Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools

Problem, Formatting or Query -  Send Feedback

Was this page helpful?-10+1


Network Working Group Tom O'Sullivan Request for Comments: 313 Raytheon NIC: 9343 March 6, 1972 (CBI: 1)

 Current development of Computer Based Instruction (CBI) systems seem
 to be directed toward two types of system:
    1.)  Small to medium scale, dedicated, stand alone systems (such
    as the IBM 1130, 1500, 1800 complexes) or medium scale systems
    with dedicated network implications (such as TICKET), and
    2.)  Large, centralized, dedicated systems with dedicated network
    implications (such as PLATO).
 Some attention has been given to the application of the resources of
 a General Purpose Computer Network to CBI (e.g., the EDUCOM efforts),
 however the full implication of the use of such resources do not
 generally seem to be understood by either the CBI development centers
 (at academic institutions or at the Armed Forces training or
 development centers), where most of the current activity takes place,
 or at ARPA Network Nodes, where most of the resources reside.
 This Request For Comment has two purposes  To:
    1.)  Solicit comments from the Network Working Group, and others,
    on how selected classes of (and what specific) resources of a
    General Purpose Network might be applied to the field of Computer
    Based Instruction and
    2.)  Initiate a dialog between interested parties on the problems
    of Computer Based Instruction, not limited to, but including, the
    uses of General Purpose Computer Network resources.
 The attached paper discusses some of the applications of the
 resources of a large General Purpose Network to computer Based
 Instruction systems.  Response and discussion are encouraged through
 the NIC system.

O'Sullivan [Page 1] RFC 313 Computer Based Instruction March 1972

                      COMPUTER BASED INSTRUCTION


 A high level of Computer Based Instruction (CBI) activity exists both
 in the academic and armed service communities, with the promise of a
 substantial amount of early development of instruction courses and
 instructional management facilities.  The major functional areas of
 interest can be described as follows:
    1.)  Design and Development
    2.)  Field Tests
    3.)  Distribution and Operational Use
    4.)  Evaluation and Modification
 Specific computer support requirements are function of the philosophy
 and reflected strategy of implementation for each of the functional
 areas of interest.  Design and development activities may focus on
 overall curriculum development or on specific training or educational
 goals involving a specific course.  The focus of attention will have
 an effect on the support requirements, e.g., the type and size of
 data base, specialized processing capabilities, etc.  Support
 requirements for Field Tests will be a function of whether they are
 to be performed at a central location, or are geographically
 distributed, particularly with respect to data collection procedures,
 computer support and terminal clusters, and communications.
 Solutions to the problems of the distribution and operational use of
 CBI systems and programs will be a function of the extent to which
 the training activity is proliferated (i.e., geographically or
 organizationally distributed).  Both the level of activity, and the
 solution to problems, in the area of Evaluation and Modification will
 depend on the goals of the instructional process, the extent of
 dynamic change in the technology or specific application involved,
 and the degree to which the course(s) developed meet the needs for
 which they were intended.
 The above discussion has a heavy emphasis on Computer Aided
 Instruction (CAI) component of CBI, where the computer is directly
 used in the instructional process for lesson presentation, test,
 drill and practice, etc.  Another component of CBI, Computer Managed
 Instruction (CMI), uses the computer as a management tool to guide
 the instructional process.  CMI may be used in conjunction with CAI,
 or as an aid in guiding instructional processes of a more traditional
 nature.  CMI, in addition to providing assistance in student
 selection, scheduling, and followup on past course performance, may
 provide guidance to instructors in the form of diagnostics of student

O'Sullivan [Page 2] RFC 313 Computer Based Instruction March 1972

 weaknesses, prescriptions for strengthening student understanding,
 and guidance in the redirection of students.  In addition, CMI can
 provide management with evaluations of course and instructor
 effectiveness.  CMI has corollaries to the discussion of CAI resource
 requirements and their relation to the philosophy and related
 strategy employed.
 Bearing in mind the effects on resource requirements of the complex
 considerations involved in CBI, there seem to be several areas in
 which the resources of a large General Purpose Computer Network, such
 as the ARPA Network, could be of high utility if properly applied.
 These include:
    1.)  The Network itself
    2.)  Centralized Data Storage
    3.)  Language processors
    4.)  Dialogue Support Systems
 As questions of philosophy and general strategy are resolved, or
 assumed, the hard questions of implementation come into play.
 Tradeoffs between competing approaches of the instructional strategy
 or model, techniques of measurement, languages, hardware, etc., must
 be made.  It appears that both in resolving the tradeoffs, and in the
 implementation stage, network resources could prove to have high


 The network itself seems to have utility for CBI that goes beyond the
 function of providing a communications base for linking terminal(s)
 (individual or clustered) to processors dedicated to CBI.
 The latter function, however, is important.  The communications
 network exists, and can be tied into efficiently from many parts of
 the country.  If there were dedicated CBI systems on the network, it
 would facilitate:
    1.)  Evaluation of a single system (or its several components) for
    adequacy, or of competing systems for relative utility, by an
    interested user center, to assist in the selection of a system for
    a specific use;
    2.)  Early use by a geographically isolated user center, through
    use of clustered terminals, of the full power of a major CBI

O'Sullivan [Page 3] RFC 313 Computer Based Instruction March 1972

       a.)  For a continuing period of low level use, or
       b.)  Building over time until total usage by the isolated
       center justifies the installation of a full CBI center of its
 Existing network resources also hold promise of utility.  Many
 manufacturers' systems, with associated varieties of operating system
 software, are available on the ARPA Network.  Within most of these, a
 variety of application software is available, some supporting CBI and
 data base applications.  Therefore, even without the presence of a
 dedicated CBI system available as a service center on the network,
 use could be made in support of CBI interests.
    1.)  Testing of existing language and data base systems for
    appropriateness to CBI problems.
    2.)  Development of CBI systems or components for demonstration
    and/or test.
    3.)  Testing of existing courses, lessons, or lesson segments to
    determine if they meet specified performance criteria, eliminating
    potential duplication of course development effort.
    4.)  Development of CBI systems to be operated under a specific
    set of hardware and software resources available in the network in
    anticipation of delivery of a dedicated operational system.
    5.)  Greater flexibility in selection of test sites for field test
    of courses developed, and performance of those tests prior to the
    delivery of operational hardware.
    6.)  Formalization of hardware support and associated software
    protocols to clustered terminals to provide continuing service to
    geographically remote training activities.
 Even the interests of dedicated CBI systems can be served, since the
 network has established communications and terminal support protocols
 that could tend to reduce the software efforts required to establish
 contact between a large dedicated service center, and clusters of
 user center terminals.  In addition, terminal types not normally
 supported by the CBI service center machine might be accommodated by
 accessing the network through a compatible port, and getting into the
 service center through established network protocols.

O'Sullivan [Page 4] RFC 313 Computer Based Instruction March 1972

 Terminal access to the ARPA Network could be provided in the
 following ways:
    1.)  Single Terminals - over common carrier facilities to the
    nearest compatible HOST or TIP.
    2.)  Large Clusters - Simple single purpose TIP, or simple mini-
    computer supported in the network as far distant HOST.
    3.)  Small clusters - either of the above two depending on the
    length and intensity of expected use and the number or terminals
    in the cluster.
 In addition to the above general uses of a large General Purpose
 Computer Network, there are several specific classes of network
 resources that may be useful.


 The effect of economy of scale could reduce costs for smaller CBI
 systems if they make use, through the network, of mass storage on
 larger systems.  If duplicate smaller systems are distributed in the
 field, then the centralized storage would have a multiplying effect
 on savings for lessons and lesson material, but special attention
 would have to be given to the file structure to permit efficient use
 of look ahead techniques for lessons, lesson segments, and individual
 student pages.
 For CMI data there are savings that go beyond the economy of scale.
 A single management system could be selected or built on a large
 service center machine to be used by CBI systems on the network, even
 though the operational CBI systems are supported by different
 manufacturers' hardware.  This would not only reduce the cost for
 programming and maintaining CMI systems, but also facilitate cross
 system analysis and intersystem comparison, even though each using
 system would have its own set of files.  The user of the network data
 reconfiguration service and data transfer protocol should make such
 operations feasible.
 This approach to CMI would assist in early development stages of
 course material by easing the problem of accessing data on past
 performance and norms.  In the case of geographically distributed
 testing, the evaluation team would have faster access to performance
 data.  Both the distribution and modification tasks seem cleaner
 since there is only one copy of the released version to be updated.
 If the trillion bit laser memory proposed for AMES becomes a reality,
 then the economy of scale argument can be expected to be dramatic.

O'Sullivan [Page 5] RFC 313 Computer Based Instruction March 1972


 A basic characteristic of a large General Purpose Computer Network is
 that it is capable of providing support from various manufacturers'
 machines.  That is, such a network can be comprised of a number of
 special purpose processors that can be distributed geographically and
 organizationally to locations where the best support exists for each
 This characteristic makes it possible to select and join the best
 match of capabilities for a complex application .  It is no longer
 necessary to settle for a hardware/software system that does a
 reasonable job in most areas of the applications need.
 CBI is a complex application.  In addition to a good management
 system and associated data base, it requires heavy text handling for
 lesson material, table lookup and branching logic for acting on the
 student selected answers to multiple choice questions, a student
 arithmetic problem solving language for drill and practice,
 simulation capability of both physical processes (for laboratory and
 circuit simulation), and of decision processes (for gaming
 experience), and a future need for natural language processors to
 permit evaluation of free form student responses.  In addition, there
 may be need for heavy statistical and arithmetic processing for
 course, student, and instructor evaluation.
 Depending on the course, various mixes of languages to support the
 above activities will be needed.  Some believe that the language
 required for presentation of course material and evaluation of
 student response (and associated appropriate action) may be heavily
 dependent on the type of course being given.  As we develop a deeper
 understanding of the learning process, we are likely to require
 expansion of languages to provide new functions and perform processes
 not yet identified.
 To provide expandability of languages, Meta-compiler techniques can
 be applied.  Meta-compilers are in an early stage of development;
 however, several are available on the network.  In addition to
 facilitating language expansion with minimum effort while preserving
 the workability of code written in the previous versions of the
 changing language, the Meta-compiler can be made to produce either
 compiler or program object code that will operate on several
 different target machines.  This feature can give both programs and,
 in some cases, compilers that are transportable across machines,
 eliminating the need to settle on a single manufacturer's hardware
 when it is expected that a CBI compiler or interpreter, or a course
 or set of courses is going to be used in a way that requires

O'Sullivan [Page 6] RFC 313 Computer Based Instruction March 1972

 substantial geographic distribution.  Hardware decisions can be based
 on the most cost-effective hardware for the combinations to be run at
 one time.
 Use of Meta-compilers will permit the development and debugging of
 new course material in advance of the delivery of the system selected
 for operations, even though the selected machine is not yet
 represented in the large General Purpose Computer Network.  Field
 test can also proceed before the selected hardware arrives.
 Experience to date in the use of Meta-compilers indicates that the
 use of their high order languages to implement compilers and
 interpreters result in dramatic savings in both turnaround time and
 the absolute cost of producing a finished language product.


 In a field developing as rapidly as CBI, and at a time when
 substantial implementation is about to take place, dialogue between
 theoreticians, developers, and users is an important issue.  New
 tools for supporting dialogue among members of a distributed group
 are currently in experimental use in the ARPA network.  These new
 techniques not only support dialogue more rapidly than the
 distribution of papers, notes, and memos, but in some cases tend to
 sharpen the thought process and yield a better result.
 The application of such facilities, when ready, will be helpful
 beyond the early planning stages or projects.  After plans are set,
 during the development of a project, a broader group of experts will
 be able to be called on to work on problems and questions as they
 occur.  Later, as the product is being field tested (especially if
 testing is distributed or separated from the evaluation group), these
 new tools can be used to allow the test implementors to interact with
 each other and with evaluators in a more timely manner than a post-
 mortum meeting, resolving problems and questions as they occur, and
 as a side benefit producing more complete documentation of test
 After the tests, when the product is being used operationally, these
 same tools can provide an excellent vehicle for tapping the ideas,
 suggestions, and enrichments contributed by the more creative
 instructors, and facilitate acting on them more rapidly than is
 currently possible.
 Meanwhile, as these tools are being developed, present ARPA Network
 procedures for supporting the dialogue in a distributed group in more
 traditional ways may prove helpful.  The Network Information Center
 (NIC), in addition to supporting the general ARPANET community, is

O'Sullivan [Page 7] RFC 313 Computer Based Instruction March 1972

 supporting special interest groups such as the Speech Understanding
 Research (SUR) group.  The application of these procedures could
 establish a valuable link between the academic-nonprofit institutions
 working on CBI, the centers in the Armed Forces where development and
 operations are taking place, and members of the network community who
 have an intimate understanding of the network resources available.


 This paper has argued that there are resources in a large General
 Purpose Computer Network that can be applied to CBI with high
 utility.  The argument can be extended to suggest that large
 dedicated CBI systems can have greater utility to users (and in the
 other direction, greater use), if tied into a General Purpose
 Computer Network, with respect to current network capabilities,
 future network developments, and in some cases provide backup during
 periods of overload or system failure.
 There are certainly important CBI issues outstanding in areas of
 pedagogy, strategy, curriculum development, testing, etc.  As CBI
 systems are developed there are important issues of control (of the
 development process, of the distribution of material, and of
 modification of those materials).  However, these issues seem to be
 independent of the question of whether CBI takes advantage of the
 resources of a large General Purpose Network.
 There are important problems to be solved on the computer side
 dealing with better tools to handle and evaluate masses of data,
 language, and protocols for network utilization.
 However, there seems to be sufficient promise in what we know of
 present network capabilities to warrant serious consideration by the
 developers of CBI of how General Purpose Networks fit in, and by
 network people of how their resources apply to this important large
 application area.
      [This RFC was put into machine readable form for entry]
   [into the online RFC archives by Hélène Morin, Viagénie 10/99]

O'Sullivan [Page 8]

/data/webs/external/dokuwiki/data/pages/rfc/rfc313.txt · Last modified: 2000/04/26 17:33 (external edit)