GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc2896

Network Working Group A. Bierman Requests for Comment: 2896 C. Bucci Category: Informational Cisco Systems, Inc.

                                                              R. Iddon
                                                            3Com, Inc.
                                                           August 2000
      Remote Network Monitoring MIB Protocol Identifier Macros

Status of this Memo

 This memo provides information for the Internet community.  It does
 not specify an Internet standard of any kind.  Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

 This memo contains various protocol identifier examples, which can be
 used to produce valid protocolDirTable INDEX encodings, as defined by
 the Remote Network Monitoring MIB (Management Information Base)
 Version 2 [RFC2021] and the RMON Protocol Identifier Reference
 [RFC2895].
 This document contains protocol identifier macros for well-known
 protocols.  A conformant implementation of the RMON-2 MIB [RFC2021]
 can be accomplished without the use of these protocol identifiers,
 and accordingly, this document does not specify any IETF standard.
 It is published to encourage better interoperability between RMON-2
 agent implementations, by providing a great deal of RMON related
 protocol information in one document.
 The first version of the RMON Protocol Identifiers Document [RFC2074]
 has been split into a standards-track Reference portion [RFC2895],
 and an "RMON Protocol Identifier Macros", document (this document)
 which contains the non-normative portion of that specification.

Table of Contents

 1 The SNMP Network Management Framework .........................  2
 2 Overview ......................................................  3
 2.1 Terms .......................................................  3
 2.2 Relationship to the Remote Network Monitoring MIB ...........  4
 2.3 Relationship to the RMON Protocol Identifier Reference ......  4

Bierman, et al. Informational [Page 1] RFC 2896 RMON PI Macros August 2000

 2.4 Relationship to Other MIBs ..................................  4
 3 Protocol Identifier Macros ....................................  4
 3.1 Protocol Stacks And Single-Vendor Applications ..............  5
 3.1.1 The TCP/IP protocol stack .................................  5
 3.1.2 Novell IPX Stack .......................................... 44
 3.1.3 The XEROX Protocol Stack .................................. 49
 3.1.4 AppleTalk Protocol Stack .................................. 51
 3.1.5 Banyon Vines Protocol Stack ............................... 56
 3.1.6 The DECNet Protocol Stack ................................. 61
 3.1.7 The IBM SNA Protocol Stack.  .............................. 65
 3.1.8 The NetBEUI/NetBIOS Family ................................ 66
 3.2 Multi-stack protocols ....................................... 70
 4 Intellectual Property ......................................... 72
 5 Acknowledgements .............................................. 72
 6 References .................................................... 73
 7 Security Considerations ....................................... 82
 8 Authors' Addresses ............................................ 83
 9 Full Copyright Statement ...................................... 84

1. The SNMP Network Management Framework

 The SNMP Management Framework presently consists of five major
 components:
  o   An overall architecture, described in RFC 2571 [RFC2571].
  o   Mechanisms for describing and naming objects and events for the
      purpose of management. The first version of this Structure of
      Management Information (SMI) is called SMIv1 and described in
      STD 16, RFC 1155 [RFC1155], STD 16, RFC 1212 [RFC1212] and RFC
      1215 [RFC1215].  The second version, called SMIv2, is described
      in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and
      STD 58, RFC 2580 [RFC2580].
  o   Message protocols for transferring management information. The
      first version of the SNMP message protocol is called SNMPv1 and
      described in STD 15, RFC 1157 [RFC1157]. A second version of the
      SNMP message protocol, which is not an Internet standards track
      protocol, is called SNMPv2c and described in RFC 1901 [RFC1901]
      and RFC 1906 [RFC1906]. The third version of the message
      protocol is called SNMPv3 and described in RFC 1906 [RFC1906],
      RFC 2572 [RFC2572] and RFC 2574 [RFC2574].
  o   Protocol operations for accessing management information. The
      first set of protocol operations and associated PDU formats is
      described in STD 15, RFC 1157 [RFC1157]. A second set o
      protocol operations and associated PDU formats is described in
      RFC 1905 [RFC1905].

Bierman, et al. Informational [Page 2] RFC 2896 RMON PI Macros August 2000

  o   A set of fundamental applications described in RFC 2573
      [RFC2573] and the view-based access control mechanism described
      in RFC 2575 [RFC2575].
 A more detailed introduction to the current SNMP Management Framework
 can be found in RFC 2570 [RFC2570].
 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB.  Objects in the MIB are
 defined using the mechanisms defined in the SMI.
 This memo does not specify a MIB module.

2. Overview

 The RMON-2 MIB [RFC2021] uses hierarchically formatted OCTET STRINGs
 to globally identify individual protocol encapsulations in the
 protocolDirTable.
 This guide contains examples of protocol identifier encapsulations,
 which can be used to describe valid protocolDirTable entries.  The
 syntax of the protocol identifier descriptor is defined in the RMON
 Protocol Identifier Reference [RFC2895].
 This document is not intended to be an authoritative reference on the
 protocols described herein. Refer to the Official Internet Standards
 document [RFC2600], the Assigned Numbers document [RFC1700], or other
 appropriate RFCs, IEEE documents, etc. for complete and authoritative
 protocol information.
 This is the the second revision of this document, and is intended to
 replace Section 5 of the first RMON-2 Protocol Identifiers document
 [RFC2074].
 The RMONMIB working group has decided to discontinue maintenance of
 this Protocol Identifier Macro repository document, due to a lack of
 contributions from the RMON vendor community. This document is
 published as an aid in implementation of the protocolDirTable.

2.1. Terms

 Refer to the RMON Protocol Identifier Reference [RFC2895] for
 definitions of terms used to describe the Protocol Identifier Macro
 and aspects of protocolDirTable INDEX encoding.

Bierman, et al. Informational [Page 3] RFC 2896 RMON PI Macros August 2000

2.2. Relationship to the Remote Network Monitoring MIB

 This document is intended to describe some protocol identifier
 macros, which can be converted to valid protocolDirTable INDEX
 values, using the mapping rules defined in the RMON Protocol
 Identifier Reference [RFC2895].
 This document is not intended to limit the protocols that may be
 identified for counting in the RMON-2 MIB. Many protocol
 encapsulations, not explicitly identified in this document, may be
 present in an actual implementation of the protocolDirTable. Also,
 implementations of the protocolDirTable may not include all the
 protocols identified in the example section below.

2.3. Relationship to the RMON Protocol Identifier Reference

 This document is intentionally separated from the normative reference
 document defining protocolDirTable INDEX encoding rules and the
 protocol identifier macro syntax [RFC2895].  This allows frequent
 updates to this document without any republication of MIB objects or
 protocolDirTable INDEX encoding rules.  Note that the base layer and
 IANA assigned protocol identifier macros are located in Reference
 document, since these encoding values are defined by the RMONMIB WG.
 Protocol Identifier macros submitted from the RMON working group and
 community at large (to the RMONMIB WG mailing list at '
 rmonmib@cisco.com') will be collected and added to this document.
 Macros submissions will be collected in the IANA's MIB files under
 the directory "ftp://ftp.isi.edu/mib/rmonmib/rmon2_pi_macros/" and in
 the RMONMIB working group mailing list message archive file
 "ftp://ftpeng.cisco.com/ftp/rmonmib/rmonmib".

2.4. Relationship to Other MIBs

 The RMON Protocol Identifier Macros document is intended for use with
 the RMON Protocol Identifier Reference [RFC2895] and the RMON-2 MIB
 protocolDirTable [RFC2021]. It is not relevant to any other MIB, or
 intended for use with any other MIB.

3. Protocol Identifier Macros

 This section contains protocol identifier macros for some well-known
 protocols, although some of them may no longer be in use.  These
 macros reference the base layer identifiers found in section 4 of the
 RMON Protocol Identifier Reference [RFC2895].  These identifiers are
 listed below:

Bierman, et al. Informational [Page 4] RFC 2896 RMON PI Macros August 2000

       ether2
       llc
       snap
       vsnap
       ianaAssigned
       802-1Q
 Refer to the RMON Protocol Identifier Reference [RFC2895] for the
 protocol identifier macro definitions for these protocols.

3.1. Protocol Stacks And Single-Vendor Applications

 Network layer protocol identifier macros contain additional
 information about the network layer, and is found immediately
 following a base layer-identifier in a protocol identifier.
 The ProtocolDirParameters supported at the network layer are '
 countsFragments(0)', and 'tracksSessions(1).  An agent may choose to
 implement a subset of these parameters.
 The protocol-name should be used for the ProtocolDirDescr field.  The
 ProtocolDirType ATTRIBUTES used at the network layer are '
 hasChildren(0)' and 'addressRecognitionCapable(1)'. Agents may choose
 to implement a subset of these attributes for each protocol, and
 therefore limit which tables the indicated protocol can be present
 (e.g. protocol distribution, host, and matrix tables).
 The following protocol-identifier macro declarations are given for
 example purposes only. They are not intended to constitute an
 exhaustive list or an authoritative source for any of the protocol
 information given.  However, any protocol that can encapsulate other
 protocols must be documented here in order to encode the children
 identifiers into protocolDirID strings. Leaf protocols should be
 documented as well, but an implementation can identify a leaf
 protocol even if it isn't listed here (as long as the parent is
 documented).

3.1.1. The TCP/IP protocol stack

arp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "An Address Resolution Protocol message (request or response).
     This protocol does not include Reverse ARP (RARP) packets, which
     are counted separately."
  REFERENCE
     "RFC 826 [RFC826] defines the Address Resolution Protocol."

Bierman, et al. Informational [Page 5] RFC 2896 RMON PI Macros August 2000

  ::= {
   ether2 0x806,   -- [ 0.0.8.6 ]
   snap   0x806,
   802-1Q 0x806    -- [ 0.0.8.6 ]
  }

ip PROTOCOL-IDENTIFIER

  PARAMETERS {
     countsFragments(0)  -- This parameter applies to all child
                         -- protocols.
  }
  ATTRIBUTES {
   hasChildren(0),
   addressRecognitionCapable(1)
  }
  DESCRIPTION
     "The protocol identifiers for the Internet Protocol (IP). Note
     that IP may be encapsulated within itself, so more than one of
     the following identifiers may be present in a particular
     protocolDirID string."
  CHILDREN
     "Children of 'ip' are selected by the value in the Protocol field
     (one octet), as defined in the PROTOCOL NUMBERS table within the
     Assigned Numbers Document.
     The value of the Protocol field is encoded in an octet string as
     [ 0.0.0.a ], where 'a' is the protocol field .
     Children of 'ip' are encoded as [ 0.0.0.a ], and named as 'ip a'
     where 'a' is the protocol field value.  For example, a
     protocolDirID-fragment value of:
        0.0.0.1.0.0.8.0.0.0.0.1
     defines an encapsulation of ICMP (ether2.ip.icmp)"
  ADDRESS-FORMAT
     "4 octets of the IP address, in network byte order.  Each ip
     packet contains two addresses, the source address and the
     destination address."
  DECODING
     "Note: ether2.ip.ipip4.udp is a different protocolDirID than
     ether2.ip.udp, as identified in the protocolDirTable.  As such,
     two different local protocol index values will be assigned by the
     agent. E.g. (full INDEX values shown):
      ether2.ip.ipip4.udp =
          16.0.0.0.1.0.0.8.0.0.0.0.4.0.0.0.17.4.0.0.0.0
      ether2.ip.udp =
          12.0.0.0.1.0.0.8.0.0.0.0.17.3.0.0.0 "
  REFERENCE

Bierman, et al. Informational [Page 6] RFC 2896 RMON PI Macros August 2000

     "RFC 791 [RFC791] defines the Internet Protocol; The following
     URL defines the authoritative repository for the PROTOCOL NUMBERS
     Table:
        ftp://ftp.isi.edu/in-notes/iana/assignments/protocol-numbers"
  ::= {
     ether2     0x0800,
     llc        0x06,
     snap       0x0800,
        -- ip         4,           ** represented by the ipip4 macro
        -- ip         94,          ** represented by the ipip macro
     802-1Q     0x0800,         -- [0.0.8.0]
     802-1Q     0x02000006      -- 1Q-LLC [2.0.0.6]
  }

– – Children of IP – –

icmp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Internet Message Control Protocol"
  REFERENCE
     "RFC 792 [RFC792] defines the Internet Control Message Protocol."
  ::= {
   ip 1,
   ipip4 1,
   ipip 1
  }

igmp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Internet Group Management Protocol; IGMP is used by IP hosts to
     report their host group memberships to any immediately-
     neighboring multicast routers."
  REFERENCE
     "Appendix A of Host Extensions for IP Multicasting [RFC1112]
     defines the Internet Group Management Protocol."
  ::= {
   ip 2,
   ipip4 2,
   ipip 2

Bierman, et al. Informational [Page 7] RFC 2896 RMON PI Macros August 2000

  }

ggp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Gateway-to-Gateway Protocol; DARPA Internet Gateway
     (historical)"
  REFERENCE
     "RFC 823 [RFC823] defines the Gateway-to-Gateway Protocol."
  ::= {
   ip 3,
   ipip4 3,
   ipip 3
  }

ipip4 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0),
   addressRecognitionCapable(1)
  }
  DESCRIPTION
     "IP in IP Tunneling"
  CHILDREN
     "Children of 'ipip4' are selected and encoded in the same manner
     as children of IP."
  ADDRESS-FORMAT
     "The 'ipip4' address format is the same as the IP address
     format."
  DECODING
     "Note: ether2.ip.ipip4.udp is a different protocolDirID than
     ether2.ip.udp, as identified in the protocolDirTable.  As such,
     two different local protocol index values will be assigned by the
     agent. E.g. (full INDEX values shown):
      ether2.ip.ipip4.udp =
          16.0.0.0.1.0.0.8.0.0.0.0.4.0.0.0.17.4.0.0.0.0
      ether2.ip.udp =
          12.0.0.0.1.0.0.8.0.0.0.0.17.3.0.0.0 "
  REFERENCE
     "RFC 1853 [RFC1853] defines IP in IP over Protocol 4."
  ::= {
   ip 4,
   ipip4 4,
   ipip 4
  }

st PROTOCOL-IDENTIFIER

Bierman, et al. Informational [Page 8] RFC 2896 RMON PI Macros August 2000

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Internet Stream Protocol Version 2 (ST2); (historical) ST2 is an
     experimental resource reservation protocol intended to provide
     end-to-end real-time guarantees over an internet."
  REFERENCE
     "RFC 1819 [RFC1819] defines version 2 of the Internet Stream
     Protocol."
  ::= {
   ip 5,
   ipip4 5,
   ipip 5
  }

tcp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
    hasChildren(0)
  }
  DESCRIPTION
     "Transmission Control Protocol"
  CHILDREN
     "Children of TCP are identified by the 16 bit Source or
     Destination Port value as specified in RFC 793. They are encoded
     as [ 0.0.a.b], where 'a' is the MSB and 'b' is the LSB of the
     port value. Both bytes are encoded in network byte order.  For
     example, a protocolDirId-fragment of:
         0.0.0.1.0.0.8.0.0.0.0.6.0.0.0.23
     identifies an encapsulation of the telnet protocol
     (ether2.ip.tcp.telnet)"
  REFERENCE
     "RFC 793 [RFC793] defines the Transmission Control Protocol.
     The following URL defines the authoritative repository for
     reserved and registered TCP port values:
       ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers"
  ::=  {
   ip 6,
   ipip4 6,
   ipip 6
  }

egp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }

Bierman, et al. Informational [Page 9] RFC 2896 RMON PI Macros August 2000

  DESCRIPTION
     "Exterior Gateway Protocol (historical)"
  REFERENCE
     "RFC 904 [RFC904] defines the Exterior Gateway Protocol."
  ::= {
   ip  8,
   ipip4  8,
   ipip  8
  }

igp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Any private interior gateway."
  REFERENCE
     "[RFC1700]"
  ::= {
   ip  9,
   ipip4  9,
   ipip  9
  }

nvp2 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "NVP-II; Network Voice Protocol"
  REFERENCE
     "RFC 741 [RFC741] defines the Network Voice Protocol"
  ::= {
   ip 11,
   ipip4 11,
   ipip 11
  }

pup PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "PUP Protocol"
  REFERENCE
     "Xerox"
  ::= {
   ip 12,
   ipip4 12,
   ipip 12
  }

