GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc2604

Network Working Group R. Gellens Request for Comments: 2604 Qualcomm Category: Informational June 1999

        Wireless Device Configuration (OTASP/OTAPA) via ACAP

Status of this Memo

 This memo provides information for the Internet community.  It does
 not specify an Internet standard of any kind.  Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999).  All Rights Reserved.

Abstract

 Wireless carriers today are faced with creating more efficient
 distribution channels, increasing customer satisfaction, while also
 improving margin and profitability.  Industry trends are pushing the
 sale of handsets further into the retail channel.  The cost and
 effort of provisioning handsets, activating users, and updating
 handset parameters can be greatly reduced by using over-the-air
 activation mechanisms.  A comprehensive and extensible means for
 over-the-air provisioning and handset parameter updating is required.
 One approach is to purchase EIA/TIA/IS-683A (Over-the-air Service
 Provisioning of Mobile Stations in Spread Spectrum Systems)
 equipment.  The cost of this has led carriers to seek alternative
 solutions.  A very viable means for providing over-the-air (OTA)
 provisioning is to leverage the rollout of IS-707 data services
 equipment, which most carriers are in the process of deploying.  This
 paper presents an approach to OTA provisioning that utilizes the
 deployment of IS-707 to deliver OTA provisioning and parameter
 upgrading.
 IS-707 data services makes available several methods of providing
 over-the-air provisioning and parameter updating.  A well thought-out
 approach utilizing Internet-based open standard mechanisms can
 provide an extensible platform for further carrier service offerings,
 enhanced interoperability among back-end services, and vendor
 independence.
 This paper describes a viable and attractive means to provide
 OTASP/OTAPA via IS-707, using the ACAP [ACAP] protocol.

Gellens Informational [Page 1] RFC 2604 OTASP/OTAPA via ACAP June 1999

Table of Contents

 1.  Terms  . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
 2.  Feature Descriptions  . . . . . . . . . . . . . . . . . . .   6
   2.1.  OTASP Feature Description  . . . . . . . . . . . . . . .  6
   2.2.  OTAPA Feature Description . . . . . . . . . . . . . . .   6
 3.  Operation  . . . . . . . . . . . . . . . . . . . . . . . . .  7
   3.1.  Initial Provisioning Activity . . . . . . . . . . . . .   7
   3.2.  OTASP for Authorized Users . . . . . . . . . . . . . . .  8
   3.3.  OTAPA Activity  . . . . . . . . . . . . . . . . . . . .   8
 4.  Requirements . . . . . . . . . . . . . . . . . . . . . . . .  9
   4.1.  General Requirements  . . . . . . . . . . . . . . . . .   9
   4.2.  OTASP Requirements  . . . . . . . . . . . . . . . . . . . 9
   4.3.  OTAPA Requirements  . . . . . . . . . . . . . . . . . .  10
   4.4.  Provisioning Server Requirements . . . . . . . . . . . . 10
   4.5.  Security Requirements . . . . . . . . . . . . . . . . .  11
 5.  Architecture . . . . . . . . . . . . . . . . . . . . . . . . 11
   5.1.  ACAP over TCP/IP  . . . . . . . . . . . . . . . . . . .  11
     5.1.1.  Mobile Authentication and A-Key Generation . . . . . 12
     5.1.2.  Mobile Identification . . . . . . . . . . . . . . .  12
     5.1.3.  ACAP Server  . . . . . . . . . . . . . . . . . . . . 12
     5.1.4.  Overview of ACAP Structure  . . . . . . . . . . . .  13
     5.1.5.  Data Organization and Capabilities . . . . . . . . . 13
       5.1.5.1.  Structure . . . . . . . . . . . . . . . . . . .  14
       5.1.5.2.  Conventions  . . . . . . . . . . . . . . . . . . 15
     5.1.6.  Dataset . . . . . . . . . . . . . . . . . . . . . .  15
       5.1.6.1.  Entries and Attributes . . . . . . . . . . . . . 15
       5.1.6.2.  NAM Records . . . . . . . . . . . . . . . . . .  16
       5.1.6.3.  Server Roaming Lists . . . . . . . . . . . . . . 17
       5.1.6.4.  Requested-Data Record . . . . . . . . . . . . .  18
       5.1.6.5.  Sample Server Entry  . . . . . . . . . . . . . . 18
     5.1.7.  Administrative Client . . . . . . . . . . . . . . .  19
     5.1.8.  Mobile Client  . . . . . . . . . . . . . . . . . . . 20
   5.2.  WAP with ACAP . . . . . . . . . . . . . . . . . . . . .  22
   5.3.  Network-Resident vs. Configuration Data  . . . . . . . . 23
   5.4.  Intellectual Property Issues  . . . . . . . . . . . . .  23
 6.  Handset Protocol Suites  . . . . . . . . . . . . . . . . . . 23
   6.1.  ACAP over TCP/IP  . . . . . . . . . . . . . . . . . . .  23
 7.  IS-683A Compatibility  . . . . . . . . . . . . . . . . . . . 24
   7.1.  OTASP Operations  . . . . . . . . . . . . . . . . . . .  24
   7.2.  OTASP Call Flow  . . . . . . . . . . . . . . . . . . . . 24
   7.3.  OTAPA Operations  . . . . . . . . . . . . . . . . . . .  24
   7.4.  OTAPA Call Flow  . . . . . . . . . . . . . . . . . . . . 25
 8.  Alternative Methods . . . . . . . . . . . . . . . . . . . .  25
   8.1.  IS-683A over TCP/IP  . . . . . . . . . . . . . . . . . . 25
     8.1.1.  OTAF Server . . . . . . . . . . . . . . . . . . . .  25
     8.1.2.  Interface Application  . . . . . . . . . . . . . . . 26
     8.1.3.  Protocol Handset Suite  . . . . . . . . . . . . . .  26

Gellens Informational [Page 2] RFC 2604 OTASP/OTAPA via ACAP June 1999

   8.2.  Browser-Based Forms  . . . . . . . . . . . . . . . . . . 26
 9.  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . .  27
 10.  References . . . . . . . . . . . . . . . . . . . . . . . .  28
 11.  Security Considerations . . . . . . . . . . . . . . . . .   28
 12.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . .  28
 13.  Author's Address  . . . . . . . . . . . . . . . . . . . .   28
 14.  Full Copyright Statement . . . . . . . . . . . . . . . . .  29

1. Terms

  Application Configuration Access Protocol (ACAP) -- An Internet
  protocol (RFC-2244) that provides remote storage and access of
  configuration and preference information.
  Activation -- A process in which a mobile station and network become
  programmed so that a mobile station becomes operable and can be used
  for cellular service once authorized by the service provider.
  Authentication -- A procedure used to validate a mobile station's
  identity.
  Authentication Center -- An entity that manages the authentication
  information related to the mobile station.
  Authentication Key (A-key) -- A secret 64-bit pattern stored in the
  mobile station.  It is used to generate and update the mobile
  station's shared secret data.  The A-key is used in the
  authentication process.
  Authorization -- An action by a service provider to make cellular
  service available to a subscriber.
  Call -- A temporary communication between telecommunications users
  for the purpose of exchanging information.  A call includes the
  sequence of events that allocates and assigns resources and
  signaling channels required to establish a communications
  connection.
  Cellular Service Provider -- A licensee of the responsible
  government agency (in the U.S. a licensee of the Federal
  Communications Commission) authorized to provide Cellular
  Radiotelephone Service.
  Challenge/Response Authentication Mechanism using Message Digest 5
  (CRAM-MD5) -- An authentication mechanism which is easy to
  implement, and provides reasonable security against various attacks,
  including replay.  Supported in a variety of Internet protocols.
  Specified as baseline mechanism in ACAP.  CRAM-MD5 is published as

Gellens Informational [Page 3] RFC 2604 OTASP/OTAPA via ACAP June 1999

  RFC 2195.
  Code Division Multiple Access -- A technique for spread-spectrum
  multiple-access digital communications that creates channels through
  the use of unique code sequences.
  Customer Service Center -- An entity of a service provider that
  provides user support and assistance to subscribers.
  Customer Service Representative -- A person that operates from a
  customer service center and provides user support and assistance to
  subscribers.
  Diffie-Hellman Algorithm -- A public-key cryptography algorithm for
  exchanging secret keys.  Uses the equation , where k is the secret
  key.  The equation is executed by each party of the session based on
  the exchange of independently generated public values.
  Digits -- Digits consist of the decimal integers 0,1,2,3,4,5,6,7,8,
  and 9.
  Dual-mode Mobile Station -- A mobile station capable of both analog
  and digital operation.
  Electronic Serial Number (ESN) -- A 32-bit number assigned by the
  mobile station manufacturer used to identify a mobile station.  The
  ESN is unique for each legitimate mobile station.
  Home Location Registry (HLR) -- The location register or database to
  which a MIN is assigned for record purposes such as subscriber
  information.
  Message Digest 5 (MD5) -- A one-way cryptographic hash function.
  Widely deployed in Internet protocols.  Published as RFC 1321.
  Mobile Identification Number (MIN) -- The 10-digit number that
  represents a mobile station's directory number.
  Mobile Station (MS) -- A station, fixed or mobile, which serves as
  the end user's wireless communications link with the base station.
  Mobile stations include portable units (e.g., hand-held personal
  units) and units installed in vehicles.
  Mobile Switching Center (MSC) -- A configuration of equipment that
  provides cellular radiotelephone service.
  Mobile Terminal Authorizing System (MTAS) -- A control system that
  provides the capability to load the CDMA network HLR with mobile

Gellens Informational [Page 4] RFC 2604 OTASP/OTAPA via ACAP June 1999

  station profile information.
  Number Assignment Module (NAM) -- The mobile station's electronic
  memory module where the MIN and other subscriber-specific parameters
  are stored.  Mobile stations that have multi-NAM features offer
  users the option of using their units in several different markets
  by registering with a local number in each location.
  Over-the-air Service Provisioning Function (OTAF) -- A configuration
  of network equipment that controls OTASP functionality and messaging
  protocol.
  Over-the-air Parameter Administration (OTAPA) -- Network initiated
  OTASP process of provisioning mobile station operational parameters
  over the air interface.
  Over-the-air Service Provisioning (OTASP) -- A process of
  provisioning mobile station operational parameters over the air
  interface.
  Quick-Net-Connect (QNC) -- An IS-707 data service capability that
  utilizes the Async Data Service Option number but bypasses the modem
  connection for a direct connection to an IP-based internet.
  Roamer -- A mobile station operating in a cellular system or network
  other than the one from which service was subscribed.
  Simple Authentication and Security Layer (SASL) -- An Internet
  protocol (RFC-2222) that provides a framework for negotiating
  authentication and encryption mechanisms.
  Service Provider -- A company, organization, business, etc. which
  sells, administers, maintains, and charges for the service.  The
  service provider may or may not be the provider of the network.
  Shared Secret Data (SSD) -- A 128-bit pattern stored in the mobile
  station (in semi-permanent memory) and known by the network.  The
  A-key is used to generate the SSD at the network and in the mobile
  station for comparison.
  Wireless Application Protocol (WAP) -- A set of network and
  application protocols including a datagram protocol (WDP), Transport
  Layer Security (WTLS), Transaction Protocol (WTP), Session Protocol
  (WSP), and Application Environment (WAE), which use carrier-based
  gateways to enable wireless devices to access Web resources.  See
  <http://www.wapforum.org> for specifications and details.

Gellens Informational [Page 5] RFC 2604 OTASP/OTAPA via ACAP June 1999

2. Feature Descriptions

2.1. OTASP Feature Description

  The Over the Air Service Provisioning (OTASP) feature allows a
  potential wireless service subscriber to activate new wireless
  services, and allows an existing wireless subscriber to make
  services changes without the intervention of a third party.  OTASP
  includes the following:
  • A way to establish a user profile.
  • "Over-The-Air" programming of a Number Assignment Module (NAM),

IMSI and Roaming Lists, including Data option parameters, and

  optionally, service provider or manufacturer specific parameters
  (e.g., lock code, call timer).
  • An Authentication Key (A-key) Generation procedure.
  • A-key storage

2.2. OTAPA Feature Description

  The Over-the-Air Parameter Administration (OTAPA) feature allows
  wireless service providers to update a NAM, IMSI, and Roaming List
  information in the mobile station remotely without the intervention
  of a third party.  This capability increases flexibility and reduces
  costs for carriers involved with mass changes that affect every
  handset, such as area-code splits.
  OTAPA includes the following:
  • Update a user's Number Assignment Module (NAM)
  • Update Data option parameters
  • Update service provider or manufacturer specific parameters (e.g.,

Server address(es), lock code, call timer).

  • Update roaming lists

Gellens Informational [Page 6] RFC 2604 OTASP/OTAPA via ACAP June 1999

3. Operation

3.1. Initial Provisioning Activity

  A new subscriber needs to give the intended service provider
  sufficient information (e.g., name, address, etc.) to prove credit-
  worthiness and establish a record within the service provider's
  billing system.  In addition, the ESN of the mobile station needs to
  be given to the provider.  This may occur in three ways:
  Voice scenario -- A customer care representative collects credit
  information during a voice conversation.  This call is made from a
  different phone (e.g., wired service) or is initiated using the IS-
  683A OTASP dialing scheme (i.e., *228xx).
  Once the user has been authorized, the customer care representative
  creates a record in the CDMA network HLR, thus allowing use of the
  CDMA network.  In addition, a limited-time N-digit password is
  created which is tied to the ESN.  The choice of N (how many digits)
  is up to the carrier (as a trade-off between security and user
  inconvenience).  All required provisioning information (including
  the limited-time password) is loaded into the provisioning server.
  The user is then told to hang up and call a special number, of the
  form *228 XX <N-digit password> SEND (the XX code is the same as
  used in the initial voice call).  This causes the mobile station to
  initiate a provisioning session.
  The mobile station and the provisioning server authenticate, and all
  required provisioning information is downloaded into the mobile
  station.  The user receives some form of notification once the
  activity is complete.  This notification can be an audible tone or a
  text message on the mobile station display. (The form and content of
  this notification can be part of the provisioning data downloaded by
  the mobile station.) Once this initial provisioning activity is
  complete the user has a fully authorized mobile station ready for
  use.
  Forms scenario -- An interactive user interface is presented via a
  browser on the mobile station.  The subscriber fills in the
  requested information. (Note that entering non-numeric data presents
  some user interface challenges on many mobile devices.)
  A back-end server validates the information, and if possible, the
  customer is authorized, a limited-time password is generated, HLR
  and provisioning server records are created and the actual OTASP
  operation begins.  Otherwise, a voice call is made to a customer
  care representative.

Gellens Informational [Page 7] RFC 2604 OTASP/OTAPA via ACAP June 1999

  Desktop scenario -- The subscriber uses a desktop (or in-store
  kiosk) web browser to contact the carrier, and enters the usual
  personal information.
  The carrier's server validates the information, and if possible, the
  customer is authorized, a limited-time password is generated, HLR
  and provisioning server records are created, and the subscriber is
  told to dial a special number on the handset.  Once this code is
  entered, the actual OTASP operation begins.  Otherwise, the user is
  asked to make a voice call to a customer care representative.

3.2. OTASP for Authorized Users

  Users already authorized for use of the CDMA network can also
  initiate provisioning activity.  This could happen after being
  directed to do so by a Customer Care representative, either from a
  phone conversation or via mail notification.  This type of OTASP
  activity is needed in cases where the carrier desires to upgrade
  CDMA parameters in the mobile stations or in cases where mobile
  station troubleshooting is needed.
  This type of OTASP occurs in similar fashion to the initial OTASP
  activity.  The mobile station downloads the new provisioning
  information in the same way.

3.3 OTAPA Activity

  Typical OTAPA capability involves upgrading a large number of mobile
  stations.  OTAPA activity needs to be performed in a manner that
  does not impose on revenue bearing CDMA network activity.  OTAPA
  operations are initiated at the customer care center.  This can be
  accomplished by queuing a notification to the mobile station (via
  1-way SMS or special caller-ID) after the provisioning server has
  the updated configuration data.  OTAPA activity will not occur until
  the mobile station has acquired CDMA service on the carrier's
  network and the notification has reached the mobile station.
  Alternatively, OTAPA can be handled by including a recheck interval
  in the set of data used to provision the mobile station.  When using
  a low-overhead protocol, such as ACAP [ACAP], it is reasonable to
  have a mobile station check in periodically to see if anything has
  changed.  The time of day and/or day of week that such rechecks
  should occur could be included in the provisioning data.
  OTAPA activity can be terminated at any time due to user call
  activity.

Gellens Informational [Page 8] RFC 2604 OTASP/OTAPA via ACAP June 1999

4. Requirements

4.1. General Requirements

  IS-683A OTASP operations occur between a mobile station and an
  over-the-air service provisioning function (OTAF) using IS-95A
  traffic channel data burst messages.  OTASP/OTAPA via data services
  require that the CDMA carrier have an IS-707 data services capable
  network.  The IS-707 service must be either Packet Data Service
  (IS-707.5) or Quick-Net-Connect (QNC).
  The mobile station must support:
  • IS-707 Data Service capability
  • Packet/QNC RLP protocol
  • PPP protocol to peer to the IS-707 IWF
  • IP protocol to provide the network layer for routing to the

provisioning server

  • A transport layer for end-to-end communication (such as TCP)
  • Authentication and optionally encryption
  • Application software to handle the provisioning protocol and

memory access.

  • Domain Name System (DNS) query capabilities sufficient to obtain

the (IP) address of the provisioning server (or the provisioning

  server's address could be provided during PPP negotiation).
  Lastly, the ability must exist for the mobile to make a data call
  (optionally) a voice call without a MIN.

4.2. OTASP Requirements

  The OTASP function requires the mobile station to originate an IS-
  707 data call and (optionally) a voice call using a completely
  unprovisioned mobile station.  The CDMA network must support this
  capability.
  OTASP via data services uses a provisioning server that contains the
  parameter information for mobile stations.  The authorizing agent
  (or software) at the customer care center must be able to add user
  and mobile station information into both the CDMA network HLR and

Gellens Informational [Page 9] RFC 2604 OTASP/OTAPA via ACAP June 1999

  the provisioning server during the initial authorizing process.  The
  provisioning server must be capable of servicing a mobile as soon as
  its record is created.

4.3. OTAPA Requirements

  IS-683A OTAPA is performed by a mobile-terminated call that
  downloads parameters to the mobile station.  OTAPA calls occur
  without user interaction.
  In order to perform OTAPA via data services the network needs to
  direct the mobile station to initiate a special-purpose data call.
  Several existing methods can be used to implement this capability,
  for example, a mobile-terminated one-way SMS message.  The SMS
  message content can contain any information required by the mobile
  station.  The mobile station would need a simple parser of SMS
  messages in order to know when to originate an OTAPA call, as
  opposed to normal SMS message processing.  The OTAPA call would be
  performed in similar fashion to a registration call.  More
  specifically, the user would not be informed of the call activity.
  There are alternative means that can be employed to initiate OTAPA
  activity; for example, a mobile-terminated voice call with caller-ID
  using a specialized telephone number.  Another alternative is for
  mobile stations to periodically check in with the provisioning
  server to check for updated information.  ACAP, for example, is
  designed for such a model.  The recheck interval, as well as the
  time of day and/or day of week that such checks should be used, can
  be part of the provisioning data sent to the mobile stations.

4.4. Provisioning Server Requirements

  IS-683A utilizes an over-the-air service provisioning function
  (OTAF) to perform the network-side provisioning activity.
  OTASP/OTAPA via data services replaces the OTAF with a provisioning
  server.  The provisioning server resides on an IP network within the
  controlled confines of the carrier.  The provisioning server must
  perform all the service provisioning and parameter administration
  functions that the OTAF provides.  The provisioning server must also
  have an interface to the carrier's Mobile Terminal Authorizing
  System (MTAS).  This interface serves to synchronize the
  provisioning server with the information in the MTAS.  The specific
  requirements of this interface depend on the capabilities and
  interfaces of the carrier's customer care center system(s).  The
  provisioning server must be capable of receiving dynamic updates
  from the MTAS and have the provisioning information immediately

Gellens Informational [Page 10] RFC 2604 OTASP/OTAPA via ACAP June 1999

  available for downloading into the chosen mobile station.  A
  standard ACAP server provides an excellent means to meet these
  requirements.
  The provisioning server must be capable of performing an
  authentication procedure with the mobile station.  This
  authentication mechanism must be capable of authenticating both the
  mobile station and the provisioning server.

4.5. Security Requirements

  OTASP requires that an authentication procedure be performed to
  validate the mobile station to the provisioning server, while OTAPA
  requires a mechanism where the mobile validates the server.
  The provisioning server must be capable of either:
  • OTAF A-key generation using a Diffie-Hellman mechanism
  Or:
  • Receiving A-keys from the carrier network.
  Since data OTASP/OTAPA operates over IP within the carrier's
  network, end-to-end encryption between the mobile station and the
  provisioning server should be considered as a future enhancement.
  End-to-end encryption protects against attacks from within a
  carrier's network, and safeguards the provisioning data (for
  example, roaming lists).

5. Architecture

5.1. ACAP over TCP/IP

  Figure 1 shows a provisioning server in the carrier's intranet which
  supports the Application Configuration Access Protocol (ACAP, RFC
  2244).  An administrative client in the customer care domain updates
  this server using ACAP.  Handsets are provisioned and configured
  using a small ACAP client.
                  [Figure 1 -- see PostScript version]
  ACAP is an open Internet protocol designed to solve the problem of
  client access to configuration and related data.  Among its primary
  goals are protocol simplicity, support for thin clients, and ease of
  operation over limited bandwidth.  ACAP provides a high degree of
  extensibility, especially in authentication mechanisms, specialized
  attribute handling, and data management.

Gellens Informational [Page 11] RFC 2604 OTASP/OTAPA via ACAP June 1999

5.1.1. Mobile Authentication and A-Key Generation

  The mobile client authenticates with the ACAP server prior to
  performing any activities.  Authentication uses the mobile's ESN and
  a shared secret.  Provisioned mobiles derive the shared secret from
  the A-Key; unprovisioned mobiles use a limited-time password as the
  secret.
  The limited-time password is provided to the user by the Customer
  Care representative during the initial call (as instructions to dial
  a specific number).  This code is N digits long.  The carrier
  selects the number of digits, as a trade-off between security and
  user convenience.
  The baseline ACAP authentication mechanism uses the shared secret
  plus a random challenge from the server as input to a one-way
  cryptographic hash function (specifically, keyed-MD5).  This is
  analogous to the existing IS-683A authentication mechanism which
  uses a random challenge and the CAVE algorithm.
  An A-Key is generated using a Diffie-Hellman exchange, as is done in
  IS-683A.

5.1.2. Mobile Identification

  Provisioning records are identified using the ESN and the current
  NAM in use.

5.1.3. ACAP Server

  As a standard ACAP server, the provisioning server includes
  configurable datasets and dataset inheritance for the management of
  the data stores.
  The administrative client can use the same simple ACAP protocol to
  load and modify the ACAP server as the mobile stations uses for
  provisioning.  While any implementation-specific mechanisms
  available from the server vendor could instead be used for this
  purpose, the ability to use ACAP can greatly simplify the
  administrative client, as well as make it independent of the server.
  ACAP includes an authentication framework (Simple Authentication and
  Security Layer, SASL, RFC 2222)[SASL].  SASL allows any standard or
  custom authentication and encryption mechanism to be used.  One of
  the most important features of SASL is that it is designed for a
  world in which what is "good enough" security today isn't good
  enough tomorrow.  As the threat model changes, SASL allows higher-
  strength mechanisms to be easily added while supporting already

Gellens Informational [Page 12] RFC 2604 OTASP/OTAPA via ACAP June 1999

  deployed clients and servers.  SASL is achieving widespread
  deployment in a number of Internet protocols.
  Strongpoints:  Since the ACAP protocol was designed for precisely
  this type of provisioning activity, its adoption can greatly reduce
  the cost, time to market, and support required for the provisioning
  server.  Additionally, the ACAP protocol provides an open standard
  method for mobile stations and other systems to access the
  provisioning server.  Commercial ACAP servers are being developed by
  numerous companies.  The ACAP client code is very small and simple,
  and thus can be incorporated into virtually any mobile device at
  minimal cost.  As an open standard, the ACAP protocol has benefited
  from years of review and experience.

5.1.4. Overview of ACAP Structure

  ACAP organizes data by datasets.  The structure of a dataset is
  defined by the dataset class.  Generally, ACAP servers do not have
  knowledge of dataset classes.  This allows the dataset to be
  expanded without modifying the server in any way.  A dataset is an
  instantiation of the dataset class, which is a logical definition of
  what is in a dataset, and how it is used.
  Datasets contain entries.  Entries contain attributes and values.
  Attributes and values are actually metadata, such as name, length,
  and value.  Any entry can also be a dataset (datasets are
  hierarchical).
  For example, consider the ACAP addressbook dataset class, designed
  to hold names, email addresses, phone numbers, and related
  information for a person's contacts.  A given user may have one or
  more addressbook datasets.  Each entry holds information about one
  person or entity.  Attributes in the entry hold specific items of
  information, such as the given name, surname, various email
  addresses, phone numbers, and so forth.  If an entry is a list of
  people (such as a mailing list or specific group of people), it is a
  subdataset, containing its own entries.  Some clients may look at
  only a subset of the attributes.  For example, a mobile handset ACAP
  client may download only the alias (nickname), name, primary phone
  number and email address of each entry, while a desktop client may
  access all attributes.

5.1.5. Data Organization and Capabilities

  ACAP provides custom hierarchical datasets.  Server data can be
  organized to fit the needs of the applications using the dataset.

Gellens Informational [Page 13] RFC 2604 OTASP/OTAPA via ACAP June 1999

  In OTASP/OTAPA over ACAP, data on the server is organized to both
  take advantage of ACAP capabilities and to use items that are
  identical to IS-683A, allowing for reuse of IS-683A handset engines.
  ACAP servers also support data inheritance.  All data items which
  are physically in the inherited dataset and not in the inheriting
  dataset logically also exist in the inheriting dataset.  This is
  recursive, as the inherited dataset can itself inherit from another
  dataset.  This powerful concept allows potentially large groups of
  mobile stations to inherit items from a single common entity.  For
  example, preferred roaming lists can be stored in datasets based on
  geographic areas, and automatically inherited by an individual
  mobile station in that area.  The roaming lists could be further
  subdivided, for example based on tiers of free NVRAM in the mobile.
  The mobile client need not be aware of this; it happens entirely on
  the server.
  ACAP uses trees to provide the data hierarchy.  These data trees can
  be viewed as similar to the directory/file structure used with all
  common operating systems.  The built-in inheritance mechanism,
  together with the hierarchical structure, makes it extremely easy to
  update general data without disturbing specific data.
  Datasets exist within the user, group, and host hierarchies.  The
  user hierarchy holds datasets which belong to individual users.  The
  group hierarchy holds datasets which belong to groups (for example,
  the "Region." groups in section 5.1.6.3  Server Roaming Lists).  The
  host hierarchy holds datasets which are for specific machines or
  systems.
  In addition to providing customizable data trees, ACAP also provides
  several standard datasets for all clients.  There is a capabilities
  dataset that contains information on custom functionality and
  enhanced features available to a specific client or at the site
  generally.  This allows a server to advertise any protocol
  extensions, specialized attribute handling, or other enhanced
  functionality it supports.  A client that needs to use these
  features can thus easily determine what is available before trying
  to use them.

5.1.5.1. Structure

  We divide the data accessed by the client into provisioning items,
  group items, and client state items.  Provisioning data contains NAM
  items and requested-data items.  Group items (such as preferred
  roaming lists), are not specific to any mobile device.  Group items
  physically exist in their own datasets, but through inheritance
  logically appear in client datasets.

Gellens Informational [Page 14] RFC 2604 OTASP/OTAPA via ACAP June 1999

  The mobile stations always read data from provisioning entries and
  write data to client state entries.  This structure makes both
  mobile clients and server configuration easy and simple, while
  allowing for extensive custom and diagnostic capabilities.

5.1.5.2. Conventions

  "" This signifies the empty string (used here for ACAP entries).
  ~ This is shorthand for "user/<userid>".  It is part of the ACAP
  protocol.

5.1.6 Dataset

  Provisioning information is located in the "OTAP" dataset class.
  (The full specification of this dataset will be published in a
  subsequent document.) The prefix "Provision." is used for items that
  are to be downloaded to the mobile, and the prefix "Client." is used
  for items which the client stores on the server.
  Provisioning data within the OTAP dataset is organized as a series
  of items, each of which is stored in its own entry.  The entry name
  is the item name, and the "OTAP.VALUE" attribute contains the item
  value.  This structure permits change notification on a per-item
  basis.
  We chose the "Provision" and "Client" names to simplify various
  operations.  For example, the mobile client can easily download all
  changed provisioning items by performing a search which returns the
  "OTAP.VALUE" attribute of all entries whose name begins with
  "Provision" and whose modtime is greater than the last time the
  client retrieved data.  An administrative client can easily generate
  a report of all clients which have not received the most recent
  update by searching for all entries named "Client" whose
  "OTAP.modtime" attribute is less than the desired value.
  A partial list of items follows.

5.1.6.1. Entries and Attributes

  dataset.inherit
  This is a standard ACAP attribute that identifies the location of
  inherited data.  It exists in the "" entry (the entry with the empty
  name) within each dataset.

Gellens Informational [Page 15] RFC 2604 OTASP/OTAPA via ACAP June 1999

5.1.6.2. NAM Records

  The OTAP dataset class contains an entry for each provisioned
  mobile.  The standard location for provisioning records is:
      /OTAP/USER/<esn>/<nam>/
  This tree format allows multiple NAMs per ESN.  The specific entries
  contain data in IS-683A parameter block types.
  For example, the CDMA NAM would be stored in an entry called:
      /OTAP/USER/<esn>/<nam>/Provision.CDMA-NAM/
  The entries below show how NAM records would be organized on the
  ACAP server:
  CDMA/Analog NAM
      Entry-Path: /OTAP/USER/<esn>/<nam>/Provision.CDMA-AMPS-NAM/
      OTAP.Value: {17} xx xx xx ... xx
      The CDMA/Analog NAM entry from IS-683A (section 4.5.2.1)
      consists of at least 129 information bits, depending on the
      number of SID NID list entries.  This is stored as 17 (or more)
      octets of binary data (padding is used to ensure an integral
      number of octets).
  Mobile Directory Number
      Entry-Path: /OTAP/USER/<esn>/<nam>/Provision.MOBILE-DN/
      OTAP.Value: {10} nnnnnnnnnn
      The Mobile Directory Number from IS-683A contains BCD-encoded
      digits representing the phone number.  This is stored as a
      string of 10 or more ASCII digits, e.g., "6195551212".
  CDMA NAM
      Entry-Path: /OTAP/USER/<esn>/<nam>/ Provision.CDMA-NAM/
      OTAP.Value: {13} xx xx xx ... xx

Gellens Informational [Page 16] RFC 2604 OTASP/OTAPA via ACAP June 1999

      The CDMA-NAM entry from IS-683A (section 4.5.2.3) consists of at
      least 100 information bits, depending on the number of SID-NID
      list entries.  This is stored as 13 (or more) octets of binary
      data (padding is used to ensure an integral number of octets).
  IMSI_T
      Entry-Path: /OTAP/USER/<esn>/<nam>/ Provision.IMSI_T/
      OTAP.Value: {7} xx xx xx xx xx xx xx
      The IMSI_T entry from IS-683A (section 4.5.2.4) consists of 55
      bits of information in five fields.  This is stored left-
      justified in 7 octets of binary data.

5.1.6.3. Server Roaming Lists

  The ACAP Server will have an entry for each different roaming list
  configuration for a carrier.  The example below assumes that the
  desired differentiation for the roaming list is geographic, with
  subdivisions for tiers of mobile free NVRAM It shows that for each
  region there exists a set of roaming lists per free NVRAM range.
  Note that a carrier can easily implement different or further
  differentiation (e.g., by phone vendor or product type) by simply
  changing the dataset tree and assigned the appropriate value to the
  "dataset.inherit" attribute in the provisioning records.
      /OTAP/GROUP/region.NorthEast/free-nv.128-512/
                  preferred.roaming.list/OTAP.Value
      /OTAP/GROUP/region.NorthEast/free-nv.512-1024/
                  preferred.roaming.list/OTAP.Value
      /OTAP/GROUP/region.SouthEast/free-nv.128-512/
                  preferred.roaming.list/OTAP.Value
      /OTAP/GROUP/region.SouthEast/free-nv.512-1024/
                  preferred.roaming.list/OTAP.Value
      /OTAP/GROUP/region.NorthWest/free-nv.128-512/
                  preferred.roaming.list/OTAP.Value
      /OTAP/GROUP/region.NorthWest/free-nv.512-1024/
                  preferred.roaming.list/OTAP.Value
      /OTAP/GROUP/region.SouthWest/free-nv.128-512/
                  preferred.roaming.list/OTAP.Value
      /OTAP/GROUP/region.SouthWest/free-nv.512-1024/
                  preferred.roaming.list/OTAP.Value

Gellens Informational [Page 17] RFC 2604 OTASP/OTAPA via ACAP June 1999

5.1.6.4. Requested-Data Record

  Inside the OTAP dataset is an entry with the name
  "Provision.Requested-Data", which contains one attribute called
  "OTAP.Requested-Data".  This attribute is multi-valued.  It is
  either NIL or contains a list of strings.  Each string is the name
  of one element of data that the server requests the client to
  supply.
  After authenticating, the ACAP client issues a SEARCH command to
  retrieve the values of the "OTAP.Requested-Data" attribute of the
  "Provision.Requested-Data" entry.  The client processes the returned
  values (if any) by issuing a STORE command to set one or more
  attributes in the "Client" entry.  The value of each attribute is
  either the corresponding mobile value (which may be an empty string
  if the item has no value), or the special value "[N/A]" if the item
  does not exist or is unknown on the mobile.
  This mechanism is quite general, and can be used in the normal OTASP
  case to modify the mobile's dataset as appropriate for the condition
  of the mobile.  For example, the inheritance could be set based on
  the amount of NVRAM available, to cause one set of preferred roaming
  list data or another to be used.  This mechanism can also be used in
  other situations, such as to retrieve a complete set of mobile
  configuration parameters for diagnostic reasons.

5.1.6.5. Sample Server Entry

  The entry below is an excerpt of a sample ACAP server dataset entry
  for a single mobile station, with an ESN of FB9876E and using NAM 1:
  /OTAP/USER/FB9876E/1/
     entry              =   ""
     dataset.inherit    =   "/OTAP/GROUP/region.NorthEast/
                             free-nv.128-512/preferred.roaming.list/
                             OTAP.Value/"
     entry               =   "Provision.Requested-Data"
     OTAP.Requested-Data =   ("Phone-Make" "Phone-Model" "SW-Rev"
                              "Free-NVRAM")
     entry               =   "Client"
     OTAP.Phone-Make     =   "Qualcomm"
     OTAP.Phone-Model    =   "pdQ1900"
     OTAP.SW-Rev         =   "001.030.0908"
     OTAP.Free-NVRAM     =   "65536"
     OTAP.Last-Modtime   =   "199812181703"

Gellens Informational [Page 18] RFC 2604 OTASP/OTAPA via ACAP June 1999

     entry               =   "Provision.Mobile-DN"
     OTAP.Value          =   {10} 619 555 1234
     entry               =   "Provision.CDMA-NAM"
     OTAP.Value          =   {13} xx xx xx xx xx xx xx xx xx xx xx
                                         xx xx
  This dataset shows not only provisioning data which was downloaded
  into the mobile station, but also the items of client data requested
  by the server (the Requested-Data attribute) and the values of those
  items (the "Client" entry).  It also indicates that the mobile
  client successfully stored the values associated with the modtime
  "199812181703".  In addition, it shows that this client inherits
  data (i.e., roaming lists) from the "NorthEast" region.

5.1.7. Administrative Client

  The administrative client loads initial provisioning information
  into the server, including specifying the roaming list to inherit.
  The administrative client also updates provisioning server records
  as needed, and retrieves data for reports (such as a list of clients
  which have not yet been updated).
  Data is loaded into provisioning records by using the ACAP STORE
  command.  The administrative client authenticates to the ACAP server
  using credentials that permit access to datasets for mobiles.
  When a new mobile is authorized for service, the administrative
  client creates the dataset by storing into it values that are
  specific for the device.  It also sets the "dataset.inherit"
  attribute so that values which are not tied to the specific mobile
  are inherited as appropriate.
  • Updates to user records
       Existing user records may need updating from time to time.  For
       example, a user may change service plans or purchase an
       additional or replacement mobile device, or the carrier may
       need to modify some aspect of provisioned data.
  • Perusal and editing of provisioning records
       The administrative client can provide general browse and edit
       capability for user records.

Gellens Informational [Page 19] RFC 2604 OTASP/OTAPA via ACAP June 1999

  • Report generation
       The administrative client can extract data from the ACAP server
       in order to generate reports.  For example, after OTAPA
       activity, a carrier may wish to identify those mobiles which
       have not yet been updated.
  • Queuing of OTAPA sessions
       Depending on the OTAPA update procedures chosen (e.g., SMS,
       CLID, periodic recheck), the administrative client may be
       involved in initiating the activity.  This may or may not use
       an interface to the provisioning server.

5.1.8. Mobile Client

  The ACAP mobile client is implemented as a state machine that
  performs the equivalent of IS-683A provisioning parameter
  information exchange and non-volatile memory storage.  The ACAP
  Client state machine diagram (Figure 2) and descriptions are below.
                  [Figure 2 -- see PostScript version]
  • Establish Transport Layer/Authenticate
       Authentication and/or encryption can occur at the application
       layer and/or at the network/transport layer.
       Basic ACAP authentication occurs in the application layer
       (i.e., within the ACAP session), and in its baseline form uses
       the CRAM-MD5[CRAM-MD5] mechanism.  If desired, other mechanisms
       can be used which provide more protection and encryption.  This
       occurs after the transport layer is established, as shown in
       the client state machine diagram above
       Figure 3 shows the CRAM-MD5 authentication mechanism for an
       unprovisioned mobile.  In the case of provisioned mobiles, the
       shared secret is derived from the A-Key, instead of the
       limited-time N-digit code used for unprovisioned devices.
       Use of basic ACAP authentication is preferred for initial
       implementations of data-OTASP because it is simple, easy to
       implement, and all procedures and methods are in place.
       Stronger SASL mechanisms and/or IPSec can be rolled out in the
       future without disrupting the deployed base.
                    [Figure 3 -- see PostScript version]

Gellens Informational [Page 20] RFC 2604 OTASP/OTAPA via ACAP June 1999

  • Requested-data SEARCH
       The mobile ACAP client issues a search command asking the
       server to return the attribute "OTAP.Requested-Data" in the
       entry "Requested-Data".
  • Receive requested-data values
       The server instructs the client to store attributes by
       returning one or more values of requested-data in response to
       the Requested-Data SEARCH.
       For example, the attribute "OTAP.Requested-Data" in the entry
       "Requested-Data" might contain four values: "phone-make",
       "phone-model", "SW-Rev", and "Free-NVRAM".
  • STORE attribute list
       If the response to the requested-data SEARCH returns any
       values, the client issues a STORE command.  Each attribute in
       the STORE command corresponds to one item of requested-data.
       If the client does not recognize an item, it stores the string
       "[n/a]".
       Continuing with our example, the client uses this STORE command
       to write four attributes into the "Client" entry.  Each
       attribute name is identical to one value of the
       OTAP.Requested-Data" attribute (with the prefix "OTAP." added).
       Each attribute value is determined by the respective mobile
       value.
       In our example, this STORE command sets the following
       attributes and values:
  1. "OTAP.Phone-Make" = "Qualcomm
  2. "OTAP.Phone-Model" = "pdQ1900
  3. "OTAP.SW-Rev" = "001.030.0908"
  4. "OTAP.Free-NVRAM" = "65536"
  • Provisioning data SEARCH
       The mobile ACAP client issues a search command to retrieve any
       items of provisioning data that have changed since it last
       checked in (which in the initial session retrieves all
       provisioning data).

Gellens Informational [Page 21] RFC 2604 OTASP/OTAPA via ACAP June 1999

       This SEARCH command asks the server to return the "OTAP.Value"
       attribute of any entries whose name starts with "provision."
       (case-insensitive) and whose modtime is greater than the
       supplied value (which is zero for an unprovisioned mobile).
  • Receive provisioning data and modtime
       The server returns the provisioning items, each as one entry
       name and one attribute value.  The server response to the
       SEARCH command includes the modtime of the latest entry
       returned.
  • Save values
       The mobile writes the returned values into NVRAM.
  • STORE modtime
       The ACAP client stores the returned modtime on the server as an
       acknowledgement that the data was received and NVRAM updated.
  • LOGOUT
       The client issues the LOGOUT command.
  • Close transport layer
       The client closes the TCP connection.
  • End call
       The data call is terminated.

5.2. WAP with ACAP

  An advantage of the ACAP solution is that is can easily coexist with
  a WAP-based mechanism, giving carriers more options.
  A carrier can deploy handsets into its service area which use WAP-
  based provisioning, if desired, alongside those which use ACAP
  provisioning.  All that is required is that the WAP server contain a
  small ACAP client (or an interface to an ACAP server).
  Figure 4 shows how mobile stations can be configured using a WAP
  browser.  By using an ACAP server for provisioning, carriers are
  free to simultaneously deploy mobile stations that use either WAP or
  ACAP, as desired.  In either case, the ACAP server is the source for
  provisioning data.

Gellens Informational [Page 22] RFC 2604 OTASP/OTAPA via ACAP June 1999

                  [Figure 4 -- see PostScript version]

5.3. Network-Resident vs. Configuration Data

  It is useful to recognize that wireless devices access two different
  types of carrier-provided data: network-resident and configuration.
  Network-resident data exists primarily within the carrier's network.
  Examples include account status, billing detail, service plan
  options, etc.  While mobiles may access this information for user
  display, it resides in the network.  Configuration data, in
  contrast, affects the operation of the handset, is usually not shown
  to the user, and must persist in the device.
  For network-resident data access, the obvious choice is the web.
  The data is highly interactive and time-variant, making web browsers
  a reasonable solution.  Any appropriate web browser can be used.
  There are many good reasons for having a web browser in a wireless
  device which contains a display and is capable of user interaction.
  For configuration data, the best solution is to use ACAP.  ACAP is
  optimized for the job, can be implemented quickly, requires a very
  small amount of memory, and does not depend on a display or any user
  interaction capability.
  Trying to use the same access method for both types of data
  unnecessarily complicates the solution, leading to increased design,
  development, and debug time and expense.  It makes it more difficult
  to offer low-cost devices.  Since the two types of data
  fundamentally differ, it is good engineering practice to select
  optimal code and protocols for each.

5.4. Intellectual Property Issues

  There are no known intellectual property issues with the ACAP
  solution.  The ACAP specification was developed within the IETF, and
  no ownership, patent, or other IP claims have been asserted.
  Multiple independent vendors are developing ACAP clients and
  servers, in addition to the existing usage in deployed products.

6. Handset Protocol Suites

6.1. ACAP over TCP/IP

  Figure 5 depicts the mobile station protocol suite for the ACAP over
  TCP/IP solution.  The mobile station is capable of supporting both
  IS-683A OTASP and OTASP over ACAP.
                  [Figure 5 -- see PostScript version]

Gellens Informational [Page 23] RFC 2604 OTASP/OTAPA via ACAP June 1999

7. IS-683A Compatibility

7.1. OTASP Operations

  To maximize compatibility and allow for reuse of IS-683A handset
  code, the data formats used in OTASP over ACAP are identical to
  those used in IS-683A.  Section 5.1.5  Data Organization and
  Capabilities discusses this in more detail.
  OTASP via IS-683A requires custom design and development for the
  specific CDMA infrastructure used by a carrier.  This can greatly
  limit the data management capabilities and significantly reduces the
  extensibility of the solution.  Conversely, OTASP over data can be
  implemented on a generic IP network using an Internet standards-
  based capability that provides extensible provisioning activities
  for carriers.
  OTASP over data uses a traffic channel whereas IS-683A OTASP runs
  over the limited-bandwidth signaling channel.
  IS-683A OTASP operations are inherently simultaneous voice and data.
  This allows the customer care representative to extract information
  from the mobile station while conversing with the user.  OTASP over
  data services is a data-only solution (at least for now).  This
  makes OTASP operations slightly more sequential and potentially
  problematic.  Simultaneous voice and data will alleviate this issue.

7.2 OTASP Call Flow

  The call flow diagram (Figure 6) depicts the message sequence and
  operations for a typical IS-683A OTASP (provisioning) call.  Any
  data-OTASP solution must perform all the functions of the IS-683A
  OTASP call.  The proposed solution meets these requirements.
                  [Figure 6 -- see PostScript version]

7.3. OTAPA Operations

  Data-OTAPA requires the ability to instruct mobiles to originate a
  data call to the provisioning server.  Several viable approaches are
  discussed in sections 3.3  OTAPA Activity and 4.3  OTAPA
  Requirements.
  OTAPA over data has the potential to require far less channel
  resources to download new information to mobile stations.  The ACAP
  server inherently only communicates changes to the clients, thus
  only changed information needs to be downloaded to the mobile
  stations using OTAPA over data via ACAP.

Gellens Informational [Page 24] RFC 2604 OTASP/OTAPA via ACAP June 1999

7.4. OTAPA Call Flow

  The call flow diagram (Figure 7) depicts the message sequence for a
  typical IS-683A OTAPA operation.  Any data-OTAPA solution must
  perform all the functions of the IS-683A OTAPA call.  The proposed
  solution meets these requirements.
                  [Figure 7 -- see PostScript version]

8. Alternative Methods

8.1. IS-683A over TCP/IP

  One alternative is to port IS-683A to TCP, remaining as close as
  possible to the IS-683A protocol exchange.
  Figure 8 depicts the architecture and communications backbone to
  support OTASP/OTAPA via IS-707 data services with a provisioning
  server based on the IS-683A OTAF function.
                  [Figure 8 -- see PostScript version]

8.1.1. OTAF Server

  This provisioning server is modeled after the IS-683A OTAF.  The
  OTAF server performs the specific operations and messaging of IS-
  683A OTAF.  This includes A-key reauthentication procedures.
  Strongpoints:
  (1) OTAF and mobile station behavior mirrors IS-683A (reduced
  duplicate software in mobile station).  Nearly all procedures fully
  defined.
  Drawbacks:
  (1) The OTAF server would need to be custom-designed and built.
  (2) No inherent data manipulation capabilities in the OTAF server.
  All required or desired data management activities would have to be
  built from scratch.
  (3) Interface application would require a non-standard interface
  (and therefore proprietary) to OTAF server.
  (4) End-to-end encryption scheme still needed for full security.

Gellens Informational [Page 25] RFC 2604 OTASP/OTAPA via ACAP June 1999

8.1.2. Interface Application

  This function loads all required provisioning-related information
  from the CDMA network information system to the OTAF server.  This
  includes the queuing of provisioning transactions and data.

8.1.3. Protocol Handset Suite

  Figure 9 depicts the mobile station protocol suite for the IS-683A
  over TCP/IP solution.  The OTASP client is capable of supporting
  both IS-683A OTASP activities or OTASP activities over the data
  transport.
                  [Figure 9 -- see PostScript version]

8.2. Browser-Based Forms

  Another alternative is to use forms embedded in web pages.
  Encapsulating the provisioning data into custom tags embedded in a
  web form is an idea that at first seems attractive.  There are a lot
  of advantages in having a browser in the handset, web servers are
  very widely deployed, and everyone is familiar on some level with
  the web.
  However, a meta-protocol for this would need to be designed, and a
  fully detailed specification produced.  This solution requires
  custom software on the provider side to handle the meta-protocol.
  It additionally requires handset vendors to add custom software in
  the handset browser to handle this protocol.
  This solution would require a provisioning-capable browser in every
  phone.  While it may be desirable to have a browser, the decision to
  require it needs to be considered carefully, especially in light of
  the memory requirements it would impose on all devices.
  This solution would complicate the handset browser, by requiring it
  to handle provisioning as well as browsing.  As provisioning and
  browsing are functionally dissimilar, this code is not a natural fit
  within the browser.  Implementing this solution would require a
  significant increase in development and debug resources, and thus
  negatively impact time-to-market and cost.
  Also because the web is functionally dissimilar, a high level of
  carrier-side customization would be needed, leading to reduced
  vendor choice and increased deployment costs.

Gellens Informational [Page 26] RFC 2604 OTASP/OTAPA via ACAP June 1999

  This approach would layer custom data on top of a standard protocol.
  This would require design work, and would not have much time for
  open review before deployment, greatly increasing the risk.  By
  contrast, ACAP has had years of open review and refinement.
  This approach also limits the extensibility of the solution.  ACAP,
  conversely, is very extensible.  Because ACAP is such a simple
  protocol, it can be added to a wide variety of applications at low
  cost.  This allows increasing numbers of applications on the mobile
  device to share information with servers as well as desktop
  applications.

9. Conclusion

  ACAP provides a high degree of extensibility, especially in
  authentication mechanisms, custom attribute handling, and data
  management.  By using an Internet standard protocol,
  interoperability and integration with a variety of equipment is
  possible, and carriers are not locked into any vendor.  It is also
  easier to add new levels of service and capabilities, especially
  integration with future subscriber devices and applications (e.g.,
  email).
  Since an ACAP client is so small, it can be incorporated into
  virtually any device, even low-end ones without displays, and can be
  added without sacrificing other features.  The simplicity of the
  client and protocol directly translate to shorter development cycles
  and faster time-to-market.
  Because the ACAP protocol was designed for precisely this type of
  provisioning activity, its adoption can greatly reduce the cost,
  time to market, and support required for the provisioning server as
  well as the handsets.  As an open standard, the ACAP protocol has
  benefited from years of review and experience.
  Another advantage of the ACAP solution is that is can easily coexist
  with a WAP-based mechanism, giving carriers more options and
  reducing the minimal requirement burden on mobile devices.
  A carrier can deploy handsets into its service area which use WAP-
  based provisioning, if desired, alongside those which use ACAP
  provisioning.  By using an ACAP server for provisioning, carriers
  are free to simultaneously deploy mobile stations that use either
  WAP or ACAP, as desired.
  The lack of intellectual-property issues further adds to ACAP's
  appeal.

Gellens Informational [Page 27] RFC 2604 OTASP/OTAPA via ACAP June 1999

10. References

  [ACAP] Newman, C. and J. Myers, "ACAP -- Application Configuration
  Access Protocol", RFC 2244, November 1997.
  [CRAM-MD5] Klensin, J., Catoe, R. and P. Krumviede, "IMAP/POP
  AUTHorize Extension for Simple Challenge/Response", RFC 2195,
  September 1997.
  [SASL] Myers, J., "Simple Authentication and Security Layer (SASL)",
  RFC 2222, October 1997.

11. Security Considerations

  Security is discussed in many sections of this document.  In
  particular, the need and methods to guard against unauthorized
  updating of handsets, usurpation of newly-created accounts,
  compromise of handset security values, and disclosure of carrier
  proprietary data and handset parameters is covered.

12. Acknowledgments

  Jim Willkie and Marc Phillips contributed greatly to this document.
  Their help is very much appreciated.

13. Author's Address

 Randall Gellens
 QUALCOMM Incorporated
 6455 Lusk Boulevard
 San Diego, CA  92121-2779
 Phone: +1 619 651 5115
 EMail: randy@qualcomm.com

Gellens Informational [Page 28] RFC 2604 OTASP/OTAPA via ACAP June 1999

14. Full Copyright Statement

 Copyright (C) The Internet Society (1999).  All Rights Reserved.
 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works.  However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.
 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.
 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Gellens Informational [Page 29]

/data/webs/external/dokuwiki/data/pages/rfc/rfc2604.txt · Last modified: 1999/06/09 23:07 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki