GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc2137

Network Working Group D. Eastlake 3rd Request for Comments: 2137 CyberCash, Inc. Updates: 1035 April 1997 Category: Standards Track

              Secure Domain Name System Dynamic Update

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements.  Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol.  Distribution of this memo is unlimited.

Abstract

 Domain Name System (DNS) protocol extensions have been defined to
 authenticate the data in DNS and provide key distribution services
 [RFC2065].  DNS Dynamic Update operations have also been defined
 [RFC2136], but without a detailed description of security for the
 update operation.  This memo describes how to use DNSSEC digital
 signatures covering requests and data to secure updates and restrict
 updates to those authorized to perform them as indicated by the
 updater's possession of cryptographic keys.

Acknowledgements

 The contributions of the following persons (who are listed in
 alphabetic order) to this memo are gratefully acknowledged:
       Olafur Gudmundsson (ogud@tis.com>
       Charlie Kaufman <Charlie_Kaufman@iris.com>
       Stuart Kwan <skwan@microsoft.com>
       Edward Lewis <lewis@tis.com>

Table of Contents

    1. Introduction............................................2
    1.1 Overview of DNS Dynamic Update.........................2
    1.2 Overview of DNS Security...............................2
    2. Two Basic Modes.........................................3
    3. Keys....................................................5
    3.1 Update Keys............................................6
    3.1.1 Update Key Name Scope................................6
    3.1.2 Update Key Class Scope...............................6
    3.1.3 Update Key Signatory Field...........................6

Eastlake Standards Track [Page 1] RFC 2137 SDNSDU April 1997

    3.2 Zone Keys and Update Modes.............................8
    3.3 Wildcard Key Punch Through.............................9
    4. Update Signatures.......................................9
    4.1 Update Request Signatures..............................9
    4.2 Update Data Signatures................................10
    5. Security Considerations................................10
    References................................................10
    Author's Address..........................................11

1. Introduction

 Dynamic update operations have been defined for the Domain Name
 System (DNS) in RFC 2136, but without a detailed description of
 security for those updates.  Means of securing the DNS and using it
 for key distribution have been defined in RFC 2065.
 This memo proposes techniques based on the defined DNS security
 mechanisms to authenticate DNS updates.
 Familiarity with the DNS system [RFC 1034, 1035] is assumed.
 Familiarity with the DNS security and dynamic update proposals will
 be helpful.

1.1 Overview of DNS Dynamic Update

 DNS dynamic update defines a new DNS opcode, new DNS request and
 response structure if that opcode is used, and new error codes.  An
 update can specify complex combinations of deletion and insertion
 (with or without pre-existence testing) of resource records (RRs)
 with one or more owner names; however, all testing and changes for
 any particular DNS update request are restricted to a single zone.
 Updates occur at the primary server for a zone.
 The primary server for a secure dynamic zone must increment the zone
 SOA serial number when an update occurs or the next time the SOA is
 retrieved if one or more updates have occurred since the previous SOA
 retrieval and the updates themselves did not update the SOA.

1.2 Overview of DNS Security

 DNS security authenticates data in the DNS by also storing digital
 signatures in the DNS as SIG resource records (RRs).  A SIG RR
 provides a digital signature on the set of all RRs with the same
 owner name and class as the SIG and whose type is the type covered by
 the SIG.  The SIG RR cryptographically binds the covered RR set to
 the signer, time signed, signature expiration date, etc.  There are
 one or more keys associated with every secure zone and all data in
 the secure zone is signed either by a zone key or by a dynamic update

Eastlake Standards Track [Page 2] RFC 2137 SDNSDU April 1997

 key tracing its authority to a zone key.
 DNS security also defines transaction SIGs and request SIGs.
 Transaction SIGs appear at the end of a response.  Transaction SIGs
 authenticate the response and bind it to the corresponding request
 with the key of the host where the responding DNS server is.  Request
 SIGs appear at the end of a request and authenticate the request with
 the key of the submitting entity.
 Request SIGs are the primary means of authenticating update requests.
 DNS security also permits the storage of public keys in the DNS via
 KEY RRs.  These KEY RRs are also, of course, authenticated by SIG
 RRs.  KEY RRs for zones are stored in their superzone and subzone
 servers, if any, so that the secure DNS tree of zones can be
 traversed by a security aware resolver.

2. Two Basic Modes

 A dynamic secure zone is any secure DNS zone containing one or more
 KEY RRs that can authorize dynamic updates, i.e., entity or user KEY
 RRs with the signatory field non-zero, and whose zone KEY RR
 signatory field indicates that updates are implemented. There are two
 basic modes of dynamic secure zone which relate to the update
 strategy, mode A and mode B.  A summary comparison table is given
 below and then each mode is described.

Eastlake Standards Track [Page 3] RFC 2137 SDNSDU April 1997

                 SUMMARY OF DYNAMIC SECURE ZONE MODES
 CRITERIA:                |   MODE A           |   MODE B
 =========================+====================+===================
 Definition:              | Zone Key Off line  | Zone Key On line
 =========================+====================+===================
 Server Workload          |   Low              |   High
 -------------------------+--------------------+-------------------
 Static Data Security     |   Very High        |   Medium-High
 -------------------------+--------------------+-------------------
 Dynamic Data Security    |   Medium           |   Medium-High
 -------------------------+--------------------+-------------------
 Key Restrictions         |   Fine grain       |   Coarse grain
 -------------------------+--------------------+-------------------
 Dynamic Data Temporality |   Transient        |   Permanent
 -------------------------+--------------------+-------------------
 Dynamic Key Rollover     |   No               |   Yes
 -------------------------+--------------------+-------------------
 For mode A, the zone owner key and static zone master file are always
 kept off-line for maximum security of the static zone contents.
 As a consequence, any dynamicly added or changed RRs are signed in
 the secure zone by their authorizing dynamic update key and they are
 backed up, along with this SIG RR, in a separate online dynamic
 master file.  In this type of zone, server computation is minimized
 since the server need only check signatures on the update data and
 request, which have already been signed by the updater, generally a
 much faster operation than signing data.  However, the AXFR SIG and
 NXT RRs which covers the zone under the zone key will not cover
 dynamically added data.  Thus, for type A dynamic secure zones, zone
 transfer security is not automatically provided for dynamically added
 RRs, where they could be omitted, and authentication is not provided
 for the server denial of the existence of a dynamically added type.
 Because the dynamicly added RRs retain their update KEY signed SIG,
 finer grained control of updates can be implemented via bits in the
 KEY RR signatory field.  Because dynamic data is only stored in the
 online dynamic master file and only authenticated by dynamic keys
 which expire, updates are transient in nature.  Key rollover for an
 entity that can authorize dynamic updates is more cumbersome since
 the authority of their key must be traceable to a zone key and so, in
 general, they must securely communicate a new key to the zone
 authority for manual transfer to the off line static master file.
 NOTE: for this mode the zone SOA must be signed by a dynamic update
 key and that private key must be kept on line so that the SOA can be
 changed for updates.