Bierman, et al. Informational [Page 10] RFC 2896 RMON PI Macros August 2000

xnet PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Cross Net Debugger (historical)"
  REFERENCE
     "[IEN158]"
  ::= {
   ip  15,
   ipip4  15,
   ipip  15
  }

chaos PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "CHAOS Protocol; historical"
  REFERENCE
     "J. Noel Chiappa  <JNC@XX.LCS.MIT.EDU>"
  ::= {
   ip 16,
   ipip4 16,
   ipip 16
  }

udp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
    hasChildren(0)
  }
  DESCRIPTION
     "User Datagram Protocol"
  CHILDREN
     "Children of UDP are identified by the 16 bit Source or
     Destination Port value as specified in RFC 768. They are encoded
     as [ 0.0.a.b ], where 'a' is the MSB and 'b' is the LSB of the
     port value. Both bytes are encoded in network byte order.  For
     example, a protocolDirId-fragment of:
         0.0.0.1.0.0.8.0.0.0.0.17.0.0.0.161
     identifies an encapsulation of SNMP (ether2.ip.udp.snmp)"
  REFERENCE
     "RFC 768 [RFC768] defines the User Datagram Protocol.
     The following URL defines the authoritative repository for
     reserved and registered UDP port values:

Bierman, et al. Informational [Page 11] RFC 2896 RMON PI Macros August 2000

       ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers"
 ::= {
   ip 17,
   ipip4 17,
   ipip 17
  }

mux PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Multiplexing Protocol (historical)"
  REFERENCE
     "IEN-90 [IEN-90] defines the Multiplexing Protocol"
  ::= {
   ip 18,
   ipip4 18,
   ipip 18
  }

hmp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Host Monitoring Protocol; historical"
  REFERENCE
     "RFC 869 [RFC869] defines the Host Monitoring Protocol"
  ::= {
   ip  20,
   ipip4  20,
   ipip  20
  }

xns-idp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "XEROX NS IDP"
  REFERENCE
     "Xerox Corporation"
  ::= {
   ip  22,
   ipip4  22,
   ipip  22
  }

rdp PROTOCOL-IDENTIFIER

  PARAMETERS { }

Bierman, et al. Informational [Page 12] RFC 2896 RMON PI Macros August 2000

  ATTRIBUTES { }
  DESCRIPTION
     "Reliable Data Protocol"
  REFERENCE
     "RFC 908 [RFC908] defines the original protocol; RFC 1151
     [RFC1151] defines version 2 of the Reliable Data Protocol."
  ::= {
   ip 27,
   ipip4 27,
   ipip 27
  }

irtp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Internet Reliable Transaction Protocol"
  REFERENCE
     "RFC 938 [RFC938] defines the Internet Reliable Transaction
     Protocol functional and  interface specification."
  ::= {
   ip 28,
   ipip4 28,
   ipip 28
  }

iso-tp4 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "ISO Transport Protocol Specification"
  REFERENCE
     "RFC 905 [RFC905] defines the ISO Transport Protocol
     Specification; ISO DP 8073"
  ::= {
   ip  29,
   ipip4  29,
   ipip  29
  }

netblt PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Bulk Data Transfer Protocol; historical"
  REFERENCE
     "RFC 998 [RFC998] defines NETBLT: A Bulk Data Transfer Protocol."
  ::= {

Bierman, et al. Informational [Page 13] RFC 2896 RMON PI Macros August 2000

   ip 30,
   ipip4 30,
   ipip 30
  }

mfe-nsp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "MFE Network Services Protocol; historical"
  REFERENCE
     "Shuttleworth, B., 'A Documentary of MFENet, a National Computer
     Network', UCRL-52317, Lawrence Livermore Labs, Livermore,
     California, June 1977."
  ::= {
   ip 31,
   ipip4 31,
   ipip 31
  }

idpr PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Inter-Domain Policy Routing Protocol"
  REFERENCE
     "RFC 1479 [RFC1479] defines Version 1 of the Inter-Domain Policy
     Routing Protocol."
  ::= {
   ip 35,
   ipip4 35,
   ipip 35
  }

idpr-cmtp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "IDPR Control Message Transport Protocol"
  REFERENCE
     "RFC 1479 [RFC1479] defines Version 1 of the Inter-Domain Policy
     Routing Protocol."
  ::= {
   ip 38,
   ipip4 38,
   ipip 38
  }

Bierman, et al. Informational [Page 14] RFC 2896 RMON PI Macros August 2000

sdrp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Source Demand Routing Protocol"
  REFERENCE
     "RFC 1940 [RFC1940] defines version 1 of the Source Demand
     Routing: Packet Format and Forwarding Specification"
  ::= {
   ip 42,
   ipip4 42,
   ipip 42
  }

idrp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Inter-Domain Routing Protocol"
  REFERENCE
     "RFC 1745 [RFC1745] defines BGP4/IDRP for IP."
  ::= {
   ip 45,
   ipip4 45,
   ipip 45
  }

rsvp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Resource Reservation Setup Protocol"
  REFERENCE
     "Resource ReSerVation Protocol (RSVP); Version 1 Functional
      Specification [RFC2205]."
  ::= {
   ip 46,
   ipip4 46,
   ipip 46
  }

gre PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "General Routing Encapsulation"
  REFERENCE
      "RFC 1701 [RFC1701] defines Generic Routing Encapsulation (GRE);

Bierman, et al. Informational [Page 15] RFC 2896 RMON PI Macros August 2000

     RFC 1702 [RFC1702] defines Generic Routing Encapsulation over
     IPv4 networks"
  ::= {
   ip 47,
   ipip4 47,
   ipip 47
  }

nhrp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "NBMA Next Hop Resolution Protocol (NHRP)"
  REFERENCE
     "RFC 2332 [RFC2332] defines the Next Hop Resolution Protocol."
  ::= {
   ip 54,
   ipip4 54,
   ipip 54
  }

priv-host PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Pseudo-protocol reserved for any internal host protocol."
  REFERENCE
     "[RFC1700]"
  ::= {
   ip 61,
   ipip4 61,
   ipip 61
  }

priv-net PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Pseudo-protocol reserved for any local network protocol."
  REFERENCE
     "[RFC1700]"
  ::= {
   ip 63,
   ipip4 63,
   ipip 63
  }

priv-distfile PROTOCOL-IDENTIFIER

Bierman, et al. Informational [Page 16] RFC 2896 RMON PI Macros August 2000

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Pseudo-protocol reserved for any distributed file system."
  REFERENCE
     "[RFC1700]"
  ::= {
   ip 68,
   ipip4 68,
   ipip 68
  }

dgp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Dissimilar Gateway Protocol"
  REFERENCE
     "M/A-COM Government Systems, 'Dissimilar Gateway Protocol
     Specification, Draft Version', Contract no. CS901145, November
     16, 1987."
  ::= {
   ip 86,
   ipip4 86,
   ipip 86
  }

igrp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "IGRP; Cisco routing protocol"
  REFERENCE
     "Cisco Systems, Inc."
  ::= {
   ip 88,
   ipip4 88,
   ipip 88
  }

ospf PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Open Shortest Path First Interior GW Protocol (OSPFIGP)."
  REFERENCE
     "RFC 1583 [RFC1583] defines version 2 of the OSPF protocol."
  ::= {

Bierman, et al. Informational [Page 17] RFC 2896 RMON PI Macros August 2000

   ip 89,
   ipip4 89,
   ipip 89
  }

mtp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Multicast Transport Protocol"
  REFERENCE
     "RFC 1301 [RFC1301] defines the Multicast Transport Protocol."
  ::= {
   ip 92,
   ipip4 92,
   ipip 92
  }

ax-25 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "AX.25 Frame Encapsulation"
  REFERENCE
     "RFC 1226 [RFC1226] defines Internet Protocol Encapsulation of
     AX.25 Frames."
  ::= {
   ip 93,
   ipip4 93,
   ipip 93
  }

ipip PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0),
   addressRecognitionCapable(1)
  }
  DESCRIPTION
     "IP-within-IP Encapsulation Protocol"
  CHILDREN
     "Children of 'ipip' are selected and encoded in the same manner
     as children of IP."
  ADDRESS-FORMAT
     "The 'ipip' address format is the same as the IP address format."
  DECODING
     "Note: ether2.ip.ipip.udp is a different protocolDirID than
     ether2.ip.udp, as identified in the protocolDirTable.  As such,

Bierman, et al. Informational [Page 18] RFC 2896 RMON PI Macros August 2000

     two different local protocol index values will be assigned by the
     agent. E.g. (full INDEX values shown):
      ether2.ip.ipip.udp =
          16.0.0.0.1.0.0.8.0.0.0.0.94.0.0.0.17.4.0.0.0.0
      ether2.ip.udp =
          12.0.0.0.1.0.0.8.0.0.0.0.17.3.0.0.0 "
  REFERENCE
     "RFC 2003 [RFC2003] defines IP Encapsulation within IP."
  ::= {
   ip 94,
   ipip4 94,
   ipip 94
  }

encap PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Encapsulation Header; A Scheme for an Internet Encapsulation
     Protocol: Version 1"
  REFERENCE
     "RFC 1241 [RFC1241] defines version 1 of the ENCAP Protocol."
  ::= {
   ip 98,
   ipip4 98,
   ipip 98
  }

priv-encript PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Pseudo-protocol reserved for any private encryption scheme."
  REFERENCE
     "[RFC1700]"
  ::= {
   ip 99,
   ipip4 99,
   ipip 99
  }

– – Children of UDP and TCP – –

tcpmux PROTOCOL-IDENTIFIER

Bierman, et al. Informational [Page 19] RFC 2896 RMON PI Macros August 2000

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "TCP Port Service Multiplexer Port."
  REFERENCE
     "RFC 1078 [RFC1078] defines the TCP Port Service Multiplexer
     Protocol."
  ::= { tcp 1 }

rje PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Remote Job Entry Protocol; RJE Logger Port; (historical)."
  REFERENCE
     "RFC 407 [RFC407] defines the Remote Job Entry Protocol."
  ::= { tcp 5 }

echo PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Echo Protocol for debugging  TCP and UDP transports."
  REFERENCE
     "RFC 862 [RFC862] defines the Echo Protocol."
  ::= {
     tcp 7,
     udp 7  }

discard PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Discard Protocol for debugging TCP and UDP transports."
  REFERENCE
     "RFC 863 [RFC863] defines the Discard Protocol."
  ::= {
     tcp 9,
     udp 9  }

systat PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Retrieve the Active Users list; a debugging tool for TCP and UDP
     transports."
  REFERENCE
     "RFC 866 [RFC866] defines the Active Users Protocol."

Bierman, et al. Informational [Page 20] RFC 2896 RMON PI Macros August 2000

  ::= {
     tcp 11,
     udp 11  }

daytime PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Retrieve the current time of day; a debugging tool for TCP and
     UDP transports."
  REFERENCE
     "RFC 867 [RFC867] defines the Daytime Protocol."
  ::= {
     tcp 13,
     udp 13  }

qotd PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Quote of the Day Protocol; retrieve a short message (up to 512
     bytes); a debugging tool for TCP and UDP transports."
  REFERENCE
     "RFC 865 [RFC865] defines the Quote of the Day Protocol."
  ::= {
     tcp 17,
     udp 17  }

msp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Message Send Protocol"
  REFERENCE
     "RFC 1312 [RFC1312] defines the Message Send Protocol."
  ::= {
     tcp 18,
     udp 18  }

chargen PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Character Generator Protocol; a debugging tool for TCP and UDP
     transports."
  REFERENCE
     "RFC 864 [RFC864] defines the Character Generator Protocol."

Bierman, et al. Informational [Page 21] RFC 2896 RMON PI Macros August 2000

  ::= {
     tcp 19,
     udp 19  }

ftp-data PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "The File Transfer Protocol Data Port; the FTP Server process
     default data-connection port. "
  REFERENCE
     "RFC 959 [RFC959] defines the File Transfer Protocol.  Refer to
     section 3.2 of [RFC959] for details on FTP data connections."
  ::= { tcp 20 }

ftp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "The File Transfer Protocol Control Port; An FTP client initiates
     an FTP control connection by sending FTP commands from user port
     (U) to this port."
  REFERENCE
     "RFC 959 [RFC959] defines the File Transfer Protocol."
  ::= { tcp 21 }

telnet PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "The Telnet Protocol; The purpose of the TELNET Protocol is to
     provide a fairly general, bi-directional, eight-bit byte oriented
     communications facility.  Its primary goal is to allow a standard
     method of interfacing terminal devices and terminal-oriented
     processes to each other. "
  REFERENCE
     "RFC 854 [RFC854] defines the basic Telnet Protocol."
  ::= { tcp 23 }

priv-mail PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Pseudo-protocol reserved for any private mail system."
  REFERENCE
     "[RFC1700]"
  ::= { tcp 24,
     udp 24 }

Bierman, et al. Informational [Page 22] RFC 2896 RMON PI Macros August 2000

smtp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "The Simple Mail Transfer Protocol; SMTP control and data
     messages are sent on this port."
  REFERENCE
     "RFC 821 [RFC821] defines the basic Simple Mail Transfer
     Protocol."
  ::= { tcp 25 }

priv-print PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Pseudo-protocol reserved for any private printer server."
  REFERENCE
     "[RFC1700]"
  ::= { tcp 35,
     udp 35  }

time PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Time Protocol"
  REFERENCE
     "RFC 868 [RFC868] defines the Time Protocol."
  ::= { tcp 37,
     udp 37 }

rap PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Route Access Protocol"
  REFERENCE
     "RFC 1476 [RFC1476] defines the Internet Route Access Protocol."
  ::= { tcp 38 }

rlp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Resource Location Protocol"
  REFERENCE
     "RFC 887 [RFC887] defines the Resource Location Protocol."
  ::= { udp 39 }

Bierman, et al. Informational [Page 23] RFC 2896 RMON PI Macros August 2000

graphics PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Graphics Protocol"
  REFERENCE
     "RFC 493 [RFC493] defines the Graphics Protocol."
  ::= { tcp 41,
     udp 41  }

nameserver PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Host Name Server Protocol"
  REFERENCE
     "IEN 116 [IEN116] defines the Internet Name Server."
  ::= { udp 42 }

nicname PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "NICNAME/WHOIS Protocol"
  REFERENCE
     "RFC 954 [RFC954] defines the NICNAME/Who Is Protocol."
  ::= { tcp 43 }

mpm-flags PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "MPM FLAGS Protocol; (historical)."
  REFERENCE
     "RFC 759 [RFC759] defines the Message Processing Module."
  ::= { tcp 44 }

mpm PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Message Processing Module -- Receiver; (historical)."
  REFERENCE
     "RFC 759 [RFC759] defines the Message Processing Module."
  ::= { tcp 45 }

mpm-snd PROTOCOL-IDENTIFIER

  PARAMETERS { }

Bierman, et al. Informational [Page 24] RFC 2896 RMON PI Macros August 2000

  ATTRIBUTES { }
  DESCRIPTION
     "Message Processing Module -- Default Send; (historical)."
  REFERENCE
     "RFC 759 [RFC759] defines the Message Processing Module."
  ::= { tcp 46 }

tacacs PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Login Host Protocol (TACACS)"
  REFERENCE
     "An Access Control Protocol, Sometimes Called TACACS [RFC1492]."
  ::= { tcp 49 }

re-mail-ck PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Remote Mail Checking Protocol"
  REFERENCE
     "RFC 1339 [RFC1339] defines the Remote Mail Checking Protocol."
  ::= { udp 50 }

xns-time PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "XNS Time Protocol"
  REFERENCE
     "Xerox Corporation"
  ::= { tcp 52,
     udp 52 }

domain PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Domain Name Service Protocol; DNS may be transported by either
     UDP [RFC768] or TCP [RFC793].  If the transport is UDP, DNS
     requests restricted to 512 bytes in length may be sent to this
     port."
  REFERENCE
     "RFC 1035 [RFC1035] defines the Bootstrap Protocol."
  ::= { udp 53,
     tcp 53  }

Bierman, et al. Informational [Page 25] RFC 2896 RMON PI Macros August 2000

xns-ch PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "XNS Clearinghouse"
  REFERENCE
     "Xerox Corporation"
  ::= { tcp 54,
     udp 54 }

xns-auth PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "XNS Authentication Protocol"
  REFERENCE
     "Xerox Corporation"
  ::= { tcp 56,
     udp 56 }

priv-term PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Pseudo-protocol reserved for any private terminal access
     protocol."
  REFERENCE
     "[RFC1700]"
  ::= { tcp 57,
     udp 57 }

xns-mail PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "XNS Mil Protocol"
  REFERENCE
     "Xerox Corporation"
  ::= { tcp 58,
     udp 58 }

priv-file PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Pseudo-protocol reserved for any private file service."
  REFERENCE
     "[RFC1700]"

Bierman, et al. Informational [Page 26] RFC 2896 RMON PI Macros August 2000

  ::= { tcp 59,
     udp 59 }

tacacs-ds PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Default Server Port; TACACS Access Control Protocol Database
     Service."
  REFERENCE
     "RFC 1492 [RFC1492] defines the TACACS Protocol."
  ::= { tcp 65 }

sqlnet PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Oracle SQL*NET"
  REFERENCE
     "Oracle Corporation"
  ::= { tcp 66 }

bootps PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Bootstrap Protocol Server Protocol; BOOTP Clients send requests
     (usually broadcast) to the bootps port."
  REFERENCE
     "RFC 951 [RFC951] defines the Bootstrap Protocol."
  ::= { udp 67 }

bootpc PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Bootstrap Protocol Client Protocol; BOOTP Server replies are
     sent to the BOOTP Client using this destination port."
  REFERENCE
     "RFC 951 [RFC951] defines the Bootstrap Protocol."
  ::= { udp 68 }

tftp PROTOCOL-IDENTIFIER

  PARAMETERS {
   tracksSessions(1)
  }
  ATTRIBUTES { }
  DESCRIPTION

Bierman, et al. Informational [Page 27] RFC 2896 RMON PI Macros August 2000

     "Trivial File Transfer Protocol; Only the first packet of each
     TFTP transaction will be sent to port 69. If the tracksSessions
     attribute is set, then packets for each TFTP transaction will be
     attributed to tftp, instead of the unregistered port numbers that
     will be encoded in subsequent packets."
  REFERENCE
     "RFC 1350 [RFC1350] defines the TFTP Protocol (revision 2);
      RFC 1782 [RFC1782] defines TFTP Option Extensions;
      RFC 1783 [RFC1783] defines the TFTP Blocksize Option;
      RFC 1784 [RFC1784] defines TFTP Timeout Interval and Transfer
      Size  Options."
  ::= { udp 69 }

gopher PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Internet Gopher Protocol"
  REFERENCE
     "RFC 1436 [RFC1436] defines the Gopher Protocol."
  ::= { tcp 70 }

netrjs-1 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Remote Job Service Protocol; (historical)."
  REFERENCE
     "RFC 740 [RFC740] defines the NETRJS Protocol."
  ::= { tcp 71 }

netrjs-2 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Remote Job Service Protocol; (historical)."
  REFERENCE
     "RFC 740 [RFC740] defines the NETRJS Protocol."
  ::= { tcp 72 }

netrjs-3 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Remote Job Service Protocol; (historical)."
  REFERENCE
     "RFC 740 [RFC740] defines the NETRJS Protocol."
  ::= { tcp 73 }

Bierman, et al. Informational [Page 28] RFC 2896 RMON PI Macros August 2000

netrjs-4 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Remote Job Service Protocol; (historical)."
  REFERENCE
     "RFC 740 [RFC740] defines the NETRJS Protocol."
  ::= { tcp 74 }

priv-dialout PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Pseudo-protocol reserved for any private dial out service."
  REFERENCE
     "[RFC1700]"
  ::= { tcp 75,
     udp 75 }

priv-rje PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Pseudo-protocol reserved for any private remote job entry
     service."
  REFERENCE
     "[RFC1700]"
  ::= { tcp 77,
     udp 77 }

finger PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Finger User Information Protocol"
  REFERENCE
     "RFC 1288 [RFC1288] defines the finger protocol."
  ::= { tcp 79 }

www-http PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Hypertext Transfer Protocol"
  REFERENCE
     "RFC 1945 [RFC1945] defines the Hypertext Transfer Protocol

(HTTP/1.0).

Bierman, et al. Informational [Page 29] RFC 2896 RMON PI Macros August 2000

      RFC 2068 [RFC2068] defines the Hypertext Transfer Protocol

(HTTP/1.1).

      RFC 2069 [RFC2069] defines an Extension to HTTP: Digest Access
         Authentication.
      RFC 2109 [RFC2109] defines the HTTP State Management Mechanism.
      RFC 2145 [RFC2145] defines the use and interpretation of HTTP
         version numbers."
  ::= { tcp 80 }

priv-termlink PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Pseudo-protocol reserved for any private terminal link
     protocol."
  REFERENCE
     "[RFC1700]"
  ::= { tcp 87,
     udp 87 }

kerberos PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "The Kerberos Network Authentication Service (V5)"
  REFERENCE
     "RFC 1510 [RFC1510] defines the Kerberos protocol."
  ::= { udp 88 }

supdup PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "SUPDUP Display; (historical)"
  REFERENCE
     "RFC 734 [RFC734] defines the SUPDUP Protocol."
  ::= { tcp 95 }

dixie PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "DIXIE Directory Service"
  REFERENCE
     "RFC 1249 [RFC1249] defines the DIXIE Protocol."
  ::= { tcp 96,
     udp 96 }

Bierman, et al. Informational [Page 30] RFC 2896 RMON PI Macros August 2000

hostname PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "NIC Internet Hostname Server Protocol; (historical)"
  REFERENCE
     "RFC 953 [RFC953] defines the Hostname Server Protocol."
  ::= { tcp 101 }

3com-tsmux PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "3COM-TSMUX"
  REFERENCE
     "3Com, Inc."
  ::= { tcp 106,
     udp 106 }

rtelnet PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Remote User Telnet Protocol; (historical)."
  REFERENCE
     "RFC 818 [RFC818] defines the Remote User Telnet Service."
  ::= { tcp 107 }

pop2 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Post Office Protocol -- Version 2. Clients establish connections
     with POP2 servers by using this destination port number.
     Historical."
  REFERENCE
     "RFC 937 [RFC937] defines Version 2 of the Post Office Protocol."
  ::= { tcp 109 }

pop3 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Post Office Protocol -- Version 3. Clients establish connections
     with POP3 servers by using this destination port number."
  REFERENCE
     "RFC 1725 [RFC1725] defines Version 3 of the Post Office
     Protocol."

Bierman, et al. Informational [Page 31] RFC 2896 RMON PI Macros August 2000

  ::= { tcp 110,
     udp 110 }     -- RFC defines tcp use

sunrpc PROTOCOL-IDENTIFIER

  PARAMETERS {
      tracksSessions(1) -- learn port mapping of programs
  }
  ATTRIBUTES {
      hasChildren(0)   -- port mapper function numbers
  }
  DESCRIPTION
     "SUN Remote Procedure Call Protocol. Port mapper function
     requests are sent to this destination port."
  CHILDREN
     "Specific RPC functions are represented as children of the sunrpc
     protocol.  Each 'RPC function protocol' is identified by its
     function number assignment. RPC function number assignments are
     defined by different naming authorities, depending on the
     function identifier value.
     From [RFC1831]:
     Program numbers are given out in groups of hexadecimal 20000000
     (decimal 536870912) according to the following chart:
                   0 - 1fffffff   defined by rpc@sun.com
            20000000 - 3fffffff   defined by user
            40000000 - 5fffffff   transient
            60000000 - 7fffffff   reserved
            80000000 - 9fffffff   reserved
            a0000000 - bfffffff   reserved
            c0000000 - dfffffff   reserved
            e0000000 - ffffffff   reserved
     Children of 'sunrpc' are encoded as [ 0.0.0.111], the protocol
     identifier component for 'sunrpc', followed by [ a.b.c.d ], where
     a.b.c.d is the 32 bit binary RPC program number encoded in
     network byte order.  For example, a protocolDirID-fragment value
     of:
         0.0.0.111.0.1.134.163
     defines the NFS function (and protocol).
     Children are named as 'sunrpc' followed by the RPC function
     number in base 10 format. For example, NFS would be named:
         'sunrpc 100003'."
  DECODING
     "The first packet of many SUNRPC transactions is sent to the

Bierman, et al. Informational [Page 32] RFC 2896 RMON PI Macros August 2000

     port- mapper program, and therefore decoded statically by
     monitoring RFC portmap requests [RFC1831]. Any subsequent packets
     must be decoded and correctly identified by 'remembering' the
     port assignments used in each RPC function call (as identified
     according to the procedures in the RPC Specification Version 2
     [RFC1831]).
     In some cases the port mapping for a particular protocol is well
     known and hard coded into the requesting client.  In these cases
     the client will not send portmap requests; instead it will send
     the SUNRPC request directly to the well known port.  These cases
     are rare and are being eliminated over time.  NFS is the most
     significant SUNRPC program of this class.  Such programs should
     still be declared as children of SUNRPC as described under
     CHILDREN above.  How an implementation detects this behaviour and
     handles it is beyond the scope of this document.
     The 'tracksSessions(1)' PARAMETER bit is used to indicate whether
     the probe can (and should) monitor portmapper activity to
     correctly track SUNRPC connections."
  REFERENCE
     "RFC 1831 [RFC1831] defines the Remote Procedure Call Protocol
     Version 2.  The authoritative list of RPC Functions is identified
     by the URL:
         ftp://ftp.isi.edu/in-notes/iana/assignments/sun-rpc-numbers"
  ::= { tcp 111,
     udp 111 }

auth PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Authentication Service; Identification Protocol."
  REFERENCE
     "RFC 1413 [RFC1413] defines the Identification Protocol."
  ::= { tcp 113 }

sftp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Simple File Transfer Protocol; (historical)."
  REFERENCE
     "RFC 913 [RFC913] defines the Simple File Transfer Protocol."
  ::= { tcp 115 }

uucp-path PROTOCOL-IDENTIFIER

Bierman, et al. Informational [Page 33] RFC 2896 RMON PI Macros August 2000

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "UUCP Path Service"
  REFERENCE
     "RFC 915 [RFC915] defines the Network Mail Path Service."
  ::= { tcp 117 }

nntp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Network News Transfer Protocol"
  REFERENCE
     "RFC 977 [RFC977] defines the Network News Transfer Protocol."
  ::= { tcp 119 }

cfdptkt PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "CFDPTKT; Coherent File Distribution Protocol"
  REFERENCE
     "RFC 1235 [RFC1235] defines the Coherent File Distribution
     Protocol."
  ::= { udp 120 }

ntp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Network Time Protocol"
  REFERENCE
     "RFC 1305 [RFC1305] defines version 3 of the Network Time
     Protocol."
  ::= { udp 123 }

pwdgen PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Password Generator Protocol"
  REFERENCE
     "RFC 972 [RFC972] defines the Password Generator Protocol."
  ::= { tcp 129,
     udp 129  }

cisco-fna PROTOCOL-IDENTIFIER

Bierman, et al. Informational [Page 34] RFC 2896 RMON PI Macros August 2000

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "cisco FNATIVE"
  REFERENCE
     "Cisco Systems, Inc."
  ::= { tcp 130,
     udp 130 }

cisco-tna PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "cisco TNATIVE"
  REFERENCE
     "Cisco Systems, Inc."
  ::= { tcp 131,
     udp 131 }

cisco-sys PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "cisco SYSMAINT"
  REFERENCE
     "Cisco Systems, Inc."
  ::= { tcp 132,
     udp 132 }

statsrv PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Statistics Server; (historical)."
  REFERENCE
     "RFC 996 [RFC996] defines the Statistics Server Protocol."
  ::= { tcp 133,
     udp 133 }

– defined as nbt-name in IPX section – netbios-ns 137/tcp NETBIOS Name Service – netbios-ns 137/udp NETBIOS Name Service – defined as nbt-data in IPX section – netbios-dgm 138/tcp NETBIOS Datagram Service – netbios-dgm 138/udp NETBIOS Datagram Service

– defined as nbt-session in IPX section – netbios-ssn 139/tcp NETBIOS Session Service

Bierman, et al. Informational [Page 35] RFC 2896 RMON PI Macros August 2000

– netbios-ssn 139/udp NETBIOS Session Service

imap2 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Interactive Mail Access Protocol v2;
      Internet Message Access Protocol v4 (IMAP4) also uses this
     server port."
  REFERENCE
     "RFC 1064 [RFC1064] defines Version 2 of the Interactive Mail
     Access
      Protocol.
      RFC 1730 [RFC1730] defines Version 4 of the Internet Message
     Access
      Protocol."
  ::= { tcp 143 }

iso-tp0 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "ISO-IP0; ISO-TP0 bridge between TCP and X.25"
  REFERENCE
     "RFC 1086 [RFC1086] defines the ISO-TP0 protocol."
  ::= { tcp 146,
     udp 146 }

iso-ip PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "ISO-IP; Use of the Internet as a Subnetwork for Experimentation
     with the OSI Network Layer"
  REFERENCE
     "RFC 1070 [RFC1070] defines the ISO-IP Protocol."
  ::= { tcp 147,
     udp 147 }

hems PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "HEMS; High Level Entity Management System; (historical)."
  REFERENCE
     "RFC 1021 [RFC1021] defines HEMS."
  ::= { tcp 151 }

Bierman, et al. Informational [Page 36] RFC 2896 RMON PI Macros August 2000

bftp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Background File Transfer Program"
  REFERENCE
     "RFC 1068 [RFC1068] defines the Background File Transfer
     Program."
  ::= { tcp 152 }

sgmp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Simple Gateway Monitoring Protocol; (historical)."
  REFERENCE
     "RFC 1028 [RFC1028] defines the Simple Gateway Monitoring
     Protocol."
  ::= { udp 153 }

pcmail-srv PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "PCMail Server; Distributed Mail System Protocol (DMSP)"
  REFERENCE
     "RFC 1056 [RFC1056] defines the PCMAIL Protocol."
  ::= { tcp 158 }

sgmp-traps PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Simple Gateway Monitoring Protocol Traps; (historical)."
  REFERENCE
     "RFC 1028 [RFC1028] defines the Simple Gateway Monitoring
     Protocol."
  ::= { udp 160 }

– snmp and snmptrap found in the Protocol-Independent section – snmp 161/udp SNMP – snmptrap 162/udp SNMPTRAP

cmip-man PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION

Bierman, et al. Informational [Page 37] RFC 2896 RMON PI Macros August 2000

     "CMIP/TCP (CMOT) Manager; (historical)."
  REFERENCE
     "RFC 1095 [RFC1095] defines the Common Management Information
     Services and Protocol over TCP/IP."
  ::= { tcp 163,
     udp 163 }

cmip-agent PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "CMIP/TCP (CMOT) Agent; (historical)."
  REFERENCE
     "RFC 1095 [RFC1095] defines the Common Management Information
     Services and Protocol over TCP/IP."
  ::= { tcp 164,
     udp 164 }

xdmcp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "X Display Manager Control Protocol"
  REFERENCE
     "X11 Consortium"
  ::= { udp 177 }

bgp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Border Gateway Protocol"
  REFERENCE
     "RFC 1267 [RFC1267] defines version 3 of the Border Gateway
     Protocol."
  ::= { tcp 179 }

remote-kis PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Remote-Knowbot Information Service (KIS)"
  REFERENCE
     "RFC 1739 [RFC1739] describes the KNOWBOT Protocol."
  ::= { tcp 185,
     udp 185 }

Bierman, et al. Informational [Page 38] RFC 2896 RMON PI Macros August 2000

kis PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Knowbot Information Service (KIS)"
  REFERENCE
     "RFC 1739 [RFC1739] describes the KNOWBOT Protocol."
  ::= { tcp 186,
     udp 186 }

irc PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Internet Relay Chat Protocol"
  REFERENCE
     "RFC 1459 [RFC1459] defines the Internet Relay Chat Protocol."
  ::= { tcp 194,
     udp 194 }

smux PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "SMUX; SNMP MUX Protocol and MIB; (historical)."
  REFERENCE
     "RFC 1227 [RFC1227] defines the SMUX Protocol."
  ::= { tcp 199 }

– – AppleTalk applications are defined in the AppleTalk Stack section – – at-rtmp 201/tcp AppleTalk Routing Maintenance – at-rtmp 201/udp AppleTalk Routing Maintenance – at-nbp 202/tcp AppleTalk Name Binding – at-nbp 202/udp AppleTalk Name Binding – at-3 203/tcp AppleTalk Unused – at-3 203/udp AppleTalk Unused – at-echo 204/tcp AppleTalk Echo – at-echo 204/udp AppleTalk Echo – at-5 205/tcp AppleTalk Unused – at-5 205/udp AppleTalk Unused – at-zis 206/tcp AppleTalk Zone Information – at-zis 206/udp AppleTalk Zone Information – at-7 207/tcp AppleTalk Unused – at-7 207/udp AppleTalk Unused – at-8 208/tcp AppleTalk Unused – at-8 208/udp AppleTalk Unused

Bierman, et al. Informational [Page 39] RFC 2896 RMON PI Macros August 2000

z39-50 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "ANSI Z39.50"
  REFERENCE
     "RFC 1729 [RFC1729] describes the Z39.50 Protocol."
  ::= { tcp 210 }

ipx-tunnel PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Tunneling IPX Traffic through IP Networks"
  REFERENCE
     "RFC 1234 [RFC1234] defines the IPX Tunnel Protocol."
  ::= { udp 213 }

mpp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Netix Message Posting Protocol"
  REFERENCE
     "RFC 1204 [RFC1204] defines the Message Posting Protocol."
  ::= { tcp 218 }

imap3 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Interactive Mail Access Protocol v3; (historical)."
  REFERENCE
     "RFC 1203 [RFC1203] defines version 3 of the Interactive Mail
     Access Protocol."
  ::= { tcp 220 }

ldap PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Lightweight Directory Access Protocol"
  REFERENCE
     "RFC 1777 [RFC1777] defines Lightweight Directory Access
     Protocol; RFC 1798 [RFC1798] defines Connection-less Lightweight
     X.500 Directory Access Protocol"
  ::= { tcp 389,       -- RFC 1777
     udp 389  }        -- RFC 1798

Bierman, et al. Informational [Page 40] RFC 2896 RMON PI Macros August 2000

mobileip-agent PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "IP Mobility Support"
  REFERENCE
     "RFC 2002 [RFC2002] defines the IP Mobility Support protocol."
  ::= { udp 434 }

https PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Secure HTTP; HTTP over TLS/SSL"
  REFERENCE
     "Netscape; http://home.netscape.com/eng/ssl3/"
  ::= { tcp 443 }

smtps PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "SMTP protocol over TLS/SSL"
  REFERENCE
     "Netscape; http://home.netscape.com/eng/ssl3/"
  ::= { tcp 465 }

isakmp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Internet Security Association and Key Management Protocol
     (ISAKMP)"
  REFERENCE
     "RFC 2408 [RFC2408]"
  ::= { udp 500 }

login PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "BSD Rlogin; remote login a la telnet"
  REFERENCE
     "RFC 1282 [RFC1282] defines the BSD Rlogin Protocol."
  ::= { tcp 513 }

syslog PROTOCOL-IDENTIFIER

  PARAMETERS { }

Bierman, et al. Informational [Page 41] RFC 2896 RMON PI Macros August 2000

  ATTRIBUTES { }
  DESCRIPTION
     "syslog"
  REFERENCE
     "[RFC1700]"
  ::= { udp 514 }

uucp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Unix-to-Unix copy protocol"
  REFERENCE
     "[RFC1700]"
  ::= { tcp 540 }

doom PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "DOOM Game;"
  REFERENCE
     " Id Software"
  ::= { tcp 666 }

radius PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Remote Authentication Dial In User Service (RADIUS)"
  REFERENCE
     "RFC 2138 [RFC2138] defines the Radius protocol."
  ::= { udp 1812 }

radiusacct PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "RADIUS Accounting Protocol"
  REFERENCE
     "RFC 2139 [RFC2139] defines the Radius Accounting protocol."
  ::= { udp 1813 }

– – Portmapper Functions; Children of sunrpc –

portmapper PROTOCOL-IDENTIFIER

Bierman, et al. Informational [Page 42] RFC 2896 RMON PI Macros August 2000

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "SUNRPC PORTMAPPER program.  This is the SUNRPC program which is
     used to locate the UDP/TCP ports on which other SUNRPC programs
     can be found."
  REFERENCE
     "Appendix A of RFC 1057 [RFC1057] describes the portmapper
     operation."
  ::= { sunrpc 100000 }

nfs PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Sun Network File System (NFS);"
  DECODING
     "NFS is a SUNRPC program which may or may not use the port mapper
     SUNRPC program to connect clients and servers.  In many cases the
     NFS server program runs over UDP/TCP port 2049, but an
     implementation is encouraged to perform further analysis before
     assuming that a packet to/from this port is a SUNRPC/NFS packet.
     Likewise an implementation is encouraged to track port mapper
     activity to spot cases where it is used to locate the SUNRPC/NFS
     program as this is more robust."
  REFERENCE
     "The NFS Version 3 Protocol Specification is defined in RFC 1813
     [RFC1813]."
  ::= {
   sunrpc 100003       --  [0.1.134.163]
  }

xwin PROTOCOL-IDENTIFIER

  PARAMETERS {
      tracksSessions(1)
  }
  ATTRIBUTES { }
  DESCRIPTION
     "X Windows Protocol"
  DECODING
     "The X Windows Protocol when run over UDP/TCP normally runs over
     the well known port 6000.  It can run over any port in the range
     6000 to 6063, however.  If the tracksSessions(1) parameter bit is
     set the agent can and should detect such X Window sessions and
     report them as the X protocol."
  REFERENCE
       "The X Windows Protocol is defined by TBD"
  ::= {

Bierman, et al. Informational [Page 43] RFC 2896 RMON PI Macros August 2000

    tcp 6000,
    udp 6000
    -- lat ?
  }

3.1.2. Novell IPX Stack

ipx PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
    hasChildren(0),
    addressRecognitionCapable(1)
  }
  DESCRIPTION
     "Novell IPX"
  CHILDREN
     "Children of IPX are defined by the 8 bit packet type field.  The
     value is encoded into an octet string as [ 0.0.0.a ], where 'a'
     is the single octet of the packet type field.
     Notice that in many implementations of IPX usage of the packet
     type field is inconsistent with the specification and
     implementations are encouraged to use other techniques to map
     inconsistent values to the correct value (which in these cases is
     typically the Packet Exchange Protocol).  It is beyond the scope
     of this document to describe these techniques in more detail.
     Children of IPX are encoded as [ 0.0.0.a ], and named as 'ipx a'
     where a is the packet type value.  The novell echo protocol is
     referred to as 'ipx nov-echo' OR 'ipx 2'."
  ADDRESS-FORMAT
     "4 bytes of Network number followed by the 6 bytes Host address
     each in network byte order."
  REFERENCE
     "The IPX protocol is defined by the Novell Corporation
     A complete description of IPX may be secured at the following
     address:
            Novell, Inc.
            122 East 1700 South
            P. O. Box 5900
            Provo, Utah 84601 USA
            800 526 5463
            Novell Part # 883-000780-001"
  ::= {
      ether2       0x8137,       -- [0.0.129.55]
         snap         0x8137,       -- [0.0.129.55]

Bierman, et al. Informational [Page 44] RFC 2896 RMON PI Macros August 2000

         ianaAssigned 1,            -- [0.0.0.1]   (ipxOverRaw8023)
      llc          224,          -- [0.0.0.224]
         802-1Q       0x8137,       -- [0.0.129.55]
      802-1Q       0x020000e0,   -- 1Q-LLC [2.0.0.224]
         802-1Q       0x05000001    -- 1Q-IANA [5.0.0.1]
                                    -- (ipxOverRaw8023)
  }

nov-rip PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Novell Routing Information Protocol"
  REFERENCE
     "Novell Corporation"
  ::= {
      ipx 0x01,       -- when reached by IPX packet type
      nov-pep 0x0453  -- when reached by IPX socket number
  }

nov-echo PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Novell Echo Protocol"
  REFERENCE
     "Novell Corporation"
  ::= { ipx 0x02 }

nov-error PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Novell Error-handler Protocol"
  REFERENCE
     "Novell Corporation"
  ::= { ipx 0x03 }

nov-pep PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
     "Novell Packet Exchange Protocol.  This is really a null protocol
     layer as all IPX packets contain the relevant fields for this
     protocol.  This protocol is defined so that socket-based decoding
     has a point of attachment in the decode tree while still allowing

Bierman, et al. Informational [Page 45] RFC 2896 RMON PI Macros August 2000

     packet type based decoding also."
  CHILDREN
     "Children of PEP are defined by the 16 bit socket values.  The
     value is encoded into an octet string as [ 0.0.a.b ], where 'a'
     and 'b' are the network byte order encodings of the MSB and LSB
     of the socket value.
     Each IPX/PEP packet contains two sockets, source and destination.
     How these are mapped onto the single well-known socket value used
     to identify its children is beyond the scope of this document."
  REFERENCE
     "Novell Corporation"
  ::= {
   -- ipx 0x00     ** Many third party IPX's use this value always
   ipx 0x04        -- Xerox assigned for PEP
   -- ipx 0x11     ** Novell use this for PEP packets, often
  }

nov-spx PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
  hasChildren(0)

}

  DESCRIPTION
     "Novell Sequenced Packet Exchange Protocol.  This protocol is an
     extension of IPX/PEP as it shares a common header."
  CHILDREN
     "Children of SPX are defined by the 16 bit socket values.  The
     value is encoded into an octet string as [ 0.0.a.b ], where 'a'
     and 'b' are the network byte order encodings of the MSB and LSB
     of the socket value.
     Each IPX/SPX packet contains two sockets, source and destination.
     How these are mapped onto the single well-known socket value used
     to identify its children is beyond the scope of this document."
  REFERENCE
     "Novell Corporation"
  ::= {
   ipx 0x05 -- Xerox assigned for SPX
  }

nov-sap PROTOCOL-IDENTIFIER

  PARAMETERS {
   tracksSessions(1)
  }
  ATTRIBUTES {
   hasChildren(0)
  }

Bierman, et al. Informational [Page 46] RFC 2896 RMON PI Macros August 2000

  DESCRIPTION
     "Novell Service Advertising Protocol.  This protocol binds
     applications on a particular host to an IPX/PEP or IPX/SPX socket
     number.  Although it never truly acts as a transport protocol
     itself it is used to establish sessions between clients and
     servers and barring well-known sockets is the only reliable way
     to determine the protocol running over a given socket on a given
     machine."
  CHILDREN
     "Children of SAP are identified by a 16 bit service type.  They
     are encoded as [ 0.0.a.b ], where 'a' is the MSB and 'b' is the
     LSB of the service type.
     Children of SAP are named as 'nov-sap a' where 'a' is the service
     type in hexadecimal notation.  The novell NCP protocol is
     referred to as 'nov-sap ncp' OR 'nov-sap 0x0004'."
  DECODING
     "The first packet of any session for a SAP based application
     (almost all IPX/PEP and IPX/SPX based applications utilize SAP)
     is sent to the SAP server(s) to map the service type into a port
     number for the host(s) on which the SAP server(s) is(are)
     running.  These initial packets are SAP packets and not
     application packets and must be decoded accordingly.
     Having established the mapping, clients will then send
     application packets to the newly discovered socket number.  These
     must be decoded by 'remembering' the socket assignments
     transmitted in the SAP packets.
     In some cases the port mapping for a particular protocol is well
     known and SAP will always return the same socket number for that
     application.
     Such programs should still be declared as children of nov-sap as
     described under CHILDREN above.  How an implementation detects a
     client which is bypassing the SAP server to contact a well-known
     application is beyond the scope of this document.
     The 'tracksSessions(1)' PARAMETER bit is used to indicate whether
     the probe can (and should) monitor nov-sap activity to correctly
     track SAP-based connections."
  REFERENCE
     "A list of SAP service types can be found at
        ftp://ftp.isi.edu/in-notes/iana/assignments/novell-sap-
     numbers"
  ::= { nov-pep 0x0452 }

ncp PROTOCOL-IDENTIFIER

Bierman, et al. Informational [Page 47] RFC 2896 RMON PI Macros August 2000

  PARAMETERS {
   tracksSessions(1)
  }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
     "Netware Core Protocol"
  CHILDREN
     "Children of NCP are identified by the 8 bit command type field.
     They are encoded as [ 0.0.0.a ] where 'a' is the command type
     value.
     Children of NCP are named as 'ncp a' where 'a' is the command
     type in decimal notation.  The NDS sub-protocol is referred to as
     'ncp nds' OR 'ncp 104'."
  DECODING
     "Only the NCP request frames carry the command type field.  How
     the implementation infers the command type of a response frame is
     an implementation specific matter and beyond the scope of this
     document.
     The tracksSessions(1) PARAMETERS bit indicates whether the probe
     can (and should) perform command type inference."
  REFERENCE
     "Novell Corporation"
  ::= { nov-sap 0x0004,
     nov-pep 0x0451 }

nds PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
       "The Netware Directory Services sub-protocol."
  REFERENCE
     "Novell Corporation"
  ::= { ncp 104 }

nov-diag PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Novell's diagnostic Protocol"
  REFERENCE
     "Novell Corporation"
  ::= {
   nov-sap 0x0017,   -- [ed., this is the right one]
   nov-pep 0x0456

Bierman, et al. Informational [Page 48] RFC 2896 RMON PI Macros August 2000

  }

nov-sec PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Novell security - serialization - copy protection protocol."
  REFERENCE
     "Novell Corporation"
  ::= { nov-pep 0x0457 }

nov-watchdog PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Novell watchdog protocol."
  REFERENCE
     "Novell Corporation"
  ::= { nov-pep 0x4004 }

nov-bcast PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Novell broadcast protocol."
  REFERENCE
     "Novell Corporation"
  ::= { nov-pep 0x4005 }

3.1.3. The XEROX Protocol Stack

idp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
    hasChildren(0),
    addressRecognitionCapable(1)
  }
  DESCRIPTION
     "Xerox IDP"
  CHILDREN
     "Children of IDP are defined by the 8 bit value of the Packet
     type field.  The value is encoded into an octet string as [
     0.0.0.a ], where 'a' is the value of the packet type field in
     network byte order.
     Children of IDP are encoded as [ 0.0.0.a ], and named as 'idp a'
     where a is the packet type value.  The XNS SPP protocol is
     referred to as 'idp xns-spp' OR 'idp 2'."

Bierman, et al. Informational [Page 49] RFC 2896 RMON PI Macros August 2000

  ADDRESS-FORMAT
     "4 bytes of Network number followed by the 6 bytes Host address
     each in network byte order."
  REFERENCE
     "Xerox Corporation, Document XNSS 028112, 1981"
  ::=  {
     ether2  0x600,     -- [ 0.0.6.0 ]
     snap    0x600,
     802-1Q  0x600      -- [ 0.0.6.0 ]
  }

xns-rip PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Routing Information Protocol."
  REFERENCE
     "Xerox Corporation"
  ::= { idp 1 }

xns-echo PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "XNS echo protocol."
  REFERENCE
     "Xerox Corporation"
  ::= { idp 2 }

xns-error PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "XNS error-handler protocol."
  REFERENCE
     "Xerox Corporation"
  ::= { idp 3 }

xns-pep PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
     "XNS Packet Exchange Protocol."
  CHILDREN
     "Children of PEP are defined by the 16 bit socket values.  The

Bierman, et al. Informational [Page 50] RFC 2896 RMON PI Macros August 2000

     value is encoded into an octet string as [ 0.0.a.b ], where 'a'
     and 'b' are the network byte order encodings of the MSB and LSB
     of the socket value.
     Each XNS/PEP packet contains two sockets, source and destination.
     How these are mapped onto the single well-known socket value used
     to identify its children is beyond the scope of this document."
  REFERENCE
     "Xerox Corporation"
  ::= { idp 4 }

xns-spp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
     "Sequenced Packet Protocol."
  CHILDREN
     "Children of SPP are defined by the 16 bit socket values.  The
     value is encoded into an octet string as [ 0.0.a.b ], where 'a'
     and 'b' are the network byte order encodings of the MSB and LSB
     of the socket value.
     Each XNS/SPP packet contains two sockets, source and destination.
     How these are mapped onto the single well-known socket value used
     to identify its children is beyond the scope of this document."
  REFERENCE
     "Xerox Corporation"
  ::= { idp 5 }

3.1.4. AppleTalk Protocol Stack

apple-oui PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Pseudo-protocol which binds Apple's protocols to vsnap."
  CHILDREN
     "Children of apple-oui are identified by the ether2 type field
     value that the child uses when encapsulated in ether2.  The value
     is encoded into an octet string as [ 0.0.a.b ], where 'a' and 'b'
     are the MSB and LSB of the 16-bit ether type value in network
     byte order."
  REFERENCE
     "AppleTalk Phase 2 Protocol Specification, document ADPA
      #C0144LL/A."
  ::=   {

Bierman, et al. Informational [Page 51] RFC 2896 RMON PI Macros August 2000

   vsnap    0x080007,     --  [ 0.8.0.7 ]
   802-1Q   0x04080007    --  1Q-VSNAP [ 4.8.0.7 ]
  }

aarp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "AppleTalk Address Resolution Protocol."
  REFERENCE
     "AppleTalk Phase 2 Protocol Specification, document ADPA
      #C0144LL/A."
  ::=   {
   ether2    0x80f3,            --  [ 0.0.128.243 ]
   snap      0x80f3,
   apple-oui 0x80f3,
   802-1Q    0x80f3             --  [ 0.0.128.243 ]
  }

atalk PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0),
   addressRecognitionCapable(1)
  }
  DESCRIPTION
     "AppleTalk Protocol."
  CHILDREN
     "Children of ATALK are defined by the 8 bit value of the DDP type
     field.  The value is encoded into an octet string as [ 0.0.0.a ],
     where 'a' is the value of the DDP type field in network byte
     order."
  ADDRESS-FORMAT
     "2 bytes of Network number followed by 1 byte of node id each in
     network byte order."
  REFERENCE
     "AppleTalk Phase 2 Protocol Specification, document ADPA
      #C0144LL/A."
  ::=   {
   ether2     0x809b,   -- [ 0.0.128.155 ]
      apple-oui  0x809b,
   802-1Q     0x809b    -- [ 0.0.128.155 ]
  }

rtmp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION

Bierman, et al. Informational [Page 52] RFC 2896 RMON PI Macros August 2000

     "AppleTalk Routing Table Maintenance Protocol."
  REFERENCE
     "Apple Computer"
  ::= {
   atalk   0x01,       -- responses
   atalk   0x05        -- requests
  }

aep PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "AppleTalk Echo Protocol."
  REFERENCE
     "Apple Computer"
  ::= { atalk 0x04 }

nbp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "AppleTalk Name Binding Protocol."
  DECODING
     "In order to correctly identify the application protocol running
     over atp NBP packets must be analyzed.  The mechanism by which
     this is achieved is beyond the scope of this document."
  REFERENCE
     "Apple Computer"
  ::= { atalk 0x02 }

zip PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "AppleTalk Zone Information Protocol."
  REFERENCE
     "Apple Computer"
  ::= {
   atalk   0x06,
   atp     3
  }

atp PROTOCOL-IDENTIFIER

  PARAMETERS {
   tracksSessions(1)
  }
  ATTRIBUTES {
   hasChildren(0)

Bierman, et al. Informational [Page 53] RFC 2896 RMON PI Macros August 2000

  }
  DESCRIPTION
     "AppleTalk Transaction Protocol."
  CHILDREN
     "Children of atp are identified by the following (32 bit)
     enumeration:
       1   asp (AppleTalk Session Protocol)
       2   pap (Printer Access Protocol)
       3   zip (Zone Information Protocol)
     Children of atp are encoded as [ a.b.c.d ] where 'a', 'b', 'c'
     and 'd' are the four octets of the enumerated value in network
     order (i.e. 'a' is the MSB and 'd' is the LSB).
     The ZIP protocol is referred to as 'atp zip' OR 'atp 3'."
  DECODING
     "An implementation is encouraged to examine both the socket
     fields in the associated DDP header as well as the contents of
     prior NBP packets in order to determine which (if any) child is
     present.  A full description of this algorithm is beyond the
     scope of this document.  The tracksSessions(1) PARAMETER
     indicates whether the probe can (and should) perform this
     analysis."
  REFERENCE
     "Apple Computer"
  ::= { atalk 0x03 }

adsp PROTOCOL-IDENTIFIER

  PARAMETERS {
   tracksSessions(1)
  }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
     "AppleTalk Data Stream Protocol."
  CHILDREN
     "Children of adsp are identified by enumeration.  At this time
     none are known."
  DECODING
     "An implementation is encouraged to examine the socket numbers in
     the associated DDP header as well as the contents of prior NBP
     packets in order to determine which (if any) child of ADSP is
     present.
     The mechanism by which this is achieved is beyond the scope of
     this document.
     The tracksSessions(1) PARAMETER indicates whether the probe can

Bierman, et al. Informational [Page 54] RFC 2896 RMON PI Macros August 2000

     (and should) perform this analysis."
  REFERENCE
     "Apple Computer"
  ::= { atalk 0x07 }

asp PROTOCOL-IDENTIFIER PARAMETERS { }

  ATTRIBUTES {
hasChildren(0)

}

  DESCRIPTION
     "AppleTalk Session Protocol."
  CHILDREN
     "Children of asp are identified by the following (32 bit)
     enumeration:
       1   afp (AppleTalk Filing Protocol)
     Children of asp are encoded as [ a.b.c.d ] where 'a', 'b', 'c'
     and 'd' are the four octets of the enumerated value in network
     order (i.e. 'a' is the MSB and 'd' is the LSB).
     The AFP protocol is referred to as 'asp afp' OR 'asp 1'."
  DECODING
     "ASP is a helper layer to assist in building client/server
     protocols.  It cooperates with ATP to achieve this; the
     mechanisms used when decoding ATP apply equally here (i.e.
     checking DDP socket numbers and tracking NBP packets).
     Hence the tracksSessions(1) PARAMETER of atp applies to this
     protocol also."
  REFERENCE
     "Apple Computer"
  ::= { atp 1 }

afp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
       "AppleTalk Filing Protocol."
  REFERENCE
     "Apple Computer"
  ::= { asp 1 }

pap PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "AppleTalk Printer Access Protocol."
  REFERENCE

Bierman, et al. Informational [Page 55] RFC 2896 RMON PI Macros August 2000

     "Apple Computer"
  ::= { atp 2 }

3.1.5. Banyon Vines Protocol Stack

vtr PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
     "Banyan Vines Token Ring Protocol Header."
  CHILDREN
     "Children of vines-tr are identified by the 8 bit packet type
     field.  Children are encoded as [ 0.0.0.a ] where 'a' is the
     packet type value.
     The vines-ip protocol is referred to as 'vines-tr vip' OR 'vines-
     tr 0xba'."
  REFERENCE
     "See vip."
  ::= {
   llc          0xBC,      -- declared as any LLC, but really TR only.
   802-1Q       0x020000BC   -- 1Q-LLC [2.0.0.188]
  }

vecho PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Banyan Vines data link level echo protocol."
  REFERENCE
     "See vip."
  ::= {
   ether2      0x0BAF,      -- [0.0.11.175]
   snap        0x0BAF,
   -- vfrp     0x0BAF,
   vtr         0xBB,        -- [ed. yuck!]
   802-1Q      0x0BAF       -- [0.0.11.175]
   }

vip PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0),
   addressRecognitionCapable(1)
  }
  DESCRIPTION

Bierman, et al. Informational [Page 56] RFC 2896 RMON PI Macros August 2000

     "Banyan Vines Internet Protocol."
  CHILDREN
     "Children of vip are selected by the one-byte 'protocol type'
     field located at offset 5 in the vip header.  The value is
     encoded as [ 0.0.0.a ], where a is the 'protocol type.'  For
     example, a protocolDirId fragment of:
        0.0.0.1.0.0.11.173.0.0.0.1
       identifies an encapsulation of vipc (ether2.vip.vipc)."
  ADDRESS-FORMAT
     "vip packets have 6-byte source and destination addresses.  The
     destination address is located at offset 6 in the vip header, and
     the source address at offset 12.  These are encoded in network
     byte order."
  REFERENCE
     "Vines Protocol Definition - part# 092093-001, order# 003673
       BANYAN,
       120 Flanders Road,
       Westboro, MA 01581 USA"
  ::= {
   ether2  0x0BAD,
   snap    0x0BAD,
   -- vfrp 0x0BAD,
   vtr     0xBA,        -- [ed. yuck!]
   802-1Q  0x0BAD       -- [0.0.11.173]
  }

varp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Banyan Vines Address Resolution Protocol."
  REFERENCE
     "BANYAN"
  ::= { vip 0x04 }

vipc PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
     "Banyan Vines Interprocess Communications Protocol."
  CHILDREN
     "Children of Vines IPC are identified by the packet type field at
     offset 4 in the vipc header.

Bierman, et al. Informational [Page 57] RFC 2896 RMON PI Macros August 2000

     These are encoded as [ 0.0.0.a ] where 'a' is the packet type
     value.  Children of vipc are defined as 'vipc a' where 'a' is the
     packet type value in hexadecimal notation.
     The Vines Reliable Data Transport protocol is referred to as
     'vipc vipc-rdp' OR 'vipc 0x01'."
  DECODING
     "Children of vipc are deemed to start at the first byte after the
     packet type field (i.e. at offset 5 in the vipc header)."
  REFERENCE
     "BANYAN"
  ::= { vip 0x01 }

– Banyan treats vipc, vipc-dgp and vipc-rdp as one protocol, IPC. – Vines IPC really comes in two flavours. The first is used to – send unreliable datagrams (vipc packet type 0x00). The second – used to send reliable datagrams (vipc packet type 0x01), – consisting of up to four actual packets. – In order to distinguish between these we need two 'virtual' – protocols to identify which is which.

vipc-dgp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0)
   }
  DESCRIPTION
     "Vines Unreliable Datagram Protocol."
  CHILDREN
     "Children of vipc-dgp are identified by the 16 bit port numbers
     contained in the vipc (this protocol's parent protocol) header.
     These are encoded as [ 0.0.a.b ] where 'a' is the MSB and 'b' is
     the MSB of the port number in network byte order.
     Children of vipc-dgp are defined as 'vipc-dgp a' where 'a' is the
     port number in hexadecimal notation.
     The StreetTalk protocol running over vipc-dgp would be referred
     to as 'vipc-dgp streettalk' OR 'vipc-dgp 0x000F'.
     The mechanism by which an implementation selects which of the
     source and destination ports to use in determining which child
     protocol is present is implementation specific and beyond the
     scope of this document."
  DECODING
     "Children of vipc-dgp are deemed to start after the single
     padding byte found in the vipc header.  In the case of vipc-dgp

Bierman, et al. Informational [Page 58] RFC 2896 RMON PI Macros August 2000

     the vipc header is a so called 'short' header, total length 6
     bytes (including the final padding byte)."
  REFERENCE
     "BANYAN"
  ::= { vipc 0x00 }

vipc-rdp PROTOCOL-IDENTIFIER

  PARAMETERS {
   countsFragments(0)
  }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
     "Vines Reliable Datagram Protocol."
  CHILDREN
     "Children of vipc-rdp are identified by the 16 bit port numbers
     contained in the vipc (this protocol's parent protocol) header.
     These are encoded as [ 0.0.a.b ] where 'a' is the MSB and 'b' is
     the MSB of the port number in network byte order.
     Children of vipc-dgp are defined as 'vipc-rdp a' where 'a' is the
     port number in hexadecimal notation.
     The StreetTalk protocol running over vipc-rdp would be referred
     to as 'vipc-rdp streettalk' OR 'vipc-rdp 0x000F'.
     The mechanism by which an implementation selects which of the
     source and destination ports to use in determining which child
     protocol is present is implementation specific and beyond the
     scope of this document."
  DECODING
     "Children of vipc-rdp are deemed to start after the error/length
     field at the end of the vipc header.  For vipc-rdp the vipc
     header is a so called 'long' header, total 16 bytes (including
     the final error/length field).
     vipc-rdp includes a high level fragmentation scheme which allows
     up to four vipc packets to be sent as a single atomic PDU.  The
     countsFragments(0) PARAMETERS bit indicates whether the probe can
     (and should) identify the child protocol in all fragments or only
     the leading one."
  REFERENCE
     "BANYAN"
  ::= { vipc 0x01 }

vspp PROTOCOL-IDENTIFIER

Bierman, et al. Informational [Page 59] RFC 2896 RMON PI Macros August 2000

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
       "Banyan Vines Sequenced Packet Protocol."
  CHILDREN
     "Children of vspp are identified by the 16 bit port numbers
     contained in the vspp header.
     These are encoded as [ 0.0.a.b ] where 'a' is the MSB and 'b' is
     the MSB of the port number in network byte order.
     Children of vspp are defined as 'vspp a' where 'a' is the port
     number in hexadecimal notation.
     The StreetTalk protocol running over vspp would be referred to as
     'vspp streettalk' OR 'vspp 0x000F'.
     The mechanism by which an implementation selects which of the
     source and destination ports to use in determining which child
     protocol is present is implementation specific and beyond the
     scope of this document."
  DECODING
     "The implementation must ensure only those vspp packets which
     contain application data are decoded and passed on to children.
     Although it is suggested that the packet type and control fields
     should be used to determine this fact it is beyond the scope of
     this document to fully define the algorithm used."
  REFERENCE
     "BANYAN"
  ::= { vip 0x02 }

vrtp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Banyan Vines Routing Update Protocol."
  REFERENCE
     "BANYAN"
  ::= { vip 0x05 }

vicp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Banyan Vines Internet Control Protocol."
  REFERENCE

Bierman, et al. Informational [Page 60] RFC 2896 RMON PI Macros August 2000

     "BANYAN"
  ::= { vip 0x06 }

3.1.6. The DECNet Protocol Stack

dec PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "DEC"
  REFERENCE
     "Digital Corporation"
  ::= {
   ether2 0x6000,
   802-1Q 0x6000      -- [0.0.96.0]
  }

lat PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "DEC Local Area Transport Protocol."
  REFERENCE
     "Digital Corporation"
  ::= {
   ether2 0x6004,
   802-1Q 0x6004      -- [0.0.96.4]
  }

mop PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "DEC Maintenance Operations Protocol."
  REFERENCE
     "Digital Corporation"
  ::= {
   ether2 0x6001,    -- mop dump/load
   ether2 0x6002,    -- mop remote console
   802-1Q 0x6001,    -- [0.0.96.1]  VLAN + mop dump/load
   802-1Q 0x6002     -- [0.0.96.2]  VLAN + mop remote console
  }

dec-diag PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "DEC Diagnostic Protocol."

Bierman, et al. Informational [Page 61] RFC 2896 RMON PI Macros August 2000

  REFERENCE
     "Digital Corporation"
  ::= {
   ether2 0x6005,
   802-1Q 0x6005     -- [0.0.96.5]
  }

lavc PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "DEC Local Area VAX Cluster Protocol."
  REFERENCE
     "Digital Corporation"
  ::= {
   ether2 0x6007,
   802-1Q 0x6007         -- [0.0.96.7]
  }

drp PROTOCOL-IDENTIFIER

  PARAMETERS {
   countsFragments(1)
  }
  ATTRIBUTES {
   hasChildren(0),
   addressRecognitionCapable(1)
  }
  DESCRIPTION
     "DEC Routing Protocol."
  CHILDREN
     "There is only one child of DRP, NSP.  This is encoded as [
     0.0.0.1 ]."
  ADDRESS-FORMAT
     "There are three address formats used in DRP packets, 2-byte
     (short data packet and all control except ethernet endnode &
     router hello messages), 6-byte (ethernet router & endnode hello
     messages) and 8-byte (long data packet).  All of these contain
     the 2-byte format address in the last 2 bytes with the remaining
     bytes being unimportant for the purposes of system
     identification.  It is beyond the scope of this document to
     define the algorithms used to identify packet types and hence
     address formats.
     The 2-byte address format is the concatenation of a 6-bit area
     and a 10-bit node number.  In all cases this is placed in little
     endian format (i.e. LSB, MSB).  The probe, however, will return
     them in network order (MSB, LSB).  Regardless of the address

Bierman, et al. Informational [Page 62] RFC 2896 RMON PI Macros August 2000

     format in the packet, the probe will always use the 2-byte
     format.
     For example area=13 (001101) and node=311 (0100110111) gives:
       0011 0101 0011 0111 = 0x3537 in network order (the order the
       probe should return the address in).
       In packets this same value would appear as (hex):
        2-byte  37 35
        6-byte  AA 00 04 00 37 35
        8-byte  00 00 AA 00 04 00 37 35
     Notice that the AA 00 04 00 prefix is defined in the
     specification but is unimportant and should not be parsed.
     Notice that control messages only have a source address in the
     header and so they can never be added into the conversation based
     tables."
  DECODING
     "NSP runs over DRP data packets; all other packet types are DRP
     control packets of one sort or another and do not carry any
     higher layer protocol.
     NSP packets are deemed to start at the beginning of the DRP data
     area.
     Data packets may be fragmented over multiple DRP data packets.
     The countsFragments(1) parameter indicates whether a probe can
     (and should) attribute non-leading fragments to the child
     protocol (above NSP in this case) or not.
     Recognition of DRP data packets and fragments is beyond the scope
     of this document."
  REFERENCE
     "DECnet Digital Network Architecture
       Phase IV
       Routing Layer Functional Specification
       Order# AA-X435A-TK
       Digital Equipment Corporation, Maynard, Massachusetts, USA"
  ::= {
   ether2  0x6003,
   snap    0x6003,
   802-1Q  0x6003     -- [0.0.96.3]
  }

nsp PROTOCOL-IDENTIFIER

  PARAMETERS {

Bierman, et al. Informational [Page 63] RFC 2896 RMON PI Macros August 2000

   tracksSessions(1)
  }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
     "DEC Network Services Protocol."
  CHILDREN
     "Children of NSP are identified by the SCP 8-bit object type.
     Notice that the object type is included only in the session
     establishment messages (connect initiate, retransmitted connect
     initiate).
     Children of NSP are encoded [ 0.0.0.a ] where 'a' is the SCP
     object type.  Children of NSP are named as 'nsp' followed by the
     SCP object type in decimal.  CTERM is referred to as 'nsp cterm'
     OR 'nsp 42'."
  DECODING
     "An implementation is encouraged to examine SCP headers included
     in NSP control messages in order to determine which child
     protocol is present over a given session.  It is beyond the scope
     of this document to define the algorithm used to do this.
     The tracksSessions(1) flag indicates whether the probe can (and
     should) perform this analysis."
  REFERENCE
     "DECnet Digital Network Architecture
       Phase IV
       NSP Functional Specification
       Order# AA-X439A-TK
       Digital Equipment Corporation, Maynard, Massachusetts, USA"
  ::= { drp 1 }

dap-v1 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "DEC Data Access Protocol version 1."
  REFERENCE
     "Digital Corporation"
  ::= { nsp 1 }

dap-v4 PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "DEC Data Access Protocol versions 4 and above."
  REFERENCE

Bierman, et al. Informational [Page 64] RFC 2896 RMON PI Macros August 2000

     "Digital Corporation"
  ::= { nsp 17 }

nice PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "DEC Network Information and Control Exchange protocol."
  REFERENCE
     "Digital Corporation"
  ::= { nsp 19 }

dec-loop PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "DEC Loopback Protocol."
  REFERENCE
     "Digital Corporation"
  ::= { nsp 25 }

dec-event PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "DEC Event Protocol."
  REFERENCE
     "Digital Corporation"
  ::= { nsp 26 }

cterm PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "DEC CTERM Protocol."
  REFERENCE
     "Digital Corporation"
  ::= { nsp 42 }

3.1.7. The IBM SNA Protocol Stack.

sna-th PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "IBM's SNA TH protocol."
  REFERENCE
     "IBM Systems Network Architecture

Bierman, et al. Informational [Page 65] RFC 2896 RMON PI Macros August 2000

       Format and Protocol
       Reference Manual: Architectural Logic
       SC30-3112-2
       IBM System Communications Division,
       Publications Development,
       Department E02,
       PO Box 12195,
       Research Triangle Park,
       North Carolina 27709."
  ::= {
   llc        0x04,              -- [0.0.0.4]
   llc        0x08,              -- [0.0.0.8]
   llc        0x0c,              -- [0.0.0.12]
      ether2     0x80d5,            -- [0.0.128.213]
   802-1Q     0x02000004,        -- 1Q-LLC [2.0.0.4]
   802-1Q     0x02000008,        -- 1Q-LLC [2.0.0.8]
   802-1Q     0x0200000c,        -- 1Q-LLC [2.0.0.12]
      802-1Q     0x80d5             -- [0.0.128.213]
  }

3.1.8. The NetBEUI/NetBIOS Family

– CHILDREN OF NETBIOS – The NetBIOS/NetBEUI functions are implemented over a wide variety of – transports. Despite varying implementations they all share two – features. First, all sessions are established by connecting to – locally named services. Second, all sessions transport application – data between the client and the named service. In all cases the – identification of the application protocol carried within the data – packets is beyond the scope of this document.] – – Children of NetBIOS/NetBEUI are identified by the following (32 bit) – enumeration – – 1 smb (Microsoft's Server Message Block Protocol) – 2 notes (Lotus' Notes Protocol) – 3 cc-mail (Lotus' CC Mail Protocol) – – Children of NetBIOS/NetBEUI are encoded as [ a.b.c.d ] where 'a', 'b', – 'c' and 'd' are the four octets of the enumerated value in network – order (i.e. 'a' is the MSB and 'd' is the LSB). – – For example notes over NetBEUI is declared as – 'notes ::= { netbeui 2 }' – but is referred to as – 'netbeui notes' OR 'netbeui 2'.

Bierman, et al. Informational [Page 66] RFC 2896 RMON PI Macros August 2000

netbeui PROTOCOL-IDENTIFIER

  PARAMETERS {
   tracksSessions(1)
  }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
     "Lan Manager NetBEUI protocol."
  CHILDREN
     "See `CHILDREN OF NETBIOS`"
  DECODING
     "NETBEUI provides a named service lookup function.  This function
     allows clients to locate a service by (locally assigned) name.
     An implementation is encouraged to follow lookups and session
     establishments and having determined the child protocol, track
     them.
     How the child protocol is determined and how the sessions are
     tracked is an implementation specific matter and is beyond the
     scope of this document."
  REFERENCE
     "IBM"
  ::= {
   llc        0xF0,          --  [0.0.0.240]
   802-1Q     0x020000F0     --  1Q-LLC [2.0.0.240]
  }

nbt-name PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "NetBIOS-over-TCP name protocol."
  REFERENCE
     "RFC 1001 [RFC1001] defines the 'PROTOCOL STANDARD FOR A NetBIOS
     SERVICE ON A TCP/UDP TRANSPORT: CONCEPTS AND METHODS.'  RFC 1002
     [RFC1002] defines the 'PROTOCOL STANDARD FOR A NetBIOS SERVICE ON
     A TCP/UDP TRANSPORT: DETAILED SPECIFICATIONS'."
  ::= {
   udp     137,
   tcp     137
  }

nbt-session PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION

Bierman, et al. Informational [Page 67] RFC 2896 RMON PI Macros August 2000

     "NetBIOS-over-TCP session protocol."
  REFERENCE
     "RFC 1001 [RFC1001] defines the 'PROTOCOL STANDARD FOR A NetBIOS
     SERVICE ON A TCP/UDP TRANSPORT: CONCEPTS AND METHODS.'  RFC 1002
     [RFC1002] defines the 'PROTOCOL STANDARD FOR A NetBIOS SERVICE ON
     A TCP/UDP TRANSPORT: DETAILED SPECIFICATIONS'."
  ::= {
   udp     139,
   tcp     139
  }

nbt-data PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
     "NetBIOS-over-TCP datagram protocol."
  CHILDREN
     "See `CHILDREN OF NETBIOS`"
  REFERENCE
     "RFC 1001 [RFC1001] defines the 'PROTOCOL STANDARD FOR A NetBIOS
     SERVICE ON A TCP/UDP TRANSPORT: CONCEPTS AND METHODS.'  RFC 1002
     [RFC1002] defines the 'PROTOCOL STANDARD FOR A NetBIOS SERVICE ON
     A TCP/UDP TRANSPORT: DETAILED SPECIFICATIONS'."
  ::= {
   udp     138,
   tcp     138
  }

netbios-3com PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
     "3COM NetBIOS protocol."
  CHILDREN
     "See `CHILDREN OF NETBIOS`"
  REFERENCE
     "3Com Corporation"
  ::= {
   ether2  0x3C00,
   ether2  0x3C01,
   ether2  0x3C02,
   ether2  0x3C03,
   ether2  0x3C04,

Bierman, et al. Informational [Page 68] RFC 2896 RMON PI Macros August 2000

   ether2  0x3C05,
   ether2  0x3C06,
   ether2  0x3C07,
   ether2  0x3C08,
   ether2  0x3C09,
   ether2  0x3C0A,
   ether2  0x3C0B,
   ether2  0x3C0C,
   ether2  0x3C0D,
   802-1Q  0x3C00,
   802-1Q  0x3C01,
   802-1Q  0x3C02,
   802-1Q  0x3C03,
   802-1Q  0x3C04,
   802-1Q  0x3C05,
   802-1Q  0x3C06,
   802-1Q  0x3C07,
   802-1Q  0x3C08,
   802-1Q  0x3C09,
   802-1Q  0x3C0A,
   802-1Q  0x3C0B,
   802-1Q  0x3C0C,
   802-1Q  0x3C0D
  }

nov-netbios PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES {
   hasChildren(0)
  }
  DESCRIPTION
     "Novell's version of the NetBIOS protocol."
  CHILDREN
     "See `CHILDREN OF NETBIOS`"
  REFERENCE
     "Novell Corporation"
  ::= {
   nov-sap 0x0020,  -- preferred encapsulation to use, even though
                    -- the following are typically used also
   -- ipx  0x14,       -- when reached by IPX packet type
   -- nov-pep 0x0455   -- when reached by socket number
  }

burst PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Novell burst-mode transfer"

Bierman, et al. Informational [Page 69] RFC 2896 RMON PI Macros August 2000

  REFERENCE
     "Novell Corporation"
  ::= { nov-pep 0x0d05 }

3.2. Multi-stack protocols

smb PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Microsoft Server Message Block Protocol."
  REFERENCE
     "Microsoft Corporation"
  ::= {
      netbeui         1,
      netbios-3com    1,
      nov-netbios     1,
      nbt-data        1,
      nbt-session     1,
      nov-pep         0x550,
      nov-pep         0x552
  }

notes PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Lotus Notes Protocol."
  REFERENCE
     "Lotus Development"
  ::= {
   netbeui         2,
   netbios-3com    2,
   nov-netbios     2,
   nbt-data        2,
   tcp             1352,
   udp             1352,
      nov-sap         0x039b
  }

ccmail PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Lotus CC-mail Protocol."
  REFERENCE

Bierman, et al. Informational [Page 70] RFC 2896 RMON PI Macros August 2000

     "Lotus Development"
  ::= {
   netbeui         3,
   netbios-3com    3,
   nov-netbios     3,
   nbt-data        3,
   tcp             3264,
   udp             3264
  }

snmp PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Simple Network Management Protocol. Includes SNMPv1 and SNMPv2
     protocol versions. Does not include SNMP trap packets."
  REFERENCE
     "The SNMP SMI is defined in RFC 1902 [RFC1902].  Version 1 of the
     SNMP  protocol is defined in RFC 1905 [RFC1905].  Transport
     mappings are defined in RFC 1906 [RFC1906]; RFC 1420 (SNMP over
     IPX) [RFC1420]; RFC 1419 (SNMP over AppleTalk) [RFC1419]."
  ::= {
   udp 161,
      nov-pep 0x900f,   -- [ 0.0.144.15 ]
   atalk 8,
   tcp 161
  }

snmptrap PROTOCOL-IDENTIFIER

  PARAMETERS { }
  ATTRIBUTES { }
  DESCRIPTION
     "Simple Network Management Protocol Trap Port."
  REFERENCE
     "The SNMP SMI is defined in RFC 1902 [RFC1902].  The SNMP
     protocol is defined in RFC 1905 [RFC1905].  Transport mappings
     are defined in RFC 1906 [RFC1906]; RFC 1420 (SNMP over IPX)
     [RFC1420]; RFC 1419 (SNMP over AppleTalk) [RFC1419]."
  ::= {
   udp 162,
      nov-pep 0x9010,
   atalk 9,
   tcp 162
  }

– END

Bierman, et al. Informational [Page 71] RFC 2896 RMON PI Macros August 2000

4. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights.  Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11.  Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat."
 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard.  Please address the information to the IETF Executive
 Director.

5. Acknowledgements

 This document was produced by the IETF RMONMIB Working Group.
 The authors wish to thank the following people for their
 contributions to this document:
      Anil Singhal
      Frontier Software Development, Inc.
      Jeanne Haney
      Bay Networks
      Dan Hansen
      Network General Corp.
 Special thanks are in order to the following people for writing RMON
 PI macro compilers, and improving the specification of the PI macro
 language:
      David Perkins
      DeskTalk Systems, Inc.
      Skip Koppenhaver
      Technically Elite, Inc.

Bierman, et al. Informational [Page 72] RFC 2896 RMON PI Macros August 2000

6. References

 [IEN158]   J. Haverty, "XNET Formats for Internet Protocol Version
            4", IEN 158, October 1980.
 [RFC407]   Bressler, R., Guida. R. and A. McKenzie, "Remote Job Entry
            Protocol", RFC 407, October 1972.
 [RFC493]   Michener, J., Cotton, I., Kelley, K., Liddle, D. and E.
            Meyer, "E.W., Jr  Graphics Protocol", RFC 493, April 1973.
 [RFC734]   Crispin, M., "SUPDUP Protocol", RFC 734, October 1977.
 [RFC740]   Braden, R., "NETRJS Protocol", RFC 740, November 1977.
 [RFC741]   Cohen, D., "Specifications for the Network Voice
            Protocol", RFC 741, ISI/RR 7539, March 1976.
 [RFC759]   Postel, J., "Internet Message Protocol", RFC 759, August
            1980.
 [RFC768]   Postel, J., "User Datagram Protocol", STD 6, RFC 768,
            August 1980.
 [RFC791]   Postel, J., "Internet Protocol - DARPA Internet Program
            Protocol Specification", STD 5, RFC 791, September 1981.
 [RFC792]   Postel, J., "Internet Control Message Protocol - DARPA
            Internet Program Protocol Specification", STD 5, RFC 792,
            September 1981.
 [RFC793]   Postel, J., "Transmission Control Protocol - DARPA
            Internet Program Protocol Specification", STD 5, RFC 793,
            September 1981.
 [RFC818]   Postel, J., "Remote User Telnet service", RFC 818,
            November 1982.
 [RFC821]   Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC
            821, August 1982.
 [RFC823]   Hinden, R. and A. Sheltzer, "The DARPA Internet Gateway",
            RFC 823, September 1982.
 [RFC826]   Plummer, D., "An Ethernet Address Resolution Protocol or
            Converting Network Protocol Addresses to 48-bit Ethernet
            Addresses for Transmission on Ethernet Hardware", STD 37,
            RFC 826, November 1982.

Bierman, et al. Informational [Page 73] RFC 2896 RMON PI Macros August 2000

 [RFC854]   Postel, J. and J. Reynolds, "Telnet Protocol
            Specification", STD 8, RFC 854, May 1983.
 [RFC862]   Postel, J., "Echo Protocol", STD 20, RFC 862, May 1983.
 [RFC863]   Postel, J., "Discard Protocol", STD 21, RFC 863, May 1983.
 [RFC864]   Postel, J., "Character Generator Protocol", STD 22, RFC
            864, May 1983.
 [RFC865]   Postel, J., "Quote of the Day Protocol", STD 23, RFC 865,
            May 1983.
 [RFC866]   Postel, J., "Active Users", STD 26, RFC 866, May 1983.
 [RFC867]   Postel, J., "Daytime Protocol", STD 25, RFC 867, May 1983.
 [RFC868]   Postel, J., "Time Protocol", STD 26, RFC 868, May 1983.
 [RFC869]   Hinden, R., "A Host Monitoring Protocol", RFC 869,
            December 1983.
 [RFC887]   Accetta, M., "Resource Location Protocol", RFC 887,
            December 1983.
 [RFC904]   International Telegraph and Telephone Co., D. Mills,
            "Exterior Gateway Protocol Formal Specification", STD 18,
            RFC 904, April 1984.
 [RFC905]   McKenzie, A., "ISO Transport Protocol Specification - ISO
            DP 8073", RFC 905, April 1984.
 [RFC908]   Velten, D., Hinden, R., and J. Sax, "Reliable Data
            Protocol", RFC 908, July 1984.
 [RFC913]   Lottor, M., "Simple File Transfer Protocol", RFC 913,
            September 1984.
 [RFC915]   Elvy, M. and R. Nedved, "Network mail path service", RFC
            915, December 1984.
 [RFC937]   Butler, M., Chase, D., Goldberger, J., Postel, J., and J.
            Reynolds, "Post Office Protocol - version 2", RFC 937,
            February 1985.
 [RFC938]   Miller, T., "Internet Reliable Transaction Protocol", RFC
            938, February 1985.

Bierman, et al. Informational [Page 74] RFC 2896 RMON PI Macros August 2000

 [RFC951]   Croft, W. and J. Gilmore, "BOOTSTRAP Protocol (BOOTP)",
            RFC 951, September 1985.
 [RFC953]   Feinler, E., Harrenstien, K. and M. Stahl, "Hostname
            Server", RFC 953, October 1985.
 [RFC954]   Feinler, E., Harrenstien, K. and M. Stahl,
            "NICNAME/WHOIS", RFC 954, October 1985.
 [RFC959]   Postel, J., and J. Reynolds, "File Transfer Protocol", STD
            9, RFC 959, October 1985.
 [RFC972]   Wancho, F., "Password Generator Protocol", RFC 972,
            January 1986.
 [RFC977]   Kantor, B. and P. Lapsley, "Network News Transfer
            Protocol: A Proposed Standard for the Stream-Based
            Transmission of News", RFC 977, February 1986.
 [RFC996]   Mills, D., "Statistics server", RFC 996, February 1987.
 [RFC998]   Clark, D., Lambert, M. and L. Zhang, "NETBLT: A Bulk Data
            Transfer Protocol", RFC 998, March 1987.
 [RFC1001]  NetBIOS Working Group in the Defense Advanced Research
            Projects Agency, Internet Activities Board, End-to-End
            Services Task Force.  "Protocol standard for a NetBIOS
            service on a TCP/UDP transport:  Concepts and methods",
            STD 19, RFC 1001, March 1987.
 [RFC1002]  NetBIOS Working Group in the Defense Advanced Research
            Projects Agency, Internet Activities Board, End-to-End
            Services Task Force.  "Protocol standard for a NetBIOS
            service on a TCP/UDP transport:  Detailed
            specifications.", STD 19,  RFC 1002, March 1987.
 [RFC1021]  Partridge, C. and G. Trewitt, "High-level Entity
            Management System HEMS", RFC 1021, October 1987.
 [RFC1028]  Case, J., Davin, J., Fedor, M. and M. Schoffstall, "Simple
            Gateway Monitoring Protocol", RFC 1028, November 1987.
 [RFC1035]  Mockapetris, P., "Domain Names - Implementation and
            Specification", STD 13, RFC 1035, November 1987.
 [RFC1056]  Lambert, M., "PCMAIL: A distributed mail system for
            personal computers", RFC 1056, June 1988.

Bierman, et al. Informational [Page 75] RFC 2896 RMON PI Macros August 2000

 [RFC1057]  Sun Microsystems, Inc, "RPC: Remote Procedure Call
            Protocol Specification version 2", RFC 1057, June 1988.
 [RFC1064]  Crispin, M., "Interactive Mail Access Protocol: Version
            2", RFC 1064, July 1988.
 [RFC1068]  DeSchon, A. and R. Braden, "Background File Transfer
            Program BFTP", RFC 1068, August 1988.
 [RFC1070]  Hagens, R., Hall, N. and M. Rose, "Use of the Internet as
            a subnetwork for experimentation with the OSI network
            layer", RFC 1070, February 1989.
 [RFC1078]  Lottor, M., "TCP port service Multiplexer  TCPMUX", RFC
            1078, November, 1988.
 [RFC1086]  Onions, J. and M. Rose, "ISO-TP0 bridge between TCP and
            X.25", RFC 1086, December 1988.
 [RFC1095]  Warrier, U. and L. Besaw, "Common Management Information
            Services and Protocol over TCP/IP (CMOT)", RFC 1095, April
            1989.
 [RFC1112]  Deering, S., "Host Extensions for IP Multicasting", STD 5,
            RFC 1112, August 1989.
 [RFC1155]  Rose, M. and K. McCloghrie, "Structure and Identification
            of Management Information for TCP/IP-based Internets", STD
            16, RFC 1155, May 1990.
 [RFC1157]  Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
            Network Management Protocol", STD 15, RFC 1157, May 1990.
 [RFC1203]  Rice, J., "Interactive Mail Access Protocol - Version 3",
            RFC 1203, February 1991.
 [RFC1204]  Lee, D. and S. Yeh, "Message Posting Protocol (MPP)", RFC
            1204, February 1991.
 [RFC1212]  Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD
            16, RFC 1212, March 1991.
 [RFC1213]  McCloghrie, K. and M. Rose, "Management Information Base
            for Network Management of TCP/IP-based internets: MIB-II",
            STD 17, RFC 1213, March 1991.
 [RFC1215]  Rose, M., "A Convention for Defining Traps for use with
            the SNMP", RFC 1215, March 1991.

Bierman, et al. Informational [Page 76] RFC 2896 RMON PI Macros August 2000

 [RFC1226]  Kantor, B., "Internet Protocol Encapsulation of AX.25
            Frames", RFC 1226, May 1991.
 [RFC1227]  Rose, M., "SNMP MUX Protocol and MIB", RFC 1227, May 1991.
 [RFC1234]  Provan, D., "Tunneling IPX Traffic through IP Networks",
            RFC 1234, June 1991.
 [RFC1235]  Ioannidis, J. and G. Maguire, Jr., "The Coherent File
            Distribution Protocol", RFC 1235, June 1991.
 [RFC1241]  Mills, D. and R. Woodburn, "A Scheme for an Internet
            Encapsulation Protocol: Version 1", RFC 1241, July 1991.
 [RFC1249]  Howes, T., Smith, M. and B. Beecher, "DIXIE Protocol
            Specification", RFC 1249, August 1991.
 [RFC1267]  Lougheed, K. and Y. Rekhter, "A Border Gateway Protocol 3
            (BGP-3)", RFC 1267, October 1991.
 [RFC1282]  Kantor, B., "BSD Rlogin", RFC 1282, December 1991.
 [RFC1288]  Zimmerman, D., "The Finger User Information Protocol", RFC
            1288, December 1991.
 [RFC1301]  Amstrong, S., Freier, A. and K. Marzullo, "Multicast
            Transport Protocol", RFC 1301, February 1992.
 [RFC1305]  Mills, D., "Network Time Protocol (v3)", RFC 1305, April
            1992.
 [RFC1312]  Nelson, R. and G. Arnold, "Message Send Protocol", RFC
            1312, April 1992.
 [RFC1339]  Dorner, S. and P. Resnick, "Remote Mail Checking
            Protocol", RFC 1339, June 1992.
 [RFC1350]  Sollins, K., "TFTP Protocol (revision 2)", RFC 1350, July
            1992.
 [RFC1413]  St. Johns, M., "Identification Protocol", RFC 1413,
            February 1993.
 [RFC1419]  Minshall, G. and M. Ritter, "SNMP over AppleTalk", RFC
            1419, March 1993.
 [RFC1420]  Bostock, S., "SNMP over IPX", RFC 1420, March 1993.

Bierman, et al. Informational [Page 77] RFC 2896 RMON PI Macros August 2000

 [RFC1436]  Anklesaria, F., McCahill, M., Lindner, P., Johnson, D.,
            John, D., Torrey, D. and B. Alberti, "The Internet Gopher
            Protocol (a distributed  document search and retrieval
            protocol)", RFC 1436, March 1993.
 [RFC1459]  Oikarinen, J. and D. Reed, "Internet Relay Chat Protocol",
            RFC 1459, May 1993.
 [RFC1476]  Ullmann, R., "RAP: Internet Route Access Protocol", RFC
            1476, June 1993.
 [RFC1479]  Steenstrup, M., "Inter-Domain Policy Routing Protocol
            Specification:  Version 1", RFC 1479, July 1993.
 [RFC1483]  Heinanen, J., "Multiprotocol Encapsulation over ATM
            Adaptation Layer 5", RFC 1483, July 1993.
 [RFC1492]  Finseth, C., "An Access Control Protocol, Sometimes Called
            TACACS", RFC 1492, July 1993.
 [RFC1510]  Kohl, J. and B. Neuman, "The Kerberos Network
            Authentication Service (V5)", RFC 1510, September 1993.
 [RFC1583]  Moy, J., "OSPF Version 2", RFC 1583, March 1994.
 [RFC1700]  Reynolds, J. and J. Postel, "Assigned Numbers", STD 2, RFC
            1700, October 1994.
 [RFC1701]  Hanks, S., Li, T., Farinacci, D. and P. Traina, "Generic
            Routing Encapsulation (GRE)", RFC 1701, October 1994.
 [RFC1702]  Hanks, S., Li, T., Farinacci, D. and P. Traina, "Generic
            Routing Encapsulation over IPv4 networks", RFC 1702,
            October 1994.
 [RFC1725]  Myers, J. and M. Rose, "Post Office Protocol - Version 3",
            RFC 1725, November 1994.
 [RFC1729]  Lynch, C., "Using the Z39.50 Information Retrieval
            Protocol in the Internet Environment", RFC 1729, December
            1994.
 [RFC1730]  Crispin, M., "Internet Message Access Protocol - Version
            4", RFC 1730, December 1994.
 [RFC1739]  Kessler, G. and S. Shepard, "A Primer On Internet and
            TCP/IP Tools", RFC 1739, December 1994.

Bierman, et al. Informational [Page 78] RFC 2896 RMON PI Macros August 2000

 [RFC1745]  Varadhan, K., Hares, S. and Y. Rekhter, "BGP4/IDRP for
            IP---OSPF Interaction", RFC 1745, December 1994.
 [RFC1757]  Waldbusser, S., "Remote Network Monitoring MIB", RFC 1757,
            February 1995.
 [RFC1777]  Yeong, W., Howes, T. and S. Kille, "Lightweight Directory
            Access Protocol", RFC 1777, March 1995.
 [RFC1782]  Malkin, G. and A. Harkin, "TFTP Option Extension", RFC
            1782, March 1995.
 [RFC1783]  Malkin, G. and A. Harkin, "TFTP BlockOption Option", RFC
            1783, March 1995.
 [RFC1784]  Malkin, G. and A. Harkin, "TFTP Timeout Interval and
            Transfer Size Options", RFC 1784, March 1995.
 [RFC1798]  Young, A., "Connection-less Lightweight Directory Access
            Protocol", RFC 1798, June 1995.
 [RFC1813]  Callaghan, B., Pawlowski, B. and P. Staubach, "NFS Version
            3 Protocol Specification", RFC 1813, June 1995.
 [RFC1819]  Delgrossi, L. and L. Berger, "Internet Stream Protocol
            Version 2 (ST2)", RFC 1819, August 1995.
 [RFC1831]  Srinivasan, R., "Remote Procedure Call Protocol Version
            2", RFC 1831, August 1995.
 [RFC1853]  Simpson, W., "IP in IP Tunneling", RFC 1853, October 1995.
 [RFC1901]  Case, J., McCloghrie, K., Rose, M. and S.  Waldbusser,
            "Introduction to Community-based SNMPv2", RFC 1901,
            January 1996.
 [RFC1902]  Case, J., McCloghrie, K., Rose, M. and S.  Waldbusser,
            "Structure of Management Information for version 2 of the
            Simple Network Management Protocol (SNMPv2)", RFC 1902,
            January 1996.
 [RFC1903]  Case, J., McCloghrie, K., Rose, M. and S.  Waldbusser,
            "Textual Conventions for version 2 of the Simple Network
            Management Protocol (SNMPv2)", RFC 1903, January 1996.

Bierman, et al. Informational [Page 79] RFC 2896 RMON PI Macros August 2000

 [RFC1904]  Case, J., McCloghrie, K., Rose, M. and S.  Waldbusser,
            "Conformance Statements for version 2 of the Simple
            Network Management Protocol (SNMPv2)", RFC 1904, January
            1996.
 [RFC1905]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
            "Protocol Operations for Version 2 of the Simple Network
            Management Protocol (SNMPv2)", RFC 1905, January 1996.
 [RFC1906]  Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
            "Transport Mappings for Version 2 of the Simple Network
            Management Protocol (SNMPv2)", RFC 1906, January 1996.
 [RFC1940]  Estrin, D., Li, T., Rekhter, Y., Varadhan, K. and D.
            Zappala, "Source Demand Routing: Packet Format and
            Forwarding Specification (Version 1)", RFC 1940, May 1996.
 [RFC1945]  Berners-Lee, T. and R. Fielding, "Hypertext Transfer
            Protocol -- HTTP/1.0", RFC 1945, November 1995.
 [RFC2002]  Perkins, C., "IP Mobility Support", RFC 2002, October
            1996.
 [RFC2003]  Perkins, C., "IP Encapsulation within IP", RFC 2003,
            October 1996.
 [RFC2021]  Waldbusser, S., "Remote Network Monitoring MIB (RMON-2)",
            RFC 2021, January 1997.
 [RFC2037]  McCloghrie, K. and A. Bierman, "Entity MIB using SMIv2",
            RFC 2037, October 1996.
 [RFC2068]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H. and T.
            Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",
            RFC 2068, January 1997.
 [RFC2069]  Franks, J., Hallam-Baker, P., Hostetler, J., Luotonen, P.
            A. and E. L. Stewart, "An Extension to HTTP: Digest Access
            Authentication", RFC 2069, January 1997.
 [RFC2074]  Bierman, A. and R. Iddon, "Remote Network Monitoring MIB
            Protocol Identifiers", RFC 2074, January 1997.
 [RFC2109]  Kristol, D. and L. Montulli, "HTTP State Management
            Mechanism", RFC 2109, February 1997.

Bierman, et al. Informational [Page 80] RFC 2896 RMON PI Macros August 2000

 [RFC2138]  Rigney, C., Rubens, A., Simpson, W. and W. Willens,
            "Remote Authentication Dial In User Service (RADIUS)", RFC
            2138, April 1997.
 [RFC2139]  Rigney, C., "RADIUS Accounting", RFC 2139, April 1997.
 [RFC2145]  Mogul, J., Fielding, R., Gettys, J. and H. Frystyk, "Use
            and interpretation of HTTP version numbers", RFC 2145, May
            1997.
 [RFC2205]  Braden, R., Zhang, L., Berson, S., Herzog, S. and S.
            Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
            Functional Specification", RFC 2205, September, 1997.
 [RFC2233]  McCloghrie, K. and F. Kastenholz, "The Interfaces Group
            MIB Using SMIv2", RFC 2233, November, 1997.
 [RFC2271]  Harrington, D., Presuhn, R. and B. Wijnen, "An
            Architecture for Describing SNMP Management Frameworks",
            RFC 2271, January 1998.
 [RFC2272]  Case, J., Harrington D., Presuhn R. and B. Wijnen,
            "Message Processing and Dispatching for the Simple Network
            Management Protocol (SNMP)", RFC 2272, January 1998.
 [RFC2273]  Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications",
            RFC 2273, January 1998.
 [RFC2274]  Blumenthal, U. and B. Wijnen, "User-based Security Model
            (USM) for version 3 of the Simple Network Management
            Protocol (SNMPv3)", RFC 2274, January 1998.
 [RFC2275]  Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
            Access Control Model (VACM) for the Simple Network
            Management Protocol (SNMP)", RFC 2275, January 1998.
 [RFC2332]  Luciani, J., Katz, D., Piscitello, D., Cole, B. and N.
            Doraswamy, "NBMA Next Hop Resolution Protocol (NHRP)", RFC
            2332, April 1998.
 [RFC2408]  Maughan, D., Schertler, M., Schneider, M. and J. Turner,
            RFC 2408, November 1998.
 [RFC2570]  Case, J., Mundy, R., Partain, D. and B. Stewart,
            "Introduction to Version 3 of the Internet-standard
            Network Management Framework", RFC 2570, April 1999.

Bierman, et al. Informational [Page 81] RFC 2896 RMON PI Macros August 2000

 [RFC2571]  Harrington, D., Presuhn, R. and B. Wijnen, "An
            Architecture for Describing SNMP Management Frameworks",
            RFC 2571, April 1999.
 [RFC2572]  Case, J., Harrington D., Presuhn R. and B. Wijnen,
            "Message Processing and Dispatching for the Simple Network
            Management Protocol (SNMP)", RFC 2572, April 1999.
 [RFC2573]  Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications",
            RFC 2573, April 1999.
 [RFC2574]  Blumenthal, U. and B. Wijnen, "User-based Security Model
            (USM) for version 3 of the Simple Network Management
            Protocol (SNMPv3)", RFC 2574, April 1999.
 [RFC2575]  Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
            Access Control Model (VACM) for the Simple Network
            Management Protocol (SNMP)", RFC 2575, April 1999.
 [RFC2578]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
            Rose, M. and S. Waldbusser, "Structure of Management
            Information Version 2 (SMIv2)", STD 58, RFC 2578, April
            1999.
 [RFC2579]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
            Rose, M. and S. Waldbusser, "Textual Conventions for
            SMIv2", STD 58, RFC 2579, April 1999.
 [RFC2580]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
            Rose, M. and S. Waldbusser, "Conformance Statements for
            SMIv2", STD 58, RFC 2580, April 1999.
 [RFC2600] Reynolds, J. and R. Braden, "Internet Official Protocol
            Standards", STD 1, RFC 2600, March 2000.
 [RFC2895]  Bierman, A., Bucci, C. and R. Iddon, "RMON Protocol
            Identifier Reference", RFC 2895, August 2000.

7. Security Considerations

 This document contains textual descriptions of well-known networking
 protocols, not the definition of any networking behavior.  As such,
 no security considerations are raised by its publication.

Bierman, et al. Informational [Page 82] RFC 2896 RMON PI Macros August 2000

8. Authors' Addresses

 Andy Bierman
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA USA 95134
 Phone: +1 408-527-3711
 EMail: abierman@cisco.com
 Chris Bucci
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA USA 95134
 Phone: +1 408-527-5337
 EMail: cbucci@cisco.com
 Robin Iddon
 c/o 3Com Inc.
 Blackfriars House
 40/50 Blackfrias Street
 Edinburgh, EH1 1NE, UK
 Phone: +44 131.558.3888
 EMail: None

Bierman, et al. Informational [Page 83] RFC 2896 RMON PI Macros August 2000

9. Full Copyright Statement

 Copyright (C) The Internet Society (2000).  All Rights Reserved.
 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works.  However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.
 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.
 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Bierman, et al. Informational [Page 84]

/data/webs/external/dokuwiki/data/pages/rfc/rfc2896.txt · Last modified: 2000/08/31 15:51 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki