Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools

Problem, Formatting or Query -  Send Feedback

Was this page helpful?-10+1


NETWORK WORKING GROUP J. McConnell Request for Comment: 177 Ames Research Center Moffet Field, CA Obsoletes: none 15 June 1971 Updates: 125 NIC: 7102

 As more nodes are connected to the ARPA network, the types of
 graphical display processors available to users is quite varied.  To
 attempt to facilitate the transmission of graphical information over
 the network, a device independent description of a display is
 described.  The using host may make any conversions necessary to
 realize the picture on a specific device.  It is also possible to
 interpose a form machine as proposed by Heafner and Harslem in RFC
 #94.  Some of the items and entities described herein were first
 discussed by Steve Crocker in RFC #86.  It is intended that this
 description is to be oriented to a refresh display with point,
 vector, and character drawing capability, these types of devices
 include the IBM 2250, IMLAC PDS-1, the DEC 338, and DEC 340, as well
 as the Evans and Sutherland LDS-1.  However, direct video storage
 tube devices represented by the ARDS, Tektronix and Computer devices
 can also serve as clumsy interactive devices.  Hard copy devices,
 such as microfilm or plotters, can also be used at the using host's
 There are several items and constructs which will be defined before
 discussing the specifics of the description:
    1.  The network standard graphics description stream (NGDS)
    contains the description, data, and operators necessary to effect
    a display.
    2.  The network standard stream interpreter (NGSI) parses the NGDS
    into its components.
    3.   The network standard display list (NGDL) is the basic entity
    which, when executed, causes graphical information to be
    4.  The network standard list interpreter (NGLI) is the entity
    which executes the NGDL and controls the beam movement to effect
    generation of graphical information.
    5.  The network standard screen (NGS) is the entity on which the
    information is to be displayed.  It may be divided into image
    areas to be defined later.


    6.  The network standard graphics list pointer (NGLP) and the
    network standard graphics execution stack (NGES) are entities
    which describe the state of the NGLI at any given time and provide
    the facilities to allow the NGLI to be a recursive interpreter.
 Figure 1. summarizes the preceding discussion graphically, which is
 The network standard graphics screen is rectangular and positions on
 it are specified by an ordered pair of fractions representing the
 horizontal distance from the left edge and the vertical distance from
 the bottom edges respectively.  These shall be termed the (x,y)
 coordinates as is standard.  There is no specification of resolution,
 so that the quality of the picture will degrade with the decreasing
 resolution of a poor display device, or be improved if it is
 displayed on a higher resolution device.  Coordinate values are
 specified by a 16 bit unsigned fractions with the binary point to the
 left of the most significant bit - this provides a normalized screen
 with coordinates between 0.0 and .999...9.
 The NGS may be subdivided into rectangular image areas with
 possibility unique displays in each space. An image area has three
 attributes:  a 16 bit integer name, an x,y pair specifying the lower
 left corner and an x,y pair to specify the upper right corner of the
 area.  Image spaces may overlap, but may not be completely contained
 within each other.  The main image space has the name 0 and is
 coincident with the NGS.  The use of image spaces allows for
 manipulation of part of the NGS's contents, as well as redefining the
 coordinate space. Within an image area, coordinate values are
 fractional displacements from the lower left hand corner of the image
 space.  Thus an image area defined from (0.0, 0.0) to (0.5, 0.5)
 would contain an image one-fourth of the size of what it would be on
 the full NGS.
 Character strings may be displayed at arbitrary points in an image
 area.  Because many display devices have hardware character
 generators capable of producing one, or a few sizes, character
 scaling within an image area will not be expected.  Characters shall
 be assumed to be .014 screen width wide, and .025 screen height high
 including spacing.  This gives a screen capacity of 72 characters and
 40 lines.  When the beam is moved to be a screen position prior to
 drawing a character, it is assumed to be in the center of the
 rectangle defining the character space.  The beam position after
 drawing a character, or a string of characters, is undefined.
 The format of the NGDS can now be specified.  The NGSI parses the
 NGDS into commands.  The commands are in a prefix format with an
 eight bit command followed by the necessary parameters.  Their


 descriptions follow the numerical order of the command codes.
 ERASE (commands = 0) consists of a command byte and no parameters.
 Its effect is to erase the full NGS.
 DEFINE LIST (commands = 1) has three parameters.  A 16 bit integer
 for the list name is first.  If the name has already been used, then
 this command redefines the list.  The count of the items in the list
 is also a 16 bit integer defining the length of the list in items.
 The list items follow the count terminating with an end list item.
 The items themselves are used to control the NGLI and the movement of
 the beam when drawing pictures.  They are also in prefix format, with
 an eight bit item code followed by the necessary parameters.  All
 names are 16 bit integers, coordinate data are 16 bit unsigned
 fractions as previously described.  Any other parameters will have
 their type and size specified in individual descriptions.
    a.  OPEN IMAGE AREA (name) (item type = 0) instructs the NGLI that
    list commands which follow are to be adjusted to be contained
    within the named area.  A nonexistent area name is treated as a
    NOP.  If no image area is specified for the NGLI the default area
    is area 0, the NGS.  This directive remains in effect until
    another type 0 item is encountered by the NGLI.
    b.  RESET IMAGE AREA (name) (item type = 1) causes the NGLI to
    move the beam to the lower left corner of the image area.  A
    nonexistent name is again treated as a NOP.
    c.  CLEAR IMAGE AREA (name) (item type = 2) causes the NGLI to
    erase all graphical information in the specified area, and then to
    perform a reset command.
 The following items are display items which actually cause beam
 movement by the NGLI.  Coordinate data are relative to the origin of
 the current image area and are taken as fractional displacements
 within this area.
    d.  MOVE BEAM (x,y) (item type = 3) causes the NGLI to move the
    beam to (x,y) relative to the current origin.
    e.  DISPLAY CURRENT POSITION (item type = 4) causes the NGLI to
    display the current point on the NGS.


    f.  DISPLAY VECTOR (x,y) (item type = 5) causes a vector to be
    drawn from the current point to (x,y).  After the operation, (x,y)
    becomes the current point.
    g.  DISPLAY CHARACTERS (n, 'C1, C2...Cn') (item type = 6) causes
    the n characters to be displayed starting from the current point.
    N is the character count and is an eight bit byte.
 The character set recognized by the NGLI is composed of eight bit
 bytes interpreted in the following ways.  Any character with the most
 significant bit a zero is interpreted as an ASCII character.  Some
 non-graphic ASCII characters may have special functions within a
    1.  Line feed (LF) move the beam one line spacing downward.
    2.  Carriage return (CR) move the beam to the left most character
    position in the current line.
    3.  Backspace (BS) move the beam one character position to the
    left in the current line.
    4.  Tab move the beam a predetermined number of character
    positions to the right in the current line.  The number will
    follow the tab character in the string, but may not exceed the
    capacity of the current line.
    5.  Vertical tab (VT) move the beam down a predetermined number of
    line spacings.  The number of spacings follow the VT character and
    may not exceed the line capacity of the screen.  This is expanded
    as multiple line feeds.
    6.  Any other non-graphic character - could cause a space
    character to appear in its place on the display, or it may be used
    for any purpose two processes choose.
 Characters with the most significant bit a one are used for an
 extended character set where a device can support this.  These may
 also be used as an implicit stroke table, calls being the names of
 special graphic lists that may be defined in the NGDS.  If no eight
 bit list name exists, then the character is a space.
    h.  EXECUTE LIST (name, x, y) (item type =7) causes the NGLI to
    suspend interpretation of the list and interpret the named list.
    It is equivalent to a subroutine call.  The (x,y) pair specifies
    the origin of the new list relative to the current origin.  The
    actions taken by the NGLI are specified in the next section


    i.  COPY LIST (name, x,y) (item type = 8) cause the items
    contained in the named list to be copied into the place of the
    item with the origin of the list at (x,y) relative to the current
    origin.  This is analogous to item (h) as a subroutine is to a
    j.  EXECUTE TABLE (name, mode, length) (item = 9) causes the NGLI
    to treat the named list as a special entity.  It is constrained to
    contain only coordinate pairs.  It may be executed in either point
    or vector mode as specified by the mode parameter 1= vector, 0=
    point.  The length of the list is specified by a 16 bit integer
    k.  END LIST (item type = 10) has no parameters and informs the
    NGLI that the end of a list has been reached.
    l.  TABLE (n) (item type = 11) specifies that there are (x,y)
    pairs in this list.  N is a 16 bit integer.
    m.  Set vector mode (mode) (item type = 12)
    n.  Set character mode (mode) (item type 13)
 In addition to the above display items, some items exist which
 control the display mode of the above where this is applicable.
 There are two mode items, the one governing vector modes, and one for
 character modes.  The quantities specified include brightness,
 blinking, color selection, and mode dependent descriptions.
 For vector modes, the texture of vectors such as dashed, solid or,
 dotted can be specified.  For characters, size, and orientation can
 be additionally specified.  The scope of a mode item extends to the
 next encountered mode item of the same type.  Mode specifications
 could have been included in the display items at the expense of more
 parameters and in possibly more data to be transmitted.  The mode
 specification consists of two eight bit bytes.  The bytes have the
 following organization:


 1    4         3            2                     2    3

+———————–+ +—————–+ +——————-+ | | | | | | | | | | | | B | BL | CLR | | TX | | | OR | SZ | | | | | | | | | | | | | +———————–+ +—————–+ +——————-+

BYTEO - both modes BYTE 1- vector BYTE 1- Character mode


Where B Blink if set

          BL    Brightness level - 0 = invisible, IIII brightness
          CLR   Color          One bit for each primary
          TX    Texture        OO = solid
                               01 = dashed
                               10 = dotted
                               11 = dot - dash
         OR     Orientation binary value x 90deg
         SZ     Size
 If the device will ot support them, or provide subroutines to perform
 these enhanced functions, they are treated as NOPs.
 Thus the NGDL is a set of named lists.
    DEFINE IMAGE AREA (command = 2) has three parameters a 16 bit area
    name; an (x,y) pair defining the lower left corner of the area and
    an (x,y) pair defining the upper right corner.  If the name has
    already been used to define an area then this command serves a
    re-definition of that area.  If the two (x,y) information
    displayed in it.  If X1 is greater than Xr or Y1 is greater than
    Yr then the definition is treated as NOP.
    The following commands are included to avoid retransmission of a
    list when some minor changes to it are necessary.  All instances
    of a list, where an instance is a command to execute the list will
    be effected.  Where a list has been copied into another list, no
    change will take place in the copied list.


    TRANSLATE LIST (command = 3) provides for translation of all
    instances of a list within all of the image spaces it occurs in.
    Parameters are the 16 bit list name, and two 16 fractions for the
    coordinate values of the translation.
    SCALE LIST (command = 4) can change the size of the picture
    created by a list in all image spaces.  The parameters are the 16
    bit list name followed by two 16 bit (X,Y) unsigned fractions with
    eight bits of exponent followed by eight bits of mantissa.  These
    alter the scale factors in the X and Y directions.
    ROTATE LIST (command = 5) will rotate all instances of a list.
    The parameters are for the 16 bit list name, and a 16 bit value
    corresponding to rotational angle in degrees with the sense being
    counter-clockwise for increasing values and the possible axis
    being zero degrees.
 The NGLI executes in a loop, taking items from the main list.  When
 the end of the main list is reached, the NGLI returns to the top of
 it.  At any point, the NGLP gives the NGLI the positional
 displacement of the next display item it is processing.  When a
 display item of the type h. is encountered, the current lists's
 execution is suspended,  the name of the list, the current origin,
 and the NGLP are saved in the NGES.  The NGLP is re-set to zero, the
 next current origin is calculated, and execution of the new list
 commences.  When the end of the list is encountered, the old values
 are restored from the NGES and execution of the suspended list
 continues.  The NGLI is then a recursive interpreter.  Whenever a new
 image area is opened, the name of that image area is stored in the
 current image area name.
 The problem of interacting with the displayed picture has yet to be
 addressed since this is a more complicated area.  Interaction may
 occur in two fashions:  the first, and the easiest to handle, are
 those kinds of events which are separate from the picture itself.
 This encompasses key boards and function key types of devices.  These
 can be handled as standard messages from the graphics device to the
 serving host.  The second class of interactions is with the picture
 itself.  This is more difficult because of the problem of associating
 the point selected with some meaningful entity such as a list.  This
 association can probably only be made by the serving host since the
 using host, or a Form Machine, may have transformed the NGDS in
 unknown ways, and the NGDS may no longer exist at the using host's
 There are essentially two classes of devices that can interact with
 the picture.  The first class is synchronous devices, ones who only
 cause some attention to occur while a given display item is being


 executed.  Light pens are synchronous devices.  Asynchronous devices
 are those which can interact regardless of which, or even when no,
 display item is being executed.  Asynchronous devices make
 associations more difficult since no relationship can be easily
 inferred as they can for synchronous devices.
 The NGES is created for the interaction with the picture.  For
 synchronous devices the current values for the list name, origin, and
 NGLP, as well as the contents of the NGES provides a hierarchical
 structure where associations can be made.  For asynchronous devices,
 the structure is probably not as necessary as the name and
 coordinates within the image space in which the interaction occurred.
 It will be necessary for the using host to understand which type of
 devices are available and to supply proper type of interaction
 information to the serving host.
 The form of the interaction information for synchronous devices

INTERACTION (type, cia, cln, cor, clp, n, l1, or1, lp1, …ln, orn, lpn)

 Where type describes the interaction type 0=synchronous
 cia     current image area name
 cln     current list name
 cor     current origin value
 clp     current NGLP value
 n       number of entries in NGES, higher value of n is older entry
 li      list name of the i th entry
 ori     origin of the i th entry
 lpi     NGLP of the i th entry
 The form for asynchronous i.. teraction is:
 INTERACTION (type, cia, iax, iay, sx, sy)
 Where type = 1 for asynchronous interactions
 cia     current image name
 iax     image area x coordinate
 iay     image area y coordinate
 sx,sy   screen x,y coordinates


NETWORK | Using Host

       |                +-------+
       |                |       |
       |                | NGDL  |          +--------+       +-------+
       +--------+       |       |--------->|        |       |       |
       |        |------>|       |          |  NGLI  |------>|  NGS  |
       |  NGDS  |       +-------+          |        |       |       |
       |        |       +-------+          |        |       |       |
       |        |------>|       |--------->|        |       +-------+
       +--------+       |IMAGE  |          +--------+
       |                |AREA   |              ^
       |                |DEFINI-|              |
       |                |TIONS  |              V
       |                +-------+          *--------+
       |                                   |  NGLES |
       |                                   |    &   |
       |                                   |  NGLP  |
       |                                   +--------+
      [This RFC was put into machine readable form for entry]
  [into the online RFC archives by Kelly Tardif, Viagénie 12/1999]

McConnell [Page 9]

/data/webs/external/dokuwiki/data/pages/rfc/rfc177.txt · Last modified: 2000/03/24 18:07 (external edit)