Eastlake Standards Track [Page 4] RFC 2137 SDNSDU April 1997

 For mode B, the zone owner key and master file are kept on-line at
 the zone primary server. When authenticated updates succeed, SIGs
 under the zone key for the resulting data (including the possible NXT
 type bit map changes) are calculated and these SIG (and possible NXT)
 changes are entered into the zone and the unified on-line master
 file.  (The zone transfer AXFR SIG may be recalculated for each
 update or on demand when a zone transfer is requested and it is out
 of date.)
 As a consequence, this mode requires considerably more computational
 effort on the part of the server as the public/private keys are
 generally arranged so that signing (calculating a SIG) is more effort
 than verifying a signature.  The security of static data in the zone
 is decreased because the ultimate state of the static data being
 served and the ultimate zone authority private key are all on-line on
 the net.  This means that if the primary server is subverted, false
 data could be authenticated to secondaries and other
 servers/resolvers.  On the other hand, this mode of operation means
 that data added dynamically is more secure than in mode A.  Dynamic
 data will be covered by the AXFR SIG and thus always protected during
 zone transfers and will be included in NXT RRs so that it can be
 falsely denied by a server only to the same extent that static data
 can (i.e., if it is within a wild card scope). Because the zone key
 is used to sign all the zone data, the information as to who
 originated the current state of dynamic RR sets is lost, making
 unavailable the effects of some of the update control bits in the KEY
 RR signatory field.  In addition, the incorporation of the updates
 into the primary master file and their authentication by the zone key
 makes then permanent in nature.  Maintaining the zone key on-line
 also means that dynamic update keys which are signed by the zone key
 can be dynamically updated since the zone key is available to
 dynamically sign new values.
 NOTE:  The Mode A / Mode B distinction only effects the validation
 and performance of update requests.  It has no effect on retrievals.
 One reasonable operational scheme may be to keep a mostly static main
 zone operating in Mode A and have one or more dynamic subzones
 operating in Mode B.

3. Keys

 Dynamic update requests depend on update keys as described in section
 3.1 below.  In addition, the zone secure dynamic update mode and
 availability of some options is indicated in the zone key.  Finally,
 a special rule is used in searching for KEYs to validate updates as
 described in section 3.3.

Eastlake Standards Track [Page 5] RFC 2137 SDNSDU April 1997

3.1 Update Keys

 All update requests to a secure zone must include signatures by one
 or more key(s) that together can authorize that update.  In order for
 the Domain Name System (DNS) server receiving the request to confirm
 this, the key or keys must be available to and authenticated by that
 server as a specially flagged KEY Resource Record.
 The scope of authority of such keys is indicated by their KEY RR
 owner name, class, and signatory field flags as described below. In
 addition, such KEY RRs must be entity or user keys and not have the
 authentication use prohibited bit on.  All parts of the actual update
 must be within the scope of at least one of the keys used for a
 request SIG on the update request as described in section 4.

3.1.1 Update Key Name Scope

 The owner name of any update authorizing KEY RR must (1) be the same
 as the owner name of any RRs being added or deleted or (2) a wildcard
 name including within its extended scope (see section 3.3) the name
 of any RRs being added or deleted and those RRs must be in the same
 zone.

3.1.2 Update Key Class Scope

 The class of any update authorizing KEY RR must be the same as the
 class of any RR's being added or deleted.

3.1.3 Update Key Signatory Field

 The four bit "signatory field" (see RFC 2065) of any update
 authorizing KEY RR must be non-zero.  The bits have the meanings
 described below for non-zone keys (see section 3.2 for zone type
 keys).
                  UPDATE KEY RR SIGNATORY FIELD BITS
       0           1           2           3
 +-----------+-----------+-----------+-----------+
 |   zone    |  strong   |  unique   |  general  |
 +-----------+-----------+-----------+-----------+
 Bit 0, zone control - If nonzero, this key is authorized to attach,
      detach, and move zones by creating and deleting NS, glue A, and
      zone KEY RR(s).  If zero, the key can not authorize any update
      that would effect such RRs.  This bit is meaningful for both
      type A and type B dynamic secure zones.

Eastlake Standards Track [Page 6] RFC 2137 SDNSDU April 1997

      NOTE:  do not confuse the "zone" signatory field bit with the
      "zone" key type bit.
 Bit 1, strong update - If nonzero, this key is authorized to add and
      delete RRs even if there are other RRs with the same owner name
      and class that are authenticated by a SIG signed with a
      different dynamic update KEY. If zero, the key can only
      authorize updates where any existing RRs of the same owner and
      class are authenticated by a SIG using the same key.  This bit
      is meaningful only for type A dynamic zones and is ignored in
      type B dynamic zones.
      Keeping this bit zero on multiple KEY RRs with the same or
      nested wild card owner names permits multiple entities to exist
      that can create and delete names but can not effect RRs with
      different owner names from any they created.  In effect, this
      creates two levels of dynamic update key, strong and weak, where
      weak keys are limited in interfering with each other but a
      strong key can interfere with any weak keys or other strong
      keys.
 Bit 2, unique name update - If nonzero, this key is authorized to add
      and update RRs for only a single owner name.  If there already
      exist RRs with one or more names signed by this key, they may be
      updated but no new name created until the number of existing
      names is reduced to zero.  This bit is meaningful only for mode
      A dynamic zones and is ignored in mode B dynamic zones. This bit
      is meaningful only if the owner name is a wildcard.  (Any
      dynamic update KEY with a non-wildcard name is, in effect, a
      unique name update key.)
      This bit can be used to restrict a KEY from flooding a zone with
      new names.  In conjunction with a local administratively imposed
      limit on the number of dynamic RRs with a particular name, it
      can completely restrict a KEY from flooding a zone with RRs.
 Bit 3, general update - The general update signatory field bit has no
      special meaning.  If the other three bits are all zero, it must
      be one so that the field is non-zero to designate that the key
      is an update key.  The meaning of all values of the signatory
      field with the general bit and one or more other signatory field
      bits on is reserved.
 All the signatory bit update authorizations described above only
 apply if the update is within the name and class scope as per
 sections 3.1.1 and 3.1.2.

Eastlake Standards Track [Page 7] RFC 2137 SDNSDU April 1997

3.2 Zone Keys and Update Modes

 Zone type keys are automatically authorized to sign anything in their
 zone, of course, regardless of the value of their signatory field.
 For zone keys, the signatory field bits have different means than
 they they do for update keys, as shown below.  The signatory field
 MUST be zero if dynamic update is not supported for a zone and MUST
 be non-zero if it is.
                   ZONE KEY RR SIGNATORY FIELD BITS
                0           1           2           3
          +-----------+-----------+-----------+-----------+
          |   mode    |  strong   |  unique   |  general  |
          +-----------+-----------+-----------+-----------+
 Bit 0, mode - This bit indicates the update mode for this zone.  Zero
      indicates mode A while a one indicates mode B.
 Bit 1, strong update - If nonzero, this indicates that the "strong"
      key feature described in section 3.1.3 above is implemented and
      enabled for this secure zone.  If zero, the feature is not
      available.  Has no effect if the zone is a mode B secure update
      zone.
 Bit 2, unique name update - If nonzero, this indicates that the
      "unique name" feature described in section 3.1.3 above is
      implemented and enabled for this secure zone.  If zero, this
      feature is not available.  Has no effect if the zone is a mode B
      secure update zone.
 Bit 3, general - This bit has no special meeting.  If dynamic update
      for a zone is supported and the other bits in the zone key
      signatory field are zero, it must be a one.  The meaning of zone
      keys where the signatory field has the general bit and one or
      more other bits on is reserved.
 If there are multiple dynamic update KEY RRs for a zone and zone
 policy is in transition, they might have different non-zero signatory
 fields.  In that case, strong and unique name restrictions must be
 enforced as long as there is a non-expired zone key being advertised
 that indicates mode A with the strong or unique name bit on
 respectively.  Mode B updates MUST be supported as long as there is a
 non-expired zone key that indicates mode B.  Mode A updates may be
 treated as mode B updates at server option if non-expired zone keys
 indicate that both are supported.

Eastlake Standards Track [Page 8] RFC 2137 SDNSDU April 1997

 A server that will be executing update operations on a zone, that is,
 the primary master server, MUST not advertize a zone key that will
 attract requests for a mode or features that it can not support.

3.3 Wildcard Key Punch Through

 Just as a zone key is valid throughout the entire zone, update keys
 with wildcard names are valid throughout their extended scope, within
 the zone. That is, they remain valid for any name that would match
 them, even existing specific names within their apparent scope.
 If this were not so, then whenever a name within a wildcard scope was
 created by dynamic update, it would be necessary to first create a
 copy of the KEY RR with this name, because otherwise the existence of
 the more specific name would hide the authorizing KEY RR and would
 make later updates impossible.  An updater could create such a KEY RR
 but could not zone sign it with their authorizing signer.  They would
 have to sign it with the same key using the wildcard name as signer.
 Thus in creating, for example, one hundred type A RRs authorized by a
 *.1.1.1.in-addr.arpa. KEY RR, without key punch through 100 As, 100
 KEYs, and 200 SIGs would have to be created as opposed to merely 100
 As and 100 SIGs with key punch through.

4. Update Signatures

 Two kinds of signatures can appear in updates.  Request signatures,
 which are always required, cover the entire request and authenticate
 the DNS header, including opcode, counts, etc., as well as the data.
 Data signatures, on the other hand, appear only among the RRs to be
 added and are only required for mode A operation.  These two types of
 signatures are described further below.

4.1 Update Request Signatures

 An update can effect multiple owner names in a zone.  It may be that
 these different names are covered by different dynamic update keys.
 For every owner name effected, the updater must know a private key
 valid for that name (and the zone's class) and must prove this by
 appending request SIG RRs under each such key.
 As specified in RFC 2065, a request signature is a SIG RR occurring
 at the end of a request with a type covered field of zero.  For an
 update, request signatures occur in the Additional information
 section.  Each request SIG signs the entire request, including DNS
 header, but excluding any other request SIG(s) and with the ARCOUNT
 in the DNS header set to what it wold be without the request SIGs.

Eastlake Standards Track [Page 9] RFC 2137 SDNSDU April 1997

4.2 Update Data Signatures

 Mode A dynamic secure zones require that the update requester provide
 SIG RRs that will authenticate the after update state of all RR sets
 that are changed by the update and are non-empty after the update.
 These SIG RRs appear in the request as RRs to be added and the
 request must delete any previous data SIG RRs that are invalidated by
 the request.
 In Mode B dynamic secure zones, all zone data is authenticated by
 zone key SIG RRs.  In this case, data signatures need not be included
 with the update.  A resolver can determine which mode an updatable
 secure zone is using by examining the signatory field bits of the
 zone KEY RR (see section 3.2).

5. Security Considerations

 Any zone permitting dynamic updates is inherently less secure than a
 static secure zone maintained off line as recommended in RFC 2065. If
 nothing else, secure dynamic update requires on line change to and
 re-signing of the zone SOA resource record (RR) to increase the SOA
 serial number.  This means that compromise of the primary server host
 could lead to arbitrary serial number changes.
 Isolation of dynamic RRs to separate zones from those holding most
 static RRs can limit the damage that could occur from breach of a
 dynamic zone's security.

References

 [RFC2065] Eastlake, D., and C. Kaufman, "Domain Name System Security
 Extensions", RFC 2065, CyberCash, Iris, January 1997.
 [RFC2136] Vixie, P., Editor, Thomson, T., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)", RFC 2136,
 April 1997.
 [RFC1035] Mockapetris, P., "Domain Names - Implementation and
 Specifications", STD 13, RFC 1035, November 1987.
 [RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
 STD 13, RFC 1034, November 1987.

Eastlake Standards Track [Page 10] RFC 2137 SDNSDU April 1997

Author's Address

 Donald E. Eastlake, 3rd
 CyberCash, Inc.
 318 Acton Street
 Carlisle, MA 01741 USA
 Phone:   +1 508-287-4877
          +1 508-371-7148 (fax)
          +1 703-620-4200 (main office, Reston, Virginia, USA)
 EMail:   dee@cybercash.com

Eastlake Standards Track [Page 11]

/data/webs/external/dokuwiki/data/pages/rfc/rfc2137.txt · Last modified: 1997/04/18 22:09 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki