Nonce.
 Different applications require different trade-offs, so L is a
 parameter.  Valid values of L range between 2 octets and 8 octets
 (the value L=1 is reserved).
     Name  Description                               Size    Encoding
     ----  ----------------------------------------  ------  --------
     M     Number of octets in authentication field  3 bits  (M-2)/2
     L     Number of octets in length field          3 bits  L-1

2.1. Inputs

 To authenticate and encrypt a message the following information is
 required:
 1.  An encryption key K suitable for the block cipher.
 2.  A nonce N of 15-L octets.  Within the scope of any encryption key
     K, the nonce value MUST be unique.  That is, the set of nonce
     values used with any given key MUST NOT contain any duplicate
     values.  Using the same nonce for two different messages
     encrypted with the same key destroys the security properties of
     this mode.
 3.  The message m, consisting of a string of l(m) octets where 0 <=
     l(m) < 2^(8L).  The length restriction ensures that l(m) can be
     encoded in a field of L octets.
 4.  Additional authenticated data a, consisting of a string of l(a)
     octets where 0 <= l(a) < 2^64.  This additional data is
     authenticated but not encrypted, and is not included in the
     output of this mode.  It can be used to authenticate plaintext
     packet headers, or contextual information that affects the
     interpretation of the message.  Users who do not wish to
     authenticate additional data can provide a string of length zero.
 The inputs are summarized as:
    Name  Description                          Size
    ----  -----------------------------------  -----------------------
    K     Block cipher key                     Depends on block cipher
    N     Nonce                                15-L octets
    m     Message to authenticate and encrypt  l(m) octets
    a     Additional authenticated data        l(a) octets

Whiting, et al. Informational [Page 2] RFC 3610 Counter with CBC-MAC (CCM) September 2003

2.2. Authentication

 The first step is to compute the authentication field T.  This is
 done using CBC-MAC [MAC].  We first define a sequence of blocks B_0,
 B_1, ..., B_n and then apply CBC-MAC to these blocks.
 The first block B_0 is formatted as follows, where l(m) is encoded in
 most-significant-byte first order:
    Octet Number   Contents
    ------------   ---------
    0              Flags
    1 ... 15-L     Nonce N
    16-L ... 15    l(m)
 Within the first block B_0, the Flags field is formatted as follows:
    Bit Number   Contents
    ----------   ----------------------
    7            Reserved (always zero)
    6            Adata
    5 ... 3      M'
    2 ... 0      L'
 Another way say the same thing is:  Flags = 64*Adata + 8*M' + L'.
 The Reserved bit is reserved for future expansions and should always
 be set to zero.  The Adata bit is set to zero if l(a)=0, and set to
 one if l(a)>0.  The M' field is set to (M-2)/2.  As M can take on the
 even values from 4 to 16, the 3-bit M' field can take on the values
 from one to seven.  The 3-bit field MUST NOT have a value of zero,
 which would correspond to a 16-bit integrity check value.  The L'
 field encodes the size of the length field used to store l(m).  The
 parameter L can take on the values from 2 to 8 (recall, the value L=1
 is reserved).  This value is encoded in the 3-bit L' field using the
 values from one to seven by choosing L' = L-1 (the zero value is
 reserved).
 If l(a)>0 (as indicated by the Adata field), then one or more blocks
 of authentication data are added.  These blocks contain l(a) and a
 encoded in a reversible manner.  We first construct a string that
 encodes l(a).
 If 0 < l(a) < (2^16 - 2^8), then the length field is encoded as two
 octets which contain the value l(a) in most-significant-byte first
 order.

Whiting, et al. Informational [Page 3] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 If (2^16 - 2^8) <= l(a) < 2^32, then the length field is encoded as
 six octets consisting of the octets 0xff, 0xfe, and four octets
 encoding l(a) in most-significant-byte-first order.
 If 2^32 <= l(a) < 2^64, then the length field is encoded as ten
 octets consisting of the octets 0xff, 0xff, and eight octets encoding
 l(a) in most-significant-byte-first order.
 The length encoding conventions are summarized in the following
 table.  Note that all fields are interpreted in most-significant-byte
 first order.
  First two octets   Followed by       Comment
  -----------------  ----------------  -------------------------------
  0x0000             Nothing           Reserved
  0x0001 ... 0xFEFF  Nothing           For 0 < l(a) < (2^16 - 2^8)
  0xFF00 ... 0xFFFD  Nothing           Reserved
  0xFFFE             4 octets of l(a)  For (2^16 - 2^8) <= l(a) < 2^32
  0xFFFF             8 octets of l(a)  For 2^32 <= l(a) < 2^64
 The blocks encoding a are formed by concatenating this string that
 encodes l(a) with a itself, and splitting the result into 16-octet
 blocks, and then padding the last block with zeroes if necessary.
 These blocks are appended to the first block B0.
 After the (optional) additional authentication blocks have been
 added, we add the message blocks.  The message blocks are formed by
 splitting the message m into 16-octet blocks, and then padding the
 last block with zeroes if necessary.  If the message m consists of
 the empty string, then no blocks are added in this step.
 The result is a sequence of blocks B0, B1, ..., Bn.  The CBC-MAC is
 computed by:
    X_1 := E( K, B_0 )
    X_i+1 := E( K, X_i XOR B_i )  for i=1, ..., n
    T := first-M-bytes( X_n+1 )
 where E() is the block cipher encryption function, and T is the MAC
 value.  CCM was designed with AES in mind for the E() function, but
 any 128-bit block cipher can be used.  Note that the last block B_n
 is XORed with X_n, and the result is encrypted with the block cipher.
 If needed, the ciphertext is truncated to give T.

Whiting, et al. Informational [Page 4] RFC 3610 Counter with CBC-MAC (CCM) September 2003

2.3. Encryption

 To encrypt the message data we use Counter (CTR) mode.  We first
 define the key stream blocks by:
    S_i := E( K, A_i )   for i=0, 1, 2, ...
 The values A_i are formatted as follows, where the Counter field i is
 encoded in most-significant-byte first order:
    Octet Number   Contents
    ------------   ---------
    0              Flags
    1 ... 15-L     Nonce N
    16-L ... 15    Counter i
 The Flags field is formatted as follows:
    Bit Number   Contents
    ----------   ----------------------
    7            Reserved (always zero)
    6            Reserved (always zero)
    5 ... 3      Zero
    2 ... 0      L'
 Another way say the same thing is:  Flags = L'.
 The Reserved bits are reserved for future expansions and MUST be set
 to zero.  Bit 6 corresponds to the Adata bit in the B_0 block, but as
 this bit is not used here, it is reserved and MUST be set to zero.
 Bits 3, 4, and 5 are also set to zero, ensuring that all the A blocks
 are distinct from B_0, which has the non-zero encoding of M in this
 position.  Bits 0, 1, and 2 contain L', using the same encoding as in
 B_0.
 The message is encrypted by XORing the octets of message m with the
 first l(m) octets of the concatenation of S_1, S_2, S_3, ... .  Note
 that S_0 is not used to encrypt the message.
 The authentication value U is computed by encrypting T with the key
 stream block S_0 and truncating it to the desired length.
    U := T XOR first-M-bytes( S_0 )

2.4. Output

 The final result c consists of the encrypted message followed by the
 encrypted authentication value U.

Whiting, et al. Informational [Page 5] RFC 3610 Counter with CBC-MAC (CCM) September 2003

2.5. Decryption and Authentication Checking

 To decrypt a message the following information is required:
    1.  The encryption key K.
    2.  The nonce N.
    3.  The additional authenticated data a.
    4.  The encrypted and authenticated message c.
 Decryption starts by recomputing the key stream to recover the
 message m and the MAC value T.  The message and additional
 authentication data is then used to recompute the CBC-MAC value and
 check T.
 If the T value is not correct, the receiver MUST NOT reveal any
 information except for the fact that T is incorrect.  The receiver
 MUST NOT reveal the decrypted message, the value T, or any other
 information.

2.6. Restrictions

 To preserve security, implementations need to limit the total amount
 of data that is encrypted with a single key; the total number of
 block cipher encryption operations in the CBC-MAC and encryption
 together cannot exceed 2^61.  (This allows nearly 2^64 octets to be
 encrypted and authenticated using CCM.  This is roughly 16 million
 terabytes, which should be more than enough for most applications.)
 In an environment where this limit might be reached, the sender MUST
 ensure that the total number of block cipher encryption operations in
 the CBC-MAC and encryption together does not exceed 2^61.  Receivers
 that do not expect to decrypt the same message twice MAY also check
 this limit.
 The recipient MUST verify the CBC-MAC before releasing any
 information such as the plaintext.  If the CBC-MAC verification
 fails, the receiver MUST destroy all information, except for the fact
 that the CBC-MAC verification failed.

3. Security Proof

 Jakob Jonsson has developed a security proof of CCM [PROOF].  The
 resulting paper was presented at the SAC 2002 conference.  The proof
 shows that CCM provides a level of confidentiality and authenticity
 that is in line with other proposed authenticated encryption modes,
 such as OCB mode [OCB].

Whiting, et al. Informational [Page 6] RFC 3610 Counter with CBC-MAC (CCM) September 2003

4. Rationale

 The main difficulty in specifying this mode is the trade-off between
 nonce size and counter size.  For a general mode we want to support
 large messages.  Some applications use only small messages, but would
 rather have a larger nonce.  Introducing the L parameter solves this
 issue.  The parameter M gives the traditional trade-off between
 message expansion and probability of forgery.  For most applications,
 we recommend choosing M at least 8.
 The CBC-MAC is computed over a sequence of blocks that encode the
 relevant data in a unique way.  Given the block sequence it is easy
 to recover N, M, L, m, and a.  The length encoding of a was chosen to
 be simple and efficient when a is empty and when a is small.  We
 expect that many implementations will limit the maximum size of a.
 CCM encryption is a straightforward application of CTR mode [MODES].
 As some implementations will support a variable length counter field,
 we have ensured that the least significant octet of the counter is at
 one end of the field.  This also ensures that the counter is aligned
 on the block boundary.
 By encrypting T we avoid CBC-MAC collision attacks.  If the block
 cipher behaves as a pseudo-random permutation, then the key stream is
 indistinguishable from a random string.  Thus, the attacker gets no
 information about the CBC-MAC results.  The only avenue of attack
 that is left is a differential-style attack, which has no significant
 chance of success if the block cipher is a pseudo-random permutation.
 To simplify implementation we use the same block cipher key for the
 encryption and authentication functions.  In our design this is not a
 problem.  All the A blocks are different, and they are different from
 the B_0 block.  If the block cipher behaves like a random
 permutation, then the outputs are independent of each other, up to
 the insignificant limitation that they are all different.  The only
 cases where the inputs to the block cipher can overlap are an
 intermediate value in the CBC-MAC and one of the other encryptions.
 As all the intermediate values of the CBC-MAC computation are
 essentially random (because the block cipher behaves like a random
 permutation) the probability of such a collision is very small.  Even
 if there is a collision, these values only affect T, which is
 encrypted so that an attacker cannot deduce any information, or
 detect any collision.

Whiting, et al. Informational [Page 7] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 Care has been taken to ensure that the blocks used by the
 authentication function match up with the blocks used by the
 encryption function.  This should simplify hardware implementations,
 and reduce the amount of byte-shifting required by software
 implementations.

5. Nonce Suggestions

 The main requirement is that, within the scope of a single key, the
 nonce values are unique for each message.  A common technique is to
 number messages sequentially, and to use this number as the nonce.
 Sequential message numbers are also used to detect replay attacks and
 to detect message reordering, so in many situations (such as IPsec
 ESP [ESP]) the sequence numbers are already available.
 Users of CCM, and all other block cipher modes, should be aware of
 precomputation attacks.  These are effectively collision attacks on
 the cipher key.  Let us suppose the key K is 128 bits, and the same
 nonce value N' is used with many different keys.  The attacker
 chooses a particular nonce N'.  She chooses 2^64 different keys at
 random and computes a table entry for each K value, generating a pair
 of the form (K,S_1).  (Given the key and the nonce, computing S_1 is
 easy.)  She then waits for messages to be sent with nonce N'.  We
 will assume the first 16 bytes of each message are known so that she
 can compute S_1 for each message.  She looks in her table for a pair
 with a matching S_1 value.  She can expect to find a match after
 checking about 2^64 messages.  Once a match is found, the other part
 of the matched pair is the key in question.  The total workload of
 the attacker is only 2^64 steps, rather than the expected 2^128
 steps.  Similar precomputation attacks exist for all block cipher
 modes.
 The main weapon against precomputation attacks is to use a larger
 key.  Using a 256-bit key forces the attacker to perform at least
 2^128 precomputations, which is infeasible.  In situations where
 using a large key is not possible or desirable (for example, due to
 the resulting performance impact), users can use part of the nonce to
 reduce the number of times any specific nonce value is used with
 different keys.  If there is room in the nonce, the sender could add
 a few random bytes, and send these random bytes along with the
 message.  This makes the precomputation attack much harder, as the
 attacker now has to precompute a table for each of the possible
 random values.  An alternative is to use something like the sender's
 Ethernet address.  Note that due to the widespread use of DHCP and
 NAT, IP addresses are rarely unique.  Including the Ethernet address
 forces the attacker to perform the precomputation specifically for a
 specific source address, and the resulting table could not be used to
 attack anyone else.  Although these solutions can all work, they need

Whiting, et al. Informational [Page 8] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 careful analysis and almost never entirely prevent these attacks.
 Where possible, we recommend using a larger key, as this solves all
 the problems.

6. Efficiency and Performance

 Performance depends on the speed of the block cipher implementation.
 In hardware, for large packets, the speed achievable for CCM is
 roughly the same as that achievable with the CBC encryption mode.
 Encrypting and authenticating an empty message, without any
 additional authentication data, requires two block cipher encryption
 operations.  For each block of additional authentication data one
 additional block cipher encryption operation is required (if one
 includes the length encoding).  Each message block requires two block
 cipher encryption operations.  The worst-case situation is when both
 the message and the additional authentication data are a single
 octet.  In this case, CCM requires five block cipher encryption
 operations.
 CCM results in the minimal possible message expansion; the only bits
 added are the authentication bits.
 Both the CCM encryption and CCM decryption operations require only
 the block cipher encryption function.  In AES, the encryption and
 decryption algorithms have some significant differences.  Thus, using
 only the encrypt operation can lead to a significant savings in code
 size or hardware size.
 In hardware, CCM can compute the message authentication code and
 perform encryption in a single pass.  That is, the implementation
 does not have to complete calculation of the message authentication
 code before encryption can begin.
 CCM was designed for use in the packet processing environment.  The
 authentication processing requires the message length to be known at
 the beginning of the operation, which makes one-pass processing
 difficult in some environments.  However, in almost all environments,
 message or packet lengths are known in advance.

Whiting, et al. Informational [Page 9] RFC 3610 Counter with CBC-MAC (CCM) September 2003

7. Summary of Properties

 Security Function
    authenticated encryption
 Error Propagation
    none
 Synchronization
    same nonce used by sender and recipient
 Parallelizability
    encryption can be parallelized, but authentication cannot
 Keying Material Requirements
    one key
 Counter/IV/Nonce Requirements
    counter and nonce are part of the counter block
 Memory Requirements
    requires memory for encrypt operation of the underlying block
    cipher, plaintext, ciphertext (expanded for CBC-MAC), and a per-
    packet counter (an integer; at most L octets in size)
 Pre-processing Capability
    encryption key stream can be precomputed, but authentication
    cannot
 Message Length Requirements
    octet aligned message of arbitrary length, up to 2^(8*L) octets,
    and octet aligned arbitrary additional authenticated data, up to
    2^64 octets
 Ciphertext Expansion
    4, 6, 8, 10, 12, 14, or 16 octets depending on size of MAC
    selected

8. Test Vectors

 These test vectors use AES for the block cipher [AES].  In each of
 these test vectors, the least significant sixteen bits of the counter
 block is used for the block counter, and the nonce is 13 octets.
 Some of the test vectors include a eight octet authentication value,
 and others include a ten octet authentication value.

Whiting, et al. Informational [Page 10] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 =============== Packet Vector #1 ==================
 AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
 Nonce =    00 00 00 03  02 01 00 A0  A1 A2 A3 A4  A5
 Total packet length = 31. [Input with 8 cleartext header octets]
            00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
            10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E
 CBC IV in: 59 00 00 00  03 02 01 00  A0 A1 A2 A3  A4 A5 00 17
 CBC IV out:EB 9D 55 47  73 09 55 AB  23 1E 0A 2D  FE 4B 90 D6
 After xor: EB 95 55 46  71 0A 51 AE  25 19 0A 2D  FE 4B 90 D6   [hdr]
 After AES: CD B6 41 1E  3C DC 9B 4F  5D 92 58 B6  9E E7 F0 91
 After xor: C5 BF 4B 15  30 D1 95 40  4D 83 4A A5  8A F2 E6 86   [msg]
 After AES: 9C 38 40 5E  A0 3C 1B C9  04 B5 8B 40  C7 6C A2 EB
 After xor: 84 21 5A 45  BC 21 05 C9  04 B5 8B 40  C7 6C A2 EB   [msg]
 After AES: 2D C6 97 E4  11 CA 83 A8  60 C2 C4 06  CC AA 54 2F
 CBC-MAC  : 2D C6 97 E4  11 CA 83 A8
 CTR Start: 01 00 00 00  03 02 01 00  A0 A1 A2 A3  A4 A5 00 01
 CTR[0001]: 50 85 9D 91  6D CB 6D DD  E0 77 C2 D1  D4 EC 9F 97
 CTR[0002]: 75 46 71 7A  C6 DE 9A FF  64 0C 9C 06  DE 6D 0D 8F
 CTR[MAC ]: 3A 2E 46 C8  EC 33 A5 48
 Total packet length = 39. [Authenticated and Encrypted Output]
            00 01 02 03  04 05 06 07  58 8C 97 9A  61 C6 63 D2
            F0 66 D0 C2  C0 F9 89 80  6D 5F 6B 61  DA C3 84 17
            E8 D1 2C FD  F9 26 E0
 =============== Packet Vector #2 ==================
 AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
 Nonce =    00 00 00 04  03 02 01 A0  A1 A2 A3 A4  A5
 Total packet length = 32. [Input with 8 cleartext header octets]
            00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
            10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
 CBC IV in: 59 00 00 00  04 03 02 01  A0 A1 A2 A3  A4 A5 00 18
 CBC IV out:F0 C2 54 D3  CA 03 E2 39  70 BD 24 A8  4C 39 9E 77
 After xor: F0 CA 54 D2  C8 00 E6 3C  76 BA 24 A8  4C 39 9E 77   [hdr]
 After AES: 48 DE 8B 86  28 EA 4A 40  00 AA 42 C2  95 BF 4A 8C
 After xor: 40 D7 81 8D  24 E7 44 4F  10 BB 50 D1  81 AA 5C 9B   [msg]
 After AES: 0F 89 FF BC  A6 2B C2 4F  13 21 5F 16  87 96 AA 33
 After xor: 17 90 E5 A7  BA 36 DC 50  13 21 5F 16  87 96 AA 33   [msg]
 After AES: F7 B9 05 6A  86 92 6C F3  FB 16 3D C4  99 EF AA 11
 CBC-MAC  : F7 B9 05 6A  86 92 6C F3
 CTR Start: 01 00 00 00  04 03 02 01  A0 A1 A2 A3  A4 A5 00 01
 CTR[0001]: 7A C0 10 3D  ED 38 F6 C0  39 0D BA 87  1C 49 91 F4
 CTR[0002]: D4 0C DE 22  D5 F9 24 24  F7 BE 9A 56  9D A7 9F 51
 CTR[MAC ]: 57 28 D0 04  96 D2 65 E5
 Total packet length = 40. [Authenticated and Encrypted Output]
            00 01 02 03  04 05 06 07  72 C9 1A 36  E1 35 F8 CF
            29 1C A8 94  08 5C 87 E3  CC 15 C4 39  C9 E4 3A 3B
            A0 91 D5 6E  10 40 09 16

Whiting, et al. Informational [Page 11] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 =============== Packet Vector #3 ==================
 AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
 Nonce =    00 00 00 05  04 03 02 A0  A1 A2 A3 A4  A5
 Total packet length = 33. [Input with 8 cleartext header octets]
            00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
            10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
            20
 CBC IV in: 59 00 00 00  05 04 03 02  A0 A1 A2 A3  A4 A5 00 19
 CBC IV out:6F 8A 12 F7  BF 8D 4D C5  A1 19 6E 95  DF F0 B4 27
 After xor: 6F 82 12 F6  BD 8E 49 C0  A7 1E 6E 95  DF F0 B4 27   [hdr]
 After AES: 37 E9 B7 8C  C2 20 17 E7  33 80 43 0C  BE F4 28 24
 After xor: 3F E0 BD 87  CE 2D 19 E8  23 91 51 1F  AA E1 3E 33   [msg]
 After AES: 90 CA 05 13  9F 4D 4E CF  22 6F E9 81  C5 9E 2D 40
 After xor: 88 D3 1F 08  83 50 50 D0  02 6F E9 81  C5 9E 2D 40   [msg]
 After AES: 73 B4 67 75  C0 26 DE AA  41 03 97 D6  70 FE 5F B0
 CBC-MAC  : 73 B4 67 75  C0 26 DE AA
 CTR Start: 01 00 00 00  05 04 03 02  A0 A1 A2 A3  A4 A5 00 01
 CTR[0001]: 59 B8 EF FF  46 14 73 12  B4 7A 1D 9D  39 3D 3C FF
 CTR[0002]: 69 F1 22 A0  78 C7 9B 89  77 89 4C 99  97 5C 23 78
 CTR[MAC ]: 39 6E C0 1A  7D B9 6E 6F
 Total packet length = 41. [Authenticated and Encrypted Output]
            00 01 02 03  04 05 06 07  51 B1 E5 F4  4A 19 7D 1D
            A4 6B 0F 8E  2D 28 2A E8  71 E8 38 BB  64 DA 85 96
            57 4A DA A7  6F BD 9F B0  C5
 =============== Packet Vector #4 ==================
 AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
 Nonce =    00 00 00 06  05 04 03 A0  A1 A2 A3 A4  A5
 Total packet length = 31. [Input with 12 cleartext header octets]
            00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
            10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E
 CBC IV in: 59 00 00 00  06 05 04 03  A0 A1 A2 A3  A4 A5 00 13
 CBC IV out:06 65 2C 60  0E F5 89 63  CA C3 25 A9  CD 3E 2B E1
 After xor: 06 69 2C 61  0C F6 8D 66  CC C4 2D A0  C7 35 2B E1   [hdr]
 After AES: A0 75 09 AC  15 C2 58 86  04 2F 80 60  54 FE A6 86
 After xor: AC 78 07 A3  05 D3 4A 95  10 3A 96 77  4C E7 BC 9D   [msg]
 After AES: 64 4C 09 90  D9 1B 83 E9  AB 4B 8E ED  06 6F F5 BF
 After xor: 78 51 17 90  D9 1B 83 E9  AB 4B 8E ED  06 6F F5 BF   [msg]
 After AES: 4B 4F 4B 39  B5 93 E6 BF  B0 B2 C2 B7  0F 29 CD 7A
 CBC-MAC  : 4B 4F 4B 39  B5 93 E6 BF
 CTR Start: 01 00 00 00  06 05 04 03  A0 A1 A2 A3  A4 A5 00 01
 CTR[0001]: AE 81 66 6A  83 8B 88 6A  EE BF 4A 5B  32 84 50 8A
 CTR[0002]: D1 B1 92 06  AC 93 9E 2F  B6 DD CE 10  A7 74 FD 8D
 CTR[MAC ]: DD 87 2A 80  7C 75 F8 4E
 Total packet length = 39. [Authenticated and Encrypted Output]
            00 01 02 03  04 05 06 07  08 09 0A 0B  A2 8C 68 65
            93 9A 9A 79  FA AA 5C 4C  2A 9D 4A 91  CD AC 8C 96
            C8 61 B9 C9  E6 1E F1

Whiting, et al. Informational [Page 12] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 =============== Packet Vector #5 ==================
 AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
 Nonce =    00 00 00 07  06 05 04 A0  A1 A2 A3 A4  A5
 Total packet length = 32. [Input with 12 cleartext header octets]
            00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
            10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
 CBC IV in: 59 00 00 00  07 06 05 04  A0 A1 A2 A3  A4 A5 00 14
 CBC IV out:00 4C 50 95  45 80 3C 48  51 CD E1 3B  56 C8 9A 85
 After xor: 00 40 50 94  47 83 38 4D  57 CA E9 32  5C C3 9A 85   [hdr]
 After AES: E2 B8 F7 CE  49 B2 21 72  84 A8 EA 84  FA AD 67 5C
 After xor: EE B5 F9 C1  59 A3 33 61  90 BD FC 93  E2 B4 7D 47   [msg]
 After AES: 3E FB 36 72  25 DB 11 01  D3 C2 2F 0E  CA FF 44 F3
 After xor: 22 E6 28 6D  25 DB 11 01  D3 C2 2F 0E  CA FF 44 F3   [msg]
 After AES: 48 B9 E8 82  55 05 4A B5  49 0A 95 F9  34 9B 4B 5E
 CBC-MAC  : 48 B9 E8 82  55 05 4A B5
 CTR Start: 01 00 00 00  07 06 05 04  A0 A1 A2 A3  A4 A5 00 01
 CTR[0001]: D0 FC F5 74  4D 8F 31 E8  89 5B 05 05  4B 7C 90 C3
 CTR[0002]: 72 A0 D4 21  9F 0D E1 D4  04 83 BC 2D  3D 0C FC 2A
 CTR[MAC ]: 19 51 D7 85  28 99 67 26
 Total packet length = 40. [Authenticated and Encrypted Output]
            00 01 02 03  04 05 06 07  08 09 0A 0B  DC F1 FB 7B
            5D 9E 23 FB  9D 4E 13 12  53 65 8A D8  6E BD CA 3E
            51 E8 3F 07  7D 9C 2D 93
 =============== Packet Vector #6 ==================
 AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
 Nonce =    00 00 00 08  07 06 05 A0  A1 A2 A3 A4  A5
 Total packet length = 33. [Input with 12 cleartext header octets]
            00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
            10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
            20
 CBC IV in: 59 00 00 00  08 07 06 05  A0 A1 A2 A3  A4 A5 00 15
 CBC IV out:04 72 DA 4C  6F F6 0A 63  06 52 1A 06  04 80 CD E5
 After xor: 04 7E DA 4D  6D F5 0E 66  00 55 12 0F  0E 8B CD E5   [hdr]
 After AES: 64 4C 36 A5  A2 27 37 62  0B 89 F1 D7  BF F2 73 D4
 After xor: 68 41 38 AA  B2 36 25 71  1F 9C E7 C0  A7 EB 69 CF   [msg]
 After AES: 41 E1 19 CD  19 24 CE 77  F1 2F A6 60  C1 6E BB 4E
 After xor: 5D FC 07 D2  39 24 CE 77  F1 2F A6 60  C1 6E BB 4E   [msg]
 After AES: A5 27 D8 15  6A C3 59 BF  1C B8 86 E6  2F 29 91 29
 CBC-MAC  : A5 27 D8 15  6A C3 59 BF
 CTR Start: 01 00 00 00  08 07 06 05  A0 A1 A2 A3  A4 A5 00 01
 CTR[0001]: 63 CC BE 1E  E0 17 44 98  45 64 B2 3A  8D 24 5C 80
 CTR[0002]: 39 6D BA A2  A7 D2 CB D4  B5 E1 7C 10  79 45 BB C0
 CTR[MAC ]: E5 7D DC 56  C6 52 92 2B
 Total packet length = 41. [Authenticated and Encrypted Output]
            00 01 02 03  04 05 06 07  08 09 0A 0B  6F C1 B0 11
            F0 06 56 8B  51 71 A4 2D  95 3D 46 9B  25 70 A4 BD
            87 40 5A 04  43 AC 91 CB  94

Whiting, et al. Informational [Page 13] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 =============== Packet Vector #7 ==================
 AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
 Nonce =    00 00 00 09  08 07 06 A0  A1 A2 A3 A4  A5
 Total packet length = 31. [Input with 8 cleartext header octets]
            00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
            10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E
 CBC IV in: 61 00 00 00  09 08 07 06  A0 A1 A2 A3  A4 A5 00 17
 CBC IV out:60 06 C5 72  DA 23 9C BF  A0 5B 0A DE  D2 CD A8 1E
 After xor: 60 0E C5 73  D8 20 98 BA  A6 5C 0A DE  D2 CD A8 1E   [hdr]
 After AES: 41 7D E2 AE  94 E2 EA D9  00 FC 44 FC  D0 69 52 27
 After xor: 49 74 E8 A5  98 EF E4 D6  10 ED 56 EF  C4 7C 44 30   [msg]
 After AES: 2A 6C 42 CA  49 D7 C7 01  C5 7D 59 FF  87 16 49 0E
 After xor: 32 75 58 D1  55 CA D9 01  C5 7D 59 FF  87 16 49 0E   [msg]
 After AES: 89 8B D6 45  4E 27 20 BB  D2 7E F3 15  7A 7C 90 B2
 CBC-MAC  : 89 8B D6 45  4E 27 20 BB  D2 7E
 CTR Start: 01 00 00 00  09 08 07 06  A0 A1 A2 A3  A4 A5 00 01
 CTR[0001]: 09 3C DB B9  C5 52 4F DA  C1 C5 EC D2  91 C4 70 AF
 CTR[0002]: 11 57 83 86  E2 C4 72 B4  8E CC 8A AD  AB 77 6F CB
 CTR[MAC ]: 8D 07 80 25  62 B0 8C 00  A6 EE
 Total packet length = 41. [Authenticated and Encrypted Output]
            00 01 02 03  04 05 06 07  01 35 D1 B2  C9 5F 41 D5
            D1 D4 FE C1  85 D1 66 B8  09 4E 99 9D  FE D9 6C 04
            8C 56 60 2C  97 AC BB 74  90
 =============== Packet Vector #8 ==================
 AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
 Nonce =    00 00 00 0A  09 08 07 A0  A1 A2 A3 A4  A5
 Total packet length = 32. [Input with 8 cleartext header octets]
            00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
            10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
 CBC IV in: 61 00 00 00  0A 09 08 07  A0 A1 A2 A3  A4 A5 00 18
 CBC IV out:63 A3 FA E4  6C 79 F3 FA  78 38 B8 A2  80 36 B6 0B
 After xor: 63 AB FA E5  6E 7A F7 FF  7E 3F B8 A2  80 36 B6 0B   [hdr]
 After AES: 1C 99 1A 3D  B7 60 79 27  34 40 79 1F  AD 8B 5B 02
 After xor: 14 90 10 36  BB 6D 77 28  24 51 6B 0C  B9 9E 4D 15   [msg]
 After AES: 14 19 E8 E8  CB BE 75 58  E1 E3 BE 4B  6C 9F 82 E3
 After xor: 0C 00 F2 F3  D7 A3 6B 47  E1 E3 BE 4B  6C 9F 82 E3   [msg]
 After AES: E0 16 E8 1C  7F 7B 8A 38  A5 38 F2 CB  5B B6 C1 F2
 CBC-MAC  : E0 16 E8 1C  7F 7B 8A 38  A5 38
 CTR Start: 01 00 00 00  0A 09 08 07  A0 A1 A2 A3  A4 A5 00 01
 CTR[0001]: 73 7C 33 91  CC 8E 13 DD  E0 AA C5 4B  6D B7 EB 98
 CTR[0002]: 74 B7 71 77  C5 AA C5 3B  04 A4 F8 70  8E 92 EB 2B
 CTR[MAC ]: 21 6D AC 2F  8B 4F 1C 07  91 8C
 Total packet length = 42. [Authenticated and Encrypted Output]
            00 01 02 03  04 05 06 07  7B 75 39 9A  C0 83 1D D2
            F0 BB D7 58  79 A2 FD 8F  6C AE 6B 6C  D9 B7 DB 24
            C1 7B 44 33  F4 34 96 3F  34 B4

Whiting, et al. Informational [Page 14] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 =============== Packet Vector #9 ==================
 AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
 Nonce =    00 00 00 0B  0A 09 08 A0  A1 A2 A3 A4  A5
 Total packet length = 33. [Input with 8 cleartext header octets]
            00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
            10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
            20
 CBC IV in: 61 00 00 00  0B 0A 09 08  A0 A1 A2 A3  A4 A5 00 19
 CBC IV out:4F 2C 86 11  1E 08 2A DD  6B 44 21 3A  B5 13 13 16
 After xor: 4F 24 86 10  1C 0B 2E D8  6D 43 21 3A  B5 13 13 16   [hdr]
 After AES: F6 EC 56 87  3C 57 12 DC  9C C5 3C A8  D4 D1 ED 0A
 After xor: FE E5 5C 8C  30 5A 1C D3  8C D4 2E BB  C0 C4 FB 1D   [msg]
 After AES: 17 C1 80 A5  31 53 D4 C3  03 85 0C 95  65 80 34 52
 After xor: 0F D8 9A BE  2D 4E CA DC  23 85 0C 95  65 80 34 52   [msg]
 After AES: 46 A1 F6 E2  B1 6E 75 F8  1C F5 6B 1A  80 04 44 1B
 CBC-MAC  : 46 A1 F6 E2  B1 6E 75 F8  1C F5
 CTR Start: 01 00 00 00  0B 0A 09 08  A0 A1 A2 A3  A4 A5 00 01
 CTR[0001]: 8A 5A 10 6B  C0 29 9A 55  5B 93 6B 0B  0E A0 DE 5A
 CTR[0002]: EA 05 FD E2  AB 22 5C FE  B7 73 12 CB  88 D9 A5 4A
 CTR[MAC ]: AC 3D F1 07  DA 30 C4 86  43 BB
 Total packet length = 43. [Authenticated and Encrypted Output]
            00 01 02 03  04 05 06 07  82 53 1A 60  CC 24 94 5A
            4B 82 79 18  1A B5 C8 4D  F2 1C E7 F9  B7 3F 42 E1
            97 EA 9C 07  E5 6B 5E B1  7E 5F 4E
 =============== Packet Vector #10 ==================
 AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
 Nonce =    00 00 00 0C  0B 0A 09 A0  A1 A2 A3 A4  A5
 Total packet length = 31. [Input with 12 cleartext header octets]
            00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
            10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E
 CBC IV in: 61 00 00 00  0C 0B 0A 09  A0 A1 A2 A3  A4 A5 00 13
 CBC IV out:7F B8 0A 32  E9 80 57 46  EC 31 6C 3A  B2 A2 EB 5D
 After xor: 7F B4 0A 33  EB 83 53 43  EA 36 64 33  B8 A9 EB 5D   [hdr]
 After AES: 7E 96 96 BF  F1 56 D6 A8  6E AC F5 7B  7F 23 47 5A
 After xor: 72 9B 98 B0  E1 47 C4 BB  7A B9 E3 6C  67 3A 5D 41   [msg]
 After AES: 8B 4A EE 42  04 24 8A 59  FA CC 88 66  57 66 DD 72
 After xor: 97 57 F0 42  04 24 8A 59  FA CC 88 66  57 66 DD 72   [msg]
 After AES: 41 63 89 36  62 ED D7 EB  CD 6E 15 C1  89 48 62 05
 CBC-MAC  : 41 63 89 36  62 ED D7 EB  CD 6E
 CTR Start: 01 00 00 00  0C 0B 0A 09  A0 A1 A2 A3  A4 A5 00 01
 CTR[0001]: 0B 39 2B 9B  05 66 97 06  3F 12 56 8F  2B 13 A1 0F
 CTR[0002]: 07 89 65 25  23 40 94 3B  9E 69 B2 56  CC 5E F7 31
 CTR[MAC ]: 17 09 20 76  09 A0 4E 72  45 B3
 Total packet length = 41. [Authenticated and Encrypted Output]
            00 01 02 03  04 05 06 07  08 09 0A 0B  07 34 25 94
            15 77 85 15  2B 07 40 98  33 0A BB 14  1B 94 7B 56
            6A A9 40 6B  4D 99 99 88  DD

Whiting, et al. Informational [Page 15] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 =============== Packet Vector #11 ==================
 AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
 Nonce =    00 00 00 0D  0C 0B 0A A0  A1 A2 A3 A4  A5
 Total packet length = 32. [Input with 12 cleartext header octets]
            00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
            10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
 CBC IV in: 61 00 00 00  0D 0C 0B 0A  A0 A1 A2 A3  A4 A5 00 14
 CBC IV out:B0 84 85 79  51 D2 FA 42  76 EF 3A D7  14 B9 62 87
 After xor: B0 88 85 78  53 D1 FE 47  70 E8 32 DE  1E B2 62 87   [hdr]
 After AES: C9 B3 64 7E  D8 79 2A 5C  65 B7 CE CC  19 0A 97 0A
 After xor: C5 BE 6A 71  C8 68 38 4F  71 A2 D8 DB  01 13 8D 11   [msg]
 After AES: 34 0F 69 17  FA B9 19 D6  1D AC D0 35  36 D6 55 8B
 After xor: 28 12 77 08  FA B9 19 D6  1D AC D0 35  36 D6 55 8B   [msg]
 After AES: 6B 5E 24 34  12 CC C2 AD  6F 1B 11 C3  A1 A9 D8 BC
 CBC-MAC  : 6B 5E 24 34  12 CC C2 AD  6F 1B
 CTR Start: 01 00 00 00  0D 0C 0B 0A  A0 A1 A2 A3  A4 A5 00 01
 CTR[0001]: 6B 66 BC 0C  90 A1 F1 12  FC BE 6F 4E  12 20 77 BC
 CTR[0002]: 97 9E 57 2B  BE 65 8A E5  CC 20 11 83  2A 9A 9B 5B
 CTR[MAC ]: 9E 64 86 DD  02 B6 49 C1  6D 37
 Total packet length = 42. [Authenticated and Encrypted Output]
            00 01 02 03  04 05 06 07  08 09 0A 0B  67 6B B2 03
            80 B0 E3 01  E8 AB 79 59  0A 39 6D A7  8B 83 49 34
            F5 3A A2 E9  10 7A 8B 6C  02 2C
 =============== Packet Vector #12 ==================
 AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF
 Nonce =    00 00 00 0E  0D 0C 0B A0  A1 A2 A3 A4  A5
 Total packet length = 33. [Input with 12 cleartext header octets]
            00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F
            10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F
            20
 CBC IV in: 61 00 00 00  0E 0D 0C 0B  A0 A1 A2 A3  A4 A5 00 15
 CBC IV out:5F 8E 8D 02  AD 95 7C 5A  36 14 CF 63  40 16 97 4F
 After xor: 5F 82 8D 03  AF 96 78 5F  30 13 C7 6A  4A 1D 97 4F   [hdr]
 After AES: 63 FA BD 69  B9 55 65 FF  54 AA F4 60  88 7D EC 9F
 After xor: 6F F7 B3 66  A9 44 77 EC  40 BF E2 77  90 64 F6 84   [msg]
 After AES: 5A 76 5F 0B  93 CE 4F 6A  B4 1D 91 30  18 57 6A D7
 After xor: 46 6B 41 14  B3 CE 4F 6A  B4 1D 91 30  18 57 6A D7   [msg]
 After AES: 9D 66 92 41  01 08 D5 B6  A1 45 85 AC  AF 86 32 E8
 CBC-MAC  : 9D 66 92 41  01 08 D5 B6  A1 45
 CTR Start: 01 00 00 00  0E 0D 0C 0B  A0 A1 A2 A3  A4 A5 00 01
 CTR[0001]: CC F2 AE D9  E0 4A C9 74  E6 58 55 B3  2B 94 30 BF
 CTR[0002]: A2 CA AC 11  63 F4 07 E5  E5 F6 E3 B3  79 0F 79 F8
 CTR[MAC ]: 50 7C 31 57  63 EF 78 D3  77 9E
 Total packet length = 43. [Authenticated and Encrypted Output]
            00 01 02 03  04 05 06 07  08 09 0A 0B  C0 FF A0 D6
            F0 5B DB 67  F2 4D 43 A4  33 8D 2A A4  BE D7 B2 0E
            43 CD 1A A3  16 62 E7 AD  65 D6 DB

Whiting, et al. Informational [Page 16] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 =============== Packet Vector #13 ==================
 AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
 Nonce =    00 41 2B 4E  A9 CD BE 3C  96 96 76 6C  FA
 Total packet length = 31. [Input with 8 cleartext header octets]
            0B E1 A8 8B  AC E0 18 B1  08 E8 CF 97  D8 20 EA 25
            84 60 E9 6A  D9 CF 52 89  05 4D 89 5C  EA C4 7C
 CBC IV in: 59 00 41 2B  4E A9 CD BE  3C 96 96 76  6C FA 00 17
 CBC IV out:33 AE C3 1A  1F B7 CC 35  E5 DA D2 BA  C0 90 D9 A3
 After xor: 33 A6 C8 FB  B7 3C 60 D5  FD 6B D2 BA  C0 90 D9 A3   [hdr]
 After AES: B7 56 CA 1E  5B 42 C6 9C  58 E3 0A F5  2B F7 7C FD
 After xor: BF BE 05 89  83 62 2C B9  DC 83 E3 9F  F2 38 2E 74   [msg]
 After AES: 33 3D 3A 3D  07 B5 3C 7B  22 0E 96 1A  18 A9 A1 9E
 After xor: 36 70 B3 61  ED 71 40 7B  22 0E 96 1A  18 A9 A1 9E   [msg]
 After AES: 14 BD DB 6B  F9 01 63 4D  FB 56 51 83  BC 74 93 F7
 CBC-MAC  : 14 BD DB 6B  F9 01 63 4D
 CTR Start: 01 00 41 2B  4E A9 CD BE  3C 96 96 76  6C FA 00 01
 CTR[0001]: 44 51 B0 11  7A 84 82 BF  03 19 AE C1  59 5E BD DA
 CTR[0002]: 83 EB 76 E1  3A 44 84 7F  92 20 09 07  76 B8 25 C5
 CTR[MAC ]: F3 31 2C A0  F5 DC B4 FE
 Total packet length = 39. [Authenticated and Encrypted Output]
            0B E1 A8 8B  AC E0 18 B1  4C B9 7F 86  A2 A4 68 9A
            87 79 47 AB  80 91 EF 53  86 A6 FF BD  D0 80 F8 E7
            8C F7 CB 0C  DD D7 B3
 =============== Packet Vector #14 ==================
 AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
 Nonce =    00 33 56 8E  F7 B2 63 3C  96 96 76 6C  FA
 Total packet length = 32. [Input with 8 cleartext header octets]
            63 01 8F 76  DC 8A 1B CB  90 20 EA 6F  91 BD D8 5A
            FA 00 39 BA  4B AF F9 BF  B7 9C 70 28  94 9C D0 EC
 CBC IV in: 59 00 33 56  8E F7 B2 63  3C 96 96 76  6C FA 00 18
 CBC IV out:42 0D B1 50  BB 0C 44 DA  83 E4 52 09  55 99 67 E3
 After xor: 42 05 D2 51  34 7A 98 50  98 2F 52 09  55 99 67 E3   [hdr]
 After AES: EA D1 CA 56  02 02 09 5C  E6 12 B0 D2  18 A0 DD 44
 After xor: 7A F1 20 39  93 BF D1 06  1C 12 89 68  53 0F 24 FB   [msg]
 After AES: 51 77 41 69  C3 DE 6B 24  13 27 74 90  F5 FF C5 62
 After xor: E6 EB 31 41  57 42 BB C8  13 27 74 90  F5 FF C5 62   [msg]
 After AES: D4 CC 3B 82  DF 9F CC 56  7E E5 83 61  D7 8D FB 5E
 CBC-MAC  : D4 CC 3B 82  DF 9F CC 56
 CTR Start: 01 00 33 56  8E F7 B2 63  3C 96 96 76  6C FA 00 01
 CTR[0001]: DC EB F4 13  38 3C 66 A0  5A 72 55 EF  98 D7 FF AD
 CTR[0002]: 2F 54 2C BA  15 D6 6C DF  E1 EC 46 8F  0E 68 A1 24
 CTR[MAC ]: 11 E2 D3 9F  A2 E8 0C DC
 Total packet length = 40. [Authenticated and Encrypted Output]
            63 01 8F 76  DC 8A 1B CB  4C CB 1E 7C  A9 81 BE FA
            A0 72 6C 55  D3 78 06 12  98 C8 5C 92  81 4A BC 33
            C5 2E E8 1D  7D 77 C0 8A

Whiting, et al. Informational [Page 17] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 =============== Packet Vector #15 ==================
 AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
 Nonce =    00 10 3F E4  13 36 71 3C  96 96 76 6C  FA
 Total packet length = 33. [Input with 8 cleartext header octets]
            AA 6C FA 36  CA E8 6B 40  B9 16 E0 EA  CC 1C 00 D7
            DC EC 68 EC  0B 3B BB 1A  02 DE 8A 2D  1A A3 46 13
            2E
 CBC IV in: 59 00 10 3F  E4 13 36 71  3C 96 96 76  6C FA 00 19
 CBC IV out:B3 26 49 FF  D5 9F 56 0F  02 2D 11 E2  62 C5 BE EA
 After xor: B3 2E E3 93  2F A9 9C E7  69 6D 11 E2  62 C5 BE EA   [hdr]
 After AES: 82 50 9E E5  B2 FF DB CA  9B D0 2E 20  6B 3F B7 AD
 After xor: 3B 46 7E 0F  7E E3 DB 1D  47 3C 46 CC  60 04 0C B7   [msg]
 After AES: 80 46 0E 4C  08 3A D0 3F  B9 A9 13 BE  E4 DE 2F 66
 After xor: 82 98 84 61  12 99 96 2C  97 A9 13 BE  E4 DE 2F 66   [msg]
 After AES: 47 29 CB 00  31 F1 81 C1  92 68 4B 89  A4 71 50 E7
 CBC-MAC  : 47 29 CB 00  31 F1 81 C1
 CTR Start: 01 00 10 3F  E4 13 36 71  3C 96 96 76  6C FA 00 01
 CTR[0001]: 08 C4 DA C8  EC C1 C0 7B  4C E1 F2 4C  37 5A 47 EE
 CTR[0002]: A7 87 2E 6C  6D C4 4E 84  26 02 50 4C  3F A5 73 C5
 CTR[MAC ]: E0 5F B2 6E  EA 83 B4 C7
 Total packet length = 41. [Authenticated and Encrypted Output]
            AA 6C FA 36  CA E8 6B 40  B1 D2 3A 22  20 DD C0 AC
            90 0D 9A A0  3C 61 FC F4  A5 59 A4 41  77 67 08 97
            08 A7 76 79  6E DB 72 35  06
 =============== Packet Vector #16 ==================
 AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
 Nonce =    00 76 4C 63  B8 05 8E 3C  96 96 76 6C  FA
 Total packet length = 31. [Input with 12 cleartext header octets]
            D0 D0 73 5C  53 1E 1B EC  F0 49 C2 44  12 DA AC 56
            30 EF A5 39  6F 77 0C E1  A6 6B 21 F7  B2 10 1C
 CBC IV in: 59 00 76 4C  63 B8 05 8E  3C 96 96 76  6C FA 00 13
 CBC IV out:AB DC 4E C9  AA 72 33 97  DF 2D AD 76  33 DE 3B 0D
 After xor: AB D0 9E 19  D9 2E 60 89  C4 C1 5D 3F  F1 9A 3B 0D   [hdr]
 After AES: 62 86 F6 2F  23 42 63 B0  1C FD 8C 37  40 74 81 EB
 After xor: 70 5C 5A 79  13 AD C6 89  73 8A 80 D6  E6 1F A0 1C   [msg]
 After AES: 88 95 84 18  CF 79 CA BE  EB C0 0C C4  86 E6 01 F7
 After xor: 3A 85 98 18  CF 79 CA BE  EB C0 0C C4  86 E6 01 F7   [msg]
 After AES: C1 85 92 D9  84 CD 67 80  63 D1 D9 6D  C1 DF A1 11
 CBC-MAC  : C1 85 92 D9  84 CD 67 80
 CTR Start: 01 00 76 4C  63 B8 05 8E  3C 96 96 76  6C FA 00 01
 CTR[0001]: 06 08 FF 95  A6 94 D5 59  F4 0B B7 9D  EF FA 41 DF
 CTR[0002]: 80 55 3A 75  78 38 04 A9  64 8B 68 DD  7F DC DD 7A
 CTR[MAC ]: 5B EA DB 4E  DF 07 B9 2F
 Total packet length = 39. [Authenticated and Encrypted Output]
            D0 D0 73 5C  53 1E 1B EC  F0 49 C2 44  14 D2 53 C3
            96 7B 70 60  9B 7C BB 7C  49 91 60 28  32 45 26 9A
            6F 49 97 5B  CA DE AF

Whiting, et al. Informational [Page 18] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 =============== Packet Vector #17 ==================
 AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
 Nonce =    00 F8 B6 78  09 4E 3B 3C  96 96 76 6C  FA
 Total packet length = 32. [Input with 12 cleartext header octets]
            77 B6 0F 01  1C 03 E1 52  58 99 BC AE  E8 8B 6A 46
            C7 8D 63 E5  2E B8 C5 46  EF B5 DE 6F  75 E9 CC 0D
 CBC IV in: 59 00 F8 B6  78 09 4E 3B  3C 96 96 76  6C FA 00 14
 CBC IV out:F4 68 FE 5D  B1 53 0B 7A  5A A5 FB 27  40 CF 6E 33
 After xor: F4 64 89 EB  BE 52 17 79  BB F7 A3 BE  FC 61 6E 33   [hdr]
 After AES: 23 29 0E 0B  33 45 9A 83  32 2D E4 06  86 67 10 04
 After xor: CB A2 64 4D  F4 C8 F9 66  1C 95 21 40  69 D2 CE 6B   [msg]
 After AES: 8F BE D4 0F  8B 89 B7 B8  20 D5 5F E0  3C E2 43 11
 After xor: FA 57 18 02  8B 89 B7 B8  20 D5 5F E0  3C E2 43 11   [msg]
 After AES: 6A DB 15 B6  71 81 B2 E2  2B E3 4A F2  B2 83 E2 29
 CBC-MAC  : 6A DB 15 B6  71 81 B2 E2
 CTR Start: 01 00 F8 B6  78 09 4E 3B  3C 96 96 76  6C FA 00 01
 CTR[0001]: BD CE 95 5C  CF D3 81 0A  91 EA 77 A6  A4 5B C0 4C
 CTR[0002]: 43 2E F2 32  AE 36 D8 92  22 BF 63 37  E6 B2 6C E8
 CTR[MAC ]: 1C F7 19 C1  35 7F CC DE
 Total packet length = 40. [Authenticated and Encrypted Output]
            77 B6 0F 01  1C 03 E1 52  58 99 BC AE  55 45 FF 1A
            08 5E E2 EF  BF 52 B2 E0  4B EE 1E 23  36 C7 3E 3F
            76 2C 0C 77  44 FE 7E 3C
 =============== Packet Vector #18 ==================
 AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
 Nonce =    00 D5 60 91  2D 3F 70 3C  96 96 76 6C  FA
 Total packet length = 33. [Input with 12 cleartext header octets]
            CD 90 44 D2  B7 1F DB 81  20 EA 60 C0  64 35 AC BA
            FB 11 A8 2E  2F 07 1D 7C  A4 A5 EB D9  3A 80 3B A8
            7F
 CBC IV in: 59 00 D5 60  91 2D 3F 70  3C 96 96 76  6C FA 00 15
 CBC IV out:BA 37 74 54  D7 20 A4 59  25 97 F6 A3  D1 D6 BA 67
 After xor: BA 3B B9 C4  93 F2 13 46  FE 16 D6 49  B1 16 BA 67   [hdr]
 After AES: 81 6A 20 20  38 D0 A6 30  CB E0 B7 3C  39 BB CE 05
 After xor: E5 5F 8C 9A  C3 C1 0E 1E  E4 E7 AA 40  9D 1E 25 DC   [msg]
 After AES: 6D 5C 15 FD  85 2D 5C 3C  E3 03 3D 85  DA 57 BD AC
 After xor: 57 DC 2E 55  FA 2D 5C 3C  E3 03 3D 85  DA 57 BD AC   [msg]
 After AES: B0 4A 1C 23  BC 39 B6 51  76 FD 5B FF  9B C1 28 5E
 CBC-MAC  : B0 4A 1C 23  BC 39 B6 51
 CTR Start: 01 00 D5 60  91 2D 3F 70  3C 96 96 76  6C FA 00 01
 CTR[0001]: 64 A2 C5 56  50 CE E0 4C  7A 93 D8 EE  F5 43 E8 8E
 CTR[0002]: 18 E7 65 AC  B7 B0 E9 AF  09 2B D0 20  6C A1 C8 3C
 CTR[MAC ]: F7 43 82 79  5C 49 F3 00
 Total packet length = 41. [Authenticated and Encrypted Output]
            CD 90 44 D2  B7 1F DB 81  20 EA 60 C0  00 97 69 EC
            AB DF 48 62  55 94 C5 92  51 E6 03 57  22 67 5E 04
            C8 47 09 9E  5A E0 70 45  51

Whiting, et al. Informational [Page 19] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 =============== Packet Vector #19 ==================
 AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
 Nonce =    00 42 FF F8  F1 95 1C 3C  96 96 76 6C  FA
 Total packet length = 31. [Input with 8 cleartext header octets]
            D8 5B C7 E6  9F 94 4F B8  8A 19 B9 50  BC F7 1A 01
            8E 5E 67 01  C9 17 87 65  98 09 D6 7D  BE DD 18
 CBC IV in: 61 00 42 FF  F8 F1 95 1C  3C 96 96 76  6C FA 00 17
 CBC IV out:44 F7 CC 9C  2B DD 2F 45  F6 38 25 6B  73 6E 1D 7A
 After xor: 44 FF 14 C7  EC 3B B0 D1  B9 80 25 6B  73 6E 1D 7A   [hdr]
 After AES: 57 C3 73 F8  00 AA 5F CC  7B CF 1D 1B  DD BB 4C 52
 After xor: DD DA CA A8  BC 5D 45 CD  F5 91 7A 1A  14 AC CB 37   [msg]
 After AES: 42 4E 93 72  72 C8 79 B6  11 C7 A5 9F  47 8D 9F D8
 After xor: DA 47 45 0F  CC 15 61 B6  11 C7 A5 9F  47 8D 9F D8   [msg]
 After AES: 9A CB 03 F8  B9 DB C8 D2  D2 D7 A4 B4  95 25 08 67
 CBC-MAC  : 9A CB 03 F8  B9 DB C8 D2  D2 D7
 CTR Start: 01 00 42 FF  F8 F1 95 1C  3C 96 96 76  6C FA 00 01
 CTR[0001]: 36 38 34 FA  28 83 3D B7  55 66 0D 98  65 0D 68 46
 CTR[0002]: 35 E9 63 54  87 16 72 56  3F 0C 08 AF  78 44 31 A9
 CTR[MAC ]: F9 B7 FA 46  7B 9B 40 45  14 6D
 Total packet length = 41. [Authenticated and Encrypted Output]
            D8 5B C7 E6  9F 94 4F B8  BC 21 8D AA  94 74 27 B6
            DB 38 6A 99  AC 1A EF 23  AD E0 B5 29  39 CB 6A 63
            7C F9 BE C2  40 88 97 C6  BA
 =============== Packet Vector #20 ==================
 AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
 Nonce =    00 92 0F 40  E5 6C DC 3C  96 96 76 6C  FA
 Total packet length = 32. [Input with 8 cleartext header octets]
            74 A0 EB C9  06 9F 5B 37  17 61 43 3C  37 C5 A3 5F
            C1 F3 9F 40  63 02 EB 90  7C 61 63 BE  38 C9 84 37
 CBC IV in: 61 00 92 0F  40 E5 6C DC  3C 96 96 76  6C FA 00 18
 CBC IV out:60 CB 21 CE  40 06 50 AE  2A D2 BE 52  9F 5F 0F C2
 After xor: 60 C3 55 6E  AB CF 56 31  71 E5 BE 52  9F 5F 0F C2   [hdr]
 After AES: 03 20 64 14  35 32 5D 95  C8 A2 50 40  93 28 DA 9B
 After xor: 14 41 27 28  02 F7 FE CA  09 51 CF 00  F0 2A 31 0B   [msg]
 After AES: B9 E8 87 95  ED F7 F0 08  15 15 F0 14  E2 FE 0E 48
 After xor: C5 89 E4 2B  D5 3E 74 3F  15 15 F0 14  E2 FE 0E 48   [msg]
 After AES: 8F AD 0C 23  E9 63 7E 87  FA 21 45 51  1B 47 DE F1
 CBC-MAC  : 8F AD 0C 23  E9 63 7E 87  FA 21
 CTR Start: 01 00 92 0F  40 E5 6C DC  3C 96 96 76  6C FA 00 01
 CTR[0001]: 4F 71 A5 C1  12 42 E3 7D  29 F0 FE E4  1B E1 02 5F
 CTR[0002]: 34 2B D3 F1  7C B7 7B C1  79 0B 05 05  61 59 27 2C
 CTR[MAC ]: 7F 09 7B EF  C6 AA C1 D3  73 65
 Total packet length = 42. [Authenticated and Encrypted Output]
            74 A0 EB C9  06 9F 5B 37  58 10 E6 FD  25 87 40 22
            E8 03 61 A4  78 E3 E9 CF  48 4A B0 4F  44 7E FF F6
            F0 A4 77 CC  2F C9 BF 54  89 44

Whiting, et al. Informational [Page 20] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 =============== Packet Vector #21 ==================
 AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
 Nonce =    00 27 CA 0C  71 20 BC 3C  96 96 76 6C  FA
 Total packet length = 33. [Input with 8 cleartext header octets]
            44 A3 AA 3A  AE 64 75 CA  A4 34 A8 E5  85 00 C6 E4
            15 30 53 88  62 D6 86 EA  9E 81 30 1B  5A E4 22 6B
            FA
 CBC IV in: 61 00 27 CA  0C 71 20 BC  3C 96 96 76  6C FA 00 19
 CBC IV out:43 07 C0 73  A8 9E E1 D5  05 27 B2 9A  62 48 D6 D2
 After xor: 43 0F 84 D0  02 A4 4F B1  70 ED B2 9A  62 48 D6 D2   [hdr]
 After AES: B6 0B C6 F5  84 01 75 BC  01 27 70 F1  11 8D 75 10
 After xor: 12 3F 6E 10  01 01 B3 58  14 17 23 79  73 5B F3 FA   [msg]
 After AES: 7D 5E 64 92  CE 2C B9 EA  7E 4C 4A 09  09 89 C8 FB
 After xor: E3 DF 54 89  94 C8 9B 81  84 4C 4A 09  09 89 C8 FB   [msg]
 After AES: 68 5F 8D 79  D2 2B 9B 74  21 DF 4C 3E  87 BA 0A AF
 CBC-MAC  : 68 5F 8D 79  D2 2B 9B 74  21 DF
 CTR Start: 01 00 27 CA  0C 71 20 BC  3C 96 96 76  6C FA 00 01
 CTR[0001]: 56 8A 45 9E  40 09 48 67  EB 85 E0 9E  6A 2E 64 76
 CTR[0002]: A6 00 AA 92  92 03 54 9A  AE EF 2C CC  59 13 7A 57
 CTR[MAC ]: 25 1E DC DD  3F 11 10 F3  98 11
 Total packet length = 43. [Authenticated and Encrypted Output]
            44 A3 AA 3A  AE 64 75 CA  F2 BE ED 7B  C5 09 8E 83
            FE B5 B3 16  08 F8 E2 9C  38 81 9A 89  C8 E7 76 F1
            54 4D 41 51  A4 ED 3A 8B  87 B9 CE
 =============== Packet Vector #22 ==================
 AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
 Nonce =    00 5B 8C CB  CD 9A F8 3C  96 96 76 6C  FA
 Total packet length = 31. [Input with 12 cleartext header octets]
            EC 46 BB 63  B0 25 20 C3  3C 49 FD 70  B9 6B 49 E2
            1D 62 17 41  63 28 75 DB  7F 6C 92 43  D2 D7 C2
 CBC IV in: 61 00 5B 8C  CB CD 9A F8  3C 96 96 76  6C FA 00 13
 CBC IV out:91 14 AD 06  B6 CC 02 35  76 9A B6 14  C4 82 95 03
 After xor: 91 18 41 40  0D AF B2 10  56 59 8A 5D  39 F2 95 03   [hdr]
 After AES: 29 BD 7C 27  83 E3 E8 D3  C3 5C 01 F4  4C EC BB FA
 After xor: 90 D6 35 C5  9E 81 FF 92  A0 74 74 2F  33 80 29 B9   [msg]
 After AES: 4E DA F4 0D  21 0B D4 5F  FE 97 90 B9  AA EC 34 4C
 After xor: 9C 0D 36 0D  21 0B D4 5F  FE 97 90 B9  AA EC 34 4C   [msg]
 After AES: 21 9E F8 90  EA 64 C2 11  A5 37 88 83  E1 BA 22 0D
 CBC-MAC  : 21 9E F8 90  EA 64 C2 11  A5 37
 CTR Start: 01 00 5B 8C  CB CD 9A F8  3C 96 96 76  6C FA 00 01
 CTR[0001]: 88 BC 19 42  80 C1 FA 3E  BE FC EF FB  4D C6 2D 54
 CTR[0002]: 3E 59 7D A5  AE 21 CC A4  00 9E 4C 0C  91 F6 22 49
 CTR[MAC ]: 5C BC 30 98  66 02 A9 F4  64 A0
 Total packet length = 41. [Authenticated and Encrypted Output]
            EC 46 BB 63  B0 25 20 C3  3C 49 FD 70  31 D7 50 A0
            9D A3 ED 7F  DD D4 9A 20  32 AA BF 17  EC 8E BF 7D
            22 C8 08 8C  66 6B E5 C1  97

Whiting, et al. Informational [Page 21] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 =============== Packet Vector #23 ==================
 AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
 Nonce =    00 3E BE 94  04 4B 9A 3C  96 96 76 6C  FA
 Total packet length = 32. [Input with 12 cleartext header octets]
            47 A6 5A C7  8B 3D 59 42  27 E8 5E 71  E2 FC FB B8
            80 44 2C 73  1B F9 51 67  C8 FF D7 89  5E 33 70 76
 CBC IV in: 61 00 3E BE  94 04 4B 9A  3C 96 96 76  6C FA 00 14
 CBC IV out:0F 70 3F 5A  54 2C 44 6E  8B 74 A3 73  9B 48 B9 61
 After xor: 0F 7C 78 FC  0E EB CF 53  D2 36 84 9B  C5 39 B9 61   [hdr]
 After AES: 40 5B ED 29  D0 98 AE 91  DB 68 78 F3  68 B8 73 85
 After xor: A2 A7 16 91  50 DC 82 E2  C0 91 29 94  A0 47 A4 0C   [msg]
 After AES: 3D 03 29 3C  FD 81 1B 37  01 51 FB C7  85 6B 7A 74
 After xor: 63 30 59 4A  FD 81 1B 37  01 51 FB C7  85 6B 7A 74   [msg]
 After AES: 66 4F 27 16  3E 36 0F 72  62 0D 4E 67  7C E0 61 DE
 CBC-MAC  : 66 4F 27 16  3E 36 0F 72  62 0D
 CTR Start: 01 00 3E BE  94 04 4B 9A  3C 96 96 76  6C FA 00 01
 CTR[0001]: 0A 7E 0A 63  53 C8 CF 9E  BC 3B 6E 63  15 9A D0 97
 CTR[0002]: EA 20 32 DA  27 82 6E 13  9E 1E 72 5C  5B 0D 3E BF
 CTR[MAC ]: B9 31 27 CA  F0 F1 A1 20  FA 70
 Total packet length = 42. [Authenticated and Encrypted Output]
            47 A6 5A C7  8B 3D 59 42  27 E8 5E 71  E8 82 F1 DB
            D3 8C E3 ED  A7 C2 3F 04  DD 65 07 1E  B4 13 42 AC
            DF 7E 00 DC  CE C7 AE 52  98 7D
 =============== Packet Vector #24 ==================
 AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B
 Nonce =    00 8D 49 3B  30 AE 8B 3C  96 96 76 6C  FA
 Total packet length = 33. [Input with 12 cleartext header octets]
            6E 37 A6 EF  54 6D 95 5D  34 AB 60 59  AB F2 1C 0B
            02 FE B8 8F  85 6D F4 A3  73 81 BC E3  CC 12 85 17
            D4
 CBC IV in: 61 00 8D 49  3B 30 AE 8B  3C 96 96 76  6C FA 00 15
 CBC IV out:67 AC E4 E8  06 77 7A D3  27 1D 0B 93  4C 67 98 15
 After xor: 67 A0 8A DF  A0 98 2E BE  B2 40 3F 38  2C 3E 98 15   [hdr]
 After AES: 35 58 F8 7E  CA C2 B4 39  B6 7E 75 BB  F1 5E 69 08
 After xor: 9E AA E4 75  C8 3C 0C B6  33 13 81 18  82 DF D5 EB   [msg]
 After AES: 54 E4 7B 62  22 F0 BB 87  17 D0 71 6A  EB AF 19 9E
 After xor: 98 F6 FE 75  F6 F0 BB 87  17 D0 71 6A  EB AF 19 9E   [msg]
 After AES: 23 E3 30 50  BC 57 DC 2C  3D 3E 7C 94  77 D1 49 71
 CBC-MAC  : 23 E3 30 50  BC 57 DC 2C  3D 3E
 CTR Start: 01 00 8D 49  3B 30 AE 8B  3C 96 96 76  6C FA 00 01
 CTR[0001]: 58 DB 19 B3  88 9A A3 8B  3C A4 0B 16  FF 42 2C 73
 CTR[0002]: C3 2F 24 3D  65 DC 7E 9F  4B 02 16 AB  7F B9 6B 4D
 CTR[MAC ]: 4E 2D AE D2  53 F6 B1 8A  1D 67
 Total packet length = 43. [Authenticated and Encrypted Output]
            6E 37 A6 EF  54 6D 95 5D  34 AB 60 59  F3 29 05 B8
            8A 64 1B 04  B9 C9 FF B5  8C C3 90 90  0F 3D A1 2A
            B1 6D CE 9E  82 EF A1 6D  A6 20 59

Whiting, et al. Informational [Page 22] RFC 3610 Counter with CBC-MAC (CCM) September 2003

9. Intellectual Property Statements

 The authors hereby explicitly release any intellectual property
 rights to CCM to the public domain.  Further, the authors are not
 aware of any patent or patent application anywhere in the world that
 covers CCM mode.  It is our belief that CCM is a simple combination
 of well-established techniques, and we believe that CCM is obvious to
 a person of ordinary skill in the arts.

10. Security Considerations

 We claim that this block cipher mode is secure against attackers
 limited to 2^128 steps of operation if the key K is 256 bits or
 larger.  There are fairly generic precomputation attacks against all
 block cipher modes that allow a meet-in-the-middle attack on the key
 K.  If these attacks can be made, then the theoretical strength of
 this, and any other, block cipher mode is limited to 2^(n/2) where n
 is the number of bits in the key.  The strength of the authentication
 is of course limited by M.
 Users of smaller key sizes (such as 128-bits) should take precautions
 to make the precomputation attacks more difficult.  Repeated use of
 the same nonce value (with different keys of course) ought to be
 avoided.  One solution is to include a random value within the nonce.
 Of course, a packet counter is also needed within the nonce.  Since
 the nonce is of limited size, a random value in the nonce provides a
 limited amount of additional security.

11. References

 This section provides normative and informative references.

11.1. Normative References

 [STDWORDS]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

11.2. Informative References

 [AES]       NIST, FIPS PUB 197, "Advanced Encryption Standard (AES),"
             November 2001.
 [CCM]       Whiting, D., Housley, R. and N. Ferguson, "AES Encryption
             & Authentication Using CTR Mode & CBC-MAC," IEEE P802.11
             doc 02/001r2, May 2002.
 [ESP]       Kent, S. and R. Atkinson, "IP Encapsulating Security
             Payload (ESP)", RFC 2406, November 1998.

Whiting, et al. Informational [Page 23] RFC 3610 Counter with CBC-MAC (CCM) September 2003

 [MAC]       NIST, FIPS PUB 113, "Computer Data Authentication," May
             1985.
 [MODES]     Dworkin, M., "Recommendation for Block Cipher Modes of
             Operation: Methods and Techniques," NIST Special
             Publication 800-38A, December 2001.
 [OCB]       Rogaway, P., Bellare, M., Black, J. and T, Krovetz, "OCB:
             A block-Cipher Mod of Operation for Efficient
             Authenticated Encryption," 8th ACM Conference on Computer
             and Communications Security, pp 196-295, ACM Press, 2001.
 [PROOF]     Jonsson, J., "On the Security of CTR + CBC-MAC," SAC 2002
             -- Ninth Annual Workshop on Selected Areas of
             Cryptography, Workshop Record version, 2002.  Final
             version to appear in the LNCS Proceedings.

12. Acknowledgement

 Russ Housley thanks the management at RSA Laboratories, especially
 Burt Kaliski, who supported the development of this cryptographic
 mode and this specification.  The vast majority of this work was done
 while Russ was employed at RSA Laboratories.

Whiting, et al. Informational [Page 24] RFC 3610 Counter with CBC-MAC (CCM) September 2003

13. Authors' Addresses

 Doug Whiting
 Hifn
 5973 Avenida Encinas, #110
 Carlsbad, CA 92009
 USA
 EMail: dwhiting@hifn.com
 Russell Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA
 EMail: housley@vigilsec.com
 Niels Ferguson
 MacFergus BV
 Bart de Ligtstraat 64
 1097 JE Amsterdam
 Netherlands
 EMail: niels@macfergus.com

Whiting, et al. Informational [Page 25] RFC 3610 Counter with CBC-MAC (CCM) September 2003

14. Full Copyright Statement

 Copyright (C) The Internet Society (2003).  All Rights Reserved.
 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works.  However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.
 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.
 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Whiting, et al. Informational [Page 26]

/data/webs/external/dokuwiki/data/pages/rfc/rfc3610.txt · Last modified: 2003/09/17 16:14 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki