GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc9227



Independent Submission V. Smyslov Request for Comments: 9227 ELVIS-PLUS Category: Informational March 2022 ISSN: 2070-1721

 Using GOST Ciphers in the Encapsulating Security Payload (ESP) and
         Internet Key Exchange Version 2 (IKEv2) Protocols

Abstract

 This document defines a set of encryption transforms for use in the
 Encapsulating Security Payload (ESP) and in the Internet Key Exchange
 version 2 (IKEv2) protocols, which are parts of the IP Security
 (IPsec) protocol suite.  The transforms are based on the GOST R
 34.12-2015 block ciphers (which are named "Magma" and "Kuznyechik")
 in Multilinear Galois Mode (MGM) and the external rekeying approach.
 This specification was developed to facilitate implementations that
 wish to support the GOST algorithms.  This document does not imply
 IETF endorsement of the cryptographic algorithms used in this
 document.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.
 This is a contribution to the RFC Series, independently of any other
 RFC stream.  The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment.  Documents approved for publication by
 the RFC Editor are not candidates for any level of Internet Standard;
 see Section 2 of RFC 7841.
 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9227.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors.  All rights reserved.
 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document.  Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1.  Introduction
 2.  Requirements Language
 3.  Overview
 4.  Description of Transforms
   4.1.  Tree-Based External Rekeying
   4.2.  Initialization Vector Format
   4.3.  Nonce Format for MGM
     4.3.1.  MGM Nonce Format for Transforms Based on the
             "Kuznyechik" Cipher
     4.3.2.  MGM Nonce Format for Transforms Based on the "Magma"
             Cipher
   4.4.  Keying Material
   4.5.  Integrity Check Value
   4.6.  Plaintext Padding
   4.7.  AAD Construction
     4.7.1.  ESP AAD
     4.7.2.  IKEv2 AAD
   4.8.  Using Transforms
 5.  Security Considerations
 6.  IANA Considerations
 7.  References
   7.1.  Normative References
   7.2.  Informative References
 Appendix A.  Test Vectors
 Acknowledgments
 Author's Address

1. Introduction

 The IP Security (IPsec) protocol suite consists of several protocols,
 of which the Encapsulating Security Payload (ESP) [RFC4303] and the
 Internet Key Exchange version 2 (IKEv2) [RFC7296] are most widely
 used.  This document defines four transforms for ESP and IKEv2 based
 on Russian cryptographic standard algorithms (often referred to as
 "GOST" algorithms).  These definitions are based on the
 recommendations [GOST-ESP] established by the Federal Agency on
 Technical Regulating and Metrology (Rosstandart), which describe how
 Russian cryptographic standard algorithms are used in ESP and IKEv2.
 The transforms defined in this document are based on two block
 ciphers from Russian cryptographic standard algorithms --
 "Kuznyechik" [GOST3412-2015] [RFC7801] and "Magma" [GOST3412-2015]
 [RFC8891] in Multilinear Galois Mode (MGM) [GOST-MGM] [RFC9058].
 These transforms provide Authenticated Encryption with Associated
 Data (AEAD).  An external rekeying mechanism, described in [RFC8645],
 is also used in these transforms to limit the load on session keys.
 Because the GOST specification includes the definition of both
 128-bit ("Kuznyechik") and 64-bit ("Magma") block ciphers, both are
 included in this document.  Implementers should make themselves aware
 of the relative security and other cost-benefit implications of the
 two ciphers.  See Section 5 for more details.
 This specification was developed to facilitate implementations that
 wish to support the GOST algorithms.  This document does not imply
 IETF endorsement of the cryptographic algorithms used in this
 document.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Overview

 Russian cryptographic standard algorithms, often referred to as
 "GOST" algorithms, constitute a set of cryptographic algorithms of
 different types -- ciphers, hash functions, digital signatures, etc.
 In particular, Russian cryptographic standard [GOST3412-2015] defines
 two block ciphers -- "Kuznyechik" (also defined in [RFC7801]) and
 "Magma" (also defined in [RFC8891]).  Both ciphers use a 256-bit key.
 "Kuznyechik" has a block size of 128 bits, while "Magma" has a 64-bit
 block.
 Multilinear Galois Mode (MGM) is an AEAD mode defined in [GOST-MGM]
 and [RFC9058].  It is claimed to provide defense against some attacks
 on well-known AEAD modes, like Galois/Counter Mode (GCM).
 [RFC8645] defines mechanisms that can be used to limit the number of
 times any particular session key is used.  One of these mechanisms,
 called external rekeying with tree-based construction (defined in
 Section 5.2.3 of [RFC8645]), is used in the defined transforms.  For
 the purpose of deriving subordinate keys, the Key Derivation Function
 (KDF) KDF_GOSTR3411_2012_256, defined in Section 4.5 of [RFC7836], is
 used.  This KDF is based on a Hashed Message Authentication Code
 (HMAC) construction [RFC2104] with a Russian GOST hash function
 defined in Russian cryptographic standard [GOST3411-2012] (also
 defined in [RFC6986]).

4. Description of Transforms

 This document defines four transforms of Type 1 (Encryption
 Algorithm) for use in ESP and IKEv2.  All of them use MGM as the mode
 of operation with tree-based external rekeying.  The transforms
 differ in underlying ciphers and in cryptographic services they
 provide.
  • ENCR_KUZNYECHIK_MGM_KTREE (Transform ID 32) is an AEAD transform

based on the "Kuznyechik" algorithm; it provides confidentiality

    and message authentication and thus can be used in both ESP and
    IKEv2.
  • ENCR_MAGMA_MGM_KTREE (Transform ID 33) is an AEAD transform based

on the "Magma" algorithm; it provides confidentiality and message

    authentication and thus can be used in both ESP and IKEv2.
  • ENCR_KUZNYECHIK_MGM_MAC_KTREE (Transform ID 34) is a MAC-only

transform based on the "Kuznyechik" algorithm; it provides no

    confidentiality and thus can only be used in ESP, but not in
    IKEv2.
  • ENCR_MAGMA_MGM_MAC_KTREE (Transform ID 35) is a MAC-only transform

based on the "Magma" algorithm; it provides no confidentiality and

    thus can only be used in ESP, but not in IKEv2.
 Note that transforms ENCR_KUZNYECHIK_MGM_MAC_KTREE and
 ENCR_MAGMA_MGM_MAC_KTREE don't provide any confidentiality, but they
 are defined as Type 1 (Encryption Algorithm) transforms because of
 the need to include an Initialization Vector (IV), which is
 impossible for Type 3 (Integrity Algorithm) transforms.

4.1. Tree-Based External Rekeying

 All four transforms use the same tree-based external rekeying
 mechanism.  The idea is that the key that is provided for the
 transform is not directly used to protect messages.  Instead, a tree
 of keys is derived using this key as a root.  This tree may have
 several levels.  The leaf keys are used for message protection, while
 intermediate-node keys are used to derive lower-level keys, including
 leaf keys.  See Section 5.2.3 of [RFC8645] for more details.  This
 construction allows us to protect a large amount of data, at the same
 time providing a bound on a number of times any particular key in the
 tree is used, thus defending against some side-channel attacks and
 also increasing the key lifetime limitations based on combinatorial
 properties.
 The transforms defined in this document use a three-level tree.  The
 leaf key that protects a message is computed as follows:
      K_msg = KDF (KDF (KDF (K, l1, 0x00 | i1), l2, i2), l3, i3)
 where:
 KDF (k, l, s)   Key Derivation Function KDF_GOSTR3411_2012_256
                 (defined in Section 4.5 of [RFC7836]), which accepts
                 three input parameters -- a key (k), a label (l), and
                 a seed (s) -- and provides a new key as output
 K               the root key for the tree (see Section 4.4)
 l1, l2, l3      labels defined as 6-octet ASCII strings without null
                 termination:
                 l1 =  "level1"
                 l2 =  "level2"
                 l3 =  "level3"
 i1, i2, i3      parameters that determine which keys out of the tree
                 are used on each level.  Together, they determine a
                 leaf key that is used for message protection; the
                 length of i1 is one octet, and i2 and i3 are two-
                 octet integers in network byte order
 |               indicates concatenation
 This construction allows us to generate up to 2^8 keys on level 1 and
 up to 2^16 keys on levels 2 and 3.  So, the total number of possible
 leaf keys generated from a single Security Association (SA) key is
 2^40.
 This specification doesn't impose any requirements on how frequently
 external rekeying takes place.  It is expected that the sending
 application will follow its own policy dictating how many times the
 keys on each level must be used.

4.2. Initialization Vector Format

 Each message protected by the defined transforms MUST contain an IV.
 The IV has a size of 64 bits and consists of four fields.  The fields
 i1, i2, and i3 are parameters that determine the particular leaf key
 this message was protected with (see Section 4.1).  The fourth field
 is a counter, representing the message number for this key.
                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      i1       |               i2              |      i3       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   i3 (cont)   |                     pnum                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                          Figure 1: IV Format
 where:
 i1 (1 octet), i2 (2 octets), i3 (2 octets):  parameters that
    determine the particular key used to protect this message; 2-octet
    parameters are integers in network byte order
 pnum (3 octets):  message counter in network byte order for the leaf
    key protecting this message; up to 2^24 messages may be protected
    using a single leaf key
 For any given SA, the IV MUST NOT be used more than once, but there
 is no requirement that IV be unpredictable.

4.3. Nonce Format for MGM

 MGM requires a per-message nonce (called the Initial Counter Nonce,
 or ICN in [RFC9058]) that MUST be unique in the context of any leaf
 key.  The size of the ICN is n-1 bits, where n is the block size of
 the underlying cipher.  The two ciphers used in the transforms
 defined in this document have different block sizes, so two different
 formats for the ICN are defined.
 MGM specification requires that the nonce be n-1 bits in size, where
 n is the block size of the underlying cipher.  This document defines
 MGM nonces having n bits (the block size of the underlying cipher) in
 size.  Since n is always a multiple of 8 bits, this makes MGM nonces
 having a whole number of octets.  When used inside MGM, the most
 significant bit of the first octet of the nonce (represented as an
 octet string) is dropped, making the effective size of the nonce
 equal to n-1 bits.  Note that the dropped bit is a part of the "zero"
 field (see Figures 2 and 3), which is always set to 0, so no
 information is lost when it is dropped.

4.3.1. MGM Nonce Format for Transforms Based on the "Kuznyechik" Cipher

 For transforms based on the "Kuznyechik" cipher
 (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE), the
 ICN consists of a "zero" octet; a 24-bit message counter; and a
 96-bit secret salt, which is fixed for the SA and is not transmitted.
                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     zero      |                     pnum                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                             salt                              |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    Figure 2: Nonce Format for Transforms Based on the "Kuznyechik"
                                 Cipher
 where:
 zero (1 octet):  set to 0
 pnum (3 octets):  the counter for the messages protected by the given
    leaf key; this field MUST be equal to the pnum field in the IV
 salt (12 octets):  secret salt.  The salt is a string of bits that
    are formed when the SA is created (see Section 4.4 for details).
    The salt does not change during the SA's lifetime and is not
    transmitted on the wire.  Every SA will have its own salt.

4.3.2. MGM Nonce Format for Transforms Based on the "Magma" Cipher

 For transforms based on the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and
 ENCR_MAGMA_MGM_MAC_KTREE), the ICN consists of a "zero" octet; a
 24-bit message counter; and a 32-bit secret salt, which is fixed for
 the SA and is not transmitted.
                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     zero      |                     pnum                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                             salt                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Figure 3: Nonce Format for Transforms Based on the "Magma" Cipher
 where:
 zero (1 octet):  set to 0
 pnum (3 octets):  the counter for the messages protected by the given
    leaf key; this field MUST be equal to the pnum field in the IV
 salt (4 octets):  secret salt.  The salt is a string of bits that are
    formed when the SA is created (see Section 4.4 for details).  The
    salt does not change during the SA's lifetime and is not
    transmitted on the wire.  Every SA will have its own salt.

4.4. Keying Material

 We'll call a string of bits that is used to initialize the transforms
 defined in this specification a "transform key".  The transform key
 is a composite entity consisting of the root key for the tree and the
 secret salt.
 The transform key for the ENCR_KUZNYECHIK_MGM_KTREE and
 ENCR_KUZNYECHIK_MGM_MAC_KTREE transforms consists of 352 bits (44
 octets), of which the first 256 bits is a root key for the tree
 (denoted as K in Section 4.1) and the remaining 96 bits is a secret
 salt (see Section 4.3.1).
 The transform key for the ENCR_MAGMA_MGM_KTREE and
 ENCR_MAGMA_MGM_MAC_KTREE transforms consists of 288 bits (36 octets),
 of which the first 256 bits is a root key for the tree (denoted as K
 in Section 4.1) and the remaining 32 bits is a secret salt (see
 Section 4.3.2).
 In the case of ESP, the transform keys are extracted from the KEYMAT
 as defined in Section 2.17 of [RFC7296].  In the case of IKEv2, the
 transform keys are either SK_ei or SK_er, which are generated as
 defined in Section 2.14 of [RFC7296].  Note that since these
 transforms provide authenticated encryption, no additional keys are
 needed for authentication.  This means that, in the case of IKEv2,
 the keys SK_ai/SK_ar are not used and MUST be treated as having zero
 length.

4.5. Integrity Check Value

 The length of the authentication tag that MGM can compute is in the
 range from 32 bits to the block size of the underlying cipher.
 Section 4 of [RFC9058] states that the authentication tag length MUST
 be fixed for a particular protocol.  For transforms based on the
 "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and
 ENCR_KUZNYECHIK_MGM_MAC_KTREE), the resulting Integrity Check Value
 (ICV) length is set to 96 bits.  For transforms based on the "Magma"
 cipher (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE), the full
 ICV length is set to the block size (64 bits).

4.6. Plaintext Padding

 The transforms defined in this document don't require any plaintext
 padding, as specified in [RFC9058].  This means that only those
 padding requirements that are imposed by the protocol are applied (4
 bytes for ESP, no padding for IKEv2).

4.7. AAD Construction

4.7.1. ESP AAD

 Additional Authenticated Data (AAD) in ESP is constructed
 differently, depending on the transform being used and whether the
 Extended Sequence Number (ESN) is in use or not.  The
 ENCR_KUZNYECHIK_MGM_KTREE and ENCR_MAGMA_MGM_KTREE transforms provide
 confidentiality, so the content of the ESP body is encrypted and the
 AAD consists of the ESP Security Parameter Index (SPI) and (E)SN.
 The AAD is constructed similarly to the AAD in [RFC4106].
 On the other hand, the ENCR_KUZNYECHIK_MGM_MAC_KTREE and
 ENCR_MAGMA_MGM_MAC_KTREE transforms don't provide confidentiality;
 they provide only message authentication.  For this purpose, the IV
 and the part of the ESP packet that is normally encrypted are
 included in the AAD.  For these transforms, the encryption capability
 provided by MGM is not used.  The AAD is constructed similarly to the
 AAD in [RFC4543].
                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               SPI                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     32-bit Sequence Number                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            Figure 4: AAD for AEAD Transforms with 32-Bit SN
                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               SPI                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 64-bit Extended Sequence Number               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           Figure 5: AAD for AEAD Transforms with 64-Bit ESN
                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               SPI                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     32-bit Sequence Number                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               IV                              |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                     Payload Data (variable)                   ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Padding (0-255 bytes)                      |
   +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               |  Pad Length   | Next Header   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    Figure 6: AAD for Authentication-Only Transforms with 32-Bit SN
                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               SPI                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 64-bit Extended Sequence Number               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               IV                              |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                     Payload Data (variable)                   ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Padding (0-255 bytes)                      |
   +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               |  Pad Length   | Next Header   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    Figure 7: AAD for Authentication-Only Transforms with 64-Bit ESN

4.7.2. IKEv2 AAD

 For IKEv2, the AAD consists of the IKEv2 Header, any unencrypted
 payloads following it (if present), and either the Encrypted payload
 header (Section 3.14 of [RFC7296]) or the Encrypted Fragment payload
 (Section 2.5 of [RFC7383]), depending on whether IKE fragmentation is
 used.  The AAD is constructed similarly to the AAD in [RFC5282].
                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                         IKEv2 Header                          ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                   Unencrypted IKE Payloads                    ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Next Payload  |C|  RESERVED   |         Payload Length        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      Figure 8: AAD for IKEv2 in the Case of the Encrypted Payload
                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                         IKEv2 Header                          ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                   Unencrypted IKE Payloads                    ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Next Payload  |C|  RESERVED   |         Payload Length        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        Fragment Number        |        Total Fragments        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Figure 9: AAD for IKEv2 in the Case of the Encrypted Fragment Payload

4.8. Using Transforms

 When the SA is established, the i1, i2, and i3 parameters are set to
 0 by the sender and a leaf key is calculated.  The pnum parameter
 starts from 0 and is incremented with each message protected by the
 same leaf key.  When the sender decides that the leaf should be
 changed, it increments the i3 parameter and generates a new leaf key.
 The pnum parameter for the new leaf key is reset to 0, and the
 process continues.  If the sender decides that a third-level key
 corresponding to i3 is used enough times, it increments i2, resets i3
 to 0, and calculates a new leaf key.  The pnum is reset to 0 (as with
 every new leaf key), and the process continues.  A similar procedure
 is used when a second-level key needs to be changed.
 A combination of i1, i2, i3, and pnum MUST NOT repeat for any
 particular SA.  This means that the wrapping of these counters is not
 allowed: when i2, i3, or pnum reaches its respective maximum value, a
 procedure for changing a leaf key, described above, is executed, and
 if all four parameters reach their maximum values, the IPsec SA
 becomes unusable.
 There may be other reasons to recalculate leaf keys besides reaching
 maximum values for the counters.  For example, as described in
 Section 5, it is RECOMMENDED that the sender count the number of
 octets protected by a particular leaf key and generate a new key when
 some threshold is reached, and at the latest when reaching the octet
 limits stated in Section 5 for each of the ciphers.
 The receiver always uses i1, i2, and i3 from the received message.
 If they differ from the values in previously received packets, a new
 leaf key is calculated.  The pnum parameter is always used from the
 received packet.  To improve performance, implementations may cache
 recently used leaf keys.  When a new leaf key is calculated (based on
 the values from the received message), the old key may be kept for
 some time to improve performance in the case of possible packet
 reordering (when packets protected by the old leaf key are delayed
 and arrive later).

5. Security Considerations

 The most important security consideration for MGM is that the nonce
 MUST NOT repeat for a given key.  For this reason, the transforms
 defined in this document MUST NOT be used with manual keying.
 Excessive use of the same key can give an attacker advantages in
 breaking security properties of the transforms defined in this
 document.  For this reason, the amount of data that any particular
 key is used to protect should be limited.  This is especially
 important for algorithms with a 64-bit block size (like "Magma"),
 which currently are generally considered insecure after protecting a
 relatively small amount of data.  For example, Section 3.4 of
 [SP800-67] limits the number of blocks that are allowed to be
 encrypted with the Triple DES cipher to 2^20 (8 MB of data).  This
 document defines a rekeying mechanism that allows the mitigation of
 weak security of a 64-bit block cipher by frequently changing the
 encryption key.
 For transforms defined in this document, [GOST-ESP] recommends
 limiting the number of octets protected with a single K_msg key by
 the following values:
  • 2^41 octets for transforms based on the "Kuznyechik" cipher

(ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE)

  • 2^28 octets for transforms based on the "Magma" cipher

(ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE)

 These values are based on combinatorial properties and may be further
 restricted if side-channel attacks are taken into consideration.
 Note that the limit for transforms based on the "Kuznyechik" cipher
 is unreachable because, due to the construction of the transforms,
 the number of protected messages is limited to 2^24 and each message
 (either IKEv2 messages or ESP datagrams) is limited to 2^16 octets in
 size, giving 2^40 octets as the maximum amount of data that can be
 protected with a single K_msg.
 Section 4 of [RFC9058] discusses the possibility of truncating
 authentication tags in MGM as a trade-off between message expansion
 and the probability of forgery.  This specification truncates an
 authentication tag length for transforms based on the "Kuznyechik"
 cipher to 96 bits.  This decreases message expansion while still
 providing a very low probability of forgery: 2^-96.
 An attacker can send a lot of packets with arbitrarily chosen i1, i2,
 and i3 parameters.  This will 1) force a recipient to recalculate the
 leaf key for every received packet if i1, i2, and i3 are different
 from these values in previously received packets, thus consuming CPU
 resources and 2) force a recipient to make verification attempts
 (that would fail) on a large amount of data, thus allowing the
 attacker a deeper analysis of the underlying cryptographic primitive
 (see [AEAD-USAGE-LIMITS]).  Implementations MAY initiate rekeying if
 they deem that they receive too many packets with an invalid ICV.
 Security properties of MGM are discussed in [MGM-SECURITY].

6. IANA Considerations

 IANA maintains a registry called "Internet Key Exchange Version 2
 (IKEv2) Parameters" with a subregistry called "Transform Type
 Values".  IANA has added the following four Transform IDs to the
 "Transform Type 1 - Encryption Algorithm Transform IDs" subregistry.
  +========+===============================+===========+===========+
  | Number | Name                          | ESP       | IKEv2     |
  |        |                               | Reference | Reference |
  +========+===============================+===========+===========+
  | 32     | ENCR_KUZNYECHIK_MGM_KTREE     | RFC 9227  | RFC 9227  |
  +--------+-------------------------------+-----------+-----------+
  | 33     | ENCR_MAGMA_MGM_KTREE          | RFC 9227  | RFC 9227  |
  +--------+-------------------------------+-----------+-----------+
  | 34     | ENCR_KUZNYECHIK_MGM_MAC_KTREE | RFC 9227  | Not       |
  |        |                               |           | allowed   |
  +--------+-------------------------------+-----------+-----------+
  | 35     | ENCR_MAGMA_MGM_MAC_KTREE      | RFC 9227  | Not       |
  |        |                               |           | allowed   |
  +--------+-------------------------------+-----------+-----------+
                        Table 1: Transform IDs

7. References

7.1. Normative References

 [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119,
            DOI 10.17487/RFC2119, March 1997,
            <https://www.rfc-editor.org/info/rfc2119>.
 [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
            2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
            May 2017, <https://www.rfc-editor.org/info/rfc8174>.
 [RFC4303]  Kent, S., "IP Encapsulating Security Payload (ESP)",
            RFC 4303, DOI 10.17487/RFC4303, December 2005,
            <https://www.rfc-editor.org/info/rfc4303>.
 [RFC7296]  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
            Kivinen, "Internet Key Exchange Protocol Version 2
            (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
            2014, <https://www.rfc-editor.org/info/rfc7296>.
 [RFC7383]  Smyslov, V., "Internet Key Exchange Protocol Version 2
            (IKEv2) Message Fragmentation", RFC 7383,
            DOI 10.17487/RFC7383, November 2014,
            <https://www.rfc-editor.org/info/rfc7383>.
 [RFC6986]  Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.11-2012:
            Hash Function", RFC 6986, DOI 10.17487/RFC6986, August
            2013, <https://www.rfc-editor.org/info/rfc6986>.
 [RFC7801]  Dolmatov, V., Ed., "GOST R 34.12-2015: Block Cipher
            "Kuznyechik"", RFC 7801, DOI 10.17487/RFC7801, March 2016,
            <https://www.rfc-editor.org/info/rfc7801>.
 [RFC8891]  Dolmatov, V., Ed. and D. Baryshkov, "GOST R 34.12-2015:
            Block Cipher "Magma"", RFC 8891, DOI 10.17487/RFC8891,
            September 2020, <https://www.rfc-editor.org/info/rfc8891>.
 [RFC9058]  Smyshlyaev, S., Ed., Nozdrunov, V., Shishkin, V., and E.
            Griboedova, "Multilinear Galois Mode (MGM)", RFC 9058,
            DOI 10.17487/RFC9058, June 2021,
            <https://www.rfc-editor.org/info/rfc9058>.
 [RFC7836]  Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V.,
            Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines
            on the Cryptographic Algorithms to Accompany the Usage of
            Standards GOST R 34.10-2012 and GOST R 34.11-2012",
            RFC 7836, DOI 10.17487/RFC7836, March 2016,
            <https://www.rfc-editor.org/info/rfc7836>.

7.2. Informative References

 [GOST3411-2012]
            Federal Agency on Technical Regulating and Metrology,
            "Information technology. Cryptographic data security. Hash
            function", GOST R 34.11-2012, August 2012.  (In Russian)
 [GOST3412-2015]
            Federal Agency on Technical Regulating and Metrology,
            "Information technology. Cryptographic data security.
            Block ciphers", GOST R 34.12-2015, June 2015.  (In
            Russian)
 [GOST-MGM] Federal Agency on Technical Regulating and Metrology,
            "Information technology. Cryptographic information
            security. Block Cipher Modes Implementing Authenticated
            Encryption", R 1323565.1.026-2019, September 2019.  (In
            Russian)
 [GOST-ESP] Federal Agency on Technical Regulating and Metrology,
            "Information technology. Cryptographic information
            protection. The use of Russian cryptographic algorithms in
            the ESP information protection protocol",
            R 1323565.1.035-2021, January 2021.  (In Russian)
 [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
            Hashing for Message Authentication", RFC 2104,
            DOI 10.17487/RFC2104, February 1997,
            <https://www.rfc-editor.org/info/rfc2104>.
 [RFC4106]  Viega, J. and D. McGrew, "The Use of Galois/Counter Mode
            (GCM) in IPsec Encapsulating Security Payload (ESP)",
            RFC 4106, DOI 10.17487/RFC4106, June 2005,
            <https://www.rfc-editor.org/info/rfc4106>.
 [RFC4543]  McGrew, D. and J. Viega, "The Use of Galois Message
            Authentication Code (GMAC) in IPsec ESP and AH", RFC 4543,
            DOI 10.17487/RFC4543, May 2006,
            <https://www.rfc-editor.org/info/rfc4543>.
 [RFC5282]  Black, D. and D. McGrew, "Using Authenticated Encryption
            Algorithms with the Encrypted Payload of the Internet Key
            Exchange version 2 (IKEv2) Protocol", RFC 5282,
            DOI 10.17487/RFC5282, August 2008,
            <https://www.rfc-editor.org/info/rfc5282>.
 [RFC8645]  Smyshlyaev, S., Ed., "Re-keying Mechanisms for Symmetric
            Keys", RFC 8645, DOI 10.17487/RFC8645, August 2019,
            <https://www.rfc-editor.org/info/rfc8645>.
 [MGM-SECURITY]
            Akhmetzyanova, L., Alekseev, E., Karpunin, G., and V.
            Nozdrunov, "Security of Multilinear Galois Mode (MGM)",
            2019, <https://eprint.iacr.org/2019/123.pdf>.
 [SP800-67] National Institute of Standards and Technology,
            "Recommendation for the Triple Data Encryption Algorithm
            (TDEA) Block Cipher", DOI 10.6028/NIST.SP.800-67r2,
            November 2017,
            <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
            NIST.SP.800-67r2.pdf>.
 [AEAD-USAGE-LIMITS]
            Günther, F., Thomson, M., and C. A. Wood, "Usage Limits on
            AEAD Algorithms", Work in Progress, Internet-Draft, draft-
            irtf-cfrg-aead-limits-04, 7 March 2022,
            <https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-
            aead-limits-04>.

Appendix A. Test Vectors

 In the following test vectors, binary data is represented in
 hexadecimal format.  The numbers in square brackets indicate the size
 of the corresponding data in decimal format.
 1.  ENCR_KUZNYECHIK_MGM_KTREE (Example 1):
    transform key [44]:
        b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
        e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
        7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
    K [32]:
        b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
        e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
    salt [12]:
        7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
    i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
    K_msg [32]:
        2f f1 c9 0e de 78 6e 06 1e 17 b3 74 d7 82 af 7b
        d8 80 bd 52 7c 66 a2 ba dc 3e 56 9a ab 27 1d a4
    nonce [16]:
        00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
    IV [8]:
        00 00 00 00 00 00 00 00
    AAD [8]:
        51 46 53 6b 00 00 00 01
    plaintext [64]:
        45 00 00 3c 23 35 00 00 7f 01 ee cc 0a 6f 0a c5
        0a 6f 0a 1d 08 00 f3 5b 02 00 58 00 61 62 63 64
        65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
        75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
    ciphertext [64]:
        18 9d 12 88 b7 18 f9 ea be 55 4b 23 9b ee 65 96
        c6 d4 ea fd 31 64 96 ef 90 1c ac 31 60 05 aa 07
        62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e 7b 9d eb 31
        85 ff e9 17 9c a9 bf 0b db af c2 3e ae 4d a5 6f
    ESP ICV [12]:
        50 b0 70 a1 5a 2b d9 73 86 89 f8 ed
    ESP packet [112]:
        45 00 00 70 00 4d 00 00 ff 32 91 4f 0a 6f 0a c5
        0a 6f 0a 1d 51 46 53 6b 00 00 00 01 00 00 00 00
        00 00 00 00 18 9d 12 88 b7 18 f9 ea be 55 4b 23
        9b ee 65 96 c6 d4 ea fd 31 64 96 ef 90 1c ac 31
        60 05 aa 07 62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e
        7b 9d eb 31 85 ff e9 17 9c a9 bf 0b db af c2 3e
        ae 4d a5 6f 50 b0 70 a1 5a 2b d9 73 86 89 f8 ed
 2.  ENCR_KUZNYECHIK_MGM_KTREE (Example 2):
    transform key [44]:
        b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
        e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
        7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
    K [32]:
        b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
        e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
    salt [12]:
        7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
    i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000
    K_msg [32]:
        9a ba c6 57 78 18 0e 6f 2a f6 1f b8 d5 71 62 36
        66 c2 f5 13 0d 54 e2 11 6c 7d 53 0e 6e 7d 48 bc
    nonce [16]:
        00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
    IV [8]:
        00 00 01 00 01 00 00 00
    AAD [8]:
        51 46 53 6b 00 00 00 10
    plaintext [64]:
        45 00 00 3c 23 48 00 00 7f 01 ee b9 0a 6f 0a c5
        0a 6f 0a 1d 08 00 e4 5b 02 00 67 00 61 62 63 64
        65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
        75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
    ciphertext [64]:
        78 0a 2c 62 62 32 15 7b fe 01 76 32 f3 2d b4 d0
        a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b ac 1d fc 4b
        15 4b 69 03 4d c2 1d ef 20 90 6d 59 62 81 12 7c
        ff 72 56 ab f0 0b a1 22 bb 5e 6c 71 a4 d4 9a 4d
    ESP ICV [12]:
        c2 2f 87 40 83 8e 3d fa ce 91 cc b8
    ESP packet [112]:
        45 00 00 70 00 5c 00 00 ff 32 91 40 0a 6f 0a c5
        0a 6f 0a 1d 51 46 53 6b 00 00 00 10 00 00 01 00
        01 00 00 00 78 0a 2c 62 62 32 15 7b fe 01 76 32
        f3 2d b4 d0 a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b
        ac 1d fc 4b 15 4b 69 03 4d c2 1d ef 20 90 6d 59
        62 81 12 7c ff 72 56 ab f0 0b a1 22 bb 5e 6c 71
        a4 d4 9a 4d c2 2f 87 40 83 8e 3d fa ce 91 cc b8
 3.  ENCR_MAGMA_MGM_KTREE (Example 1):
    transform key [36]:
        5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
        22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
        cf 36 63 12
    K [32]:
        5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
        22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
    salt [4]:
        cf 36 63 12
    i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
    K_msg [32]:
        25 65 21 e2 70 b7 4a 16 4d fc 26 e6 bf 0c ca 76
        5e 9d 41 02 7d 4b 7b 19 76 2b 1c c9 01 dc de 7f
    nonce [8]:
        00 00 00 00 cf 36 63 12
    IV [8]:
        00 00 00 00 00 00 00 00
    AAD [8]:
        c8 c2 b2 8d 00 00 00 01
    plaintext [64]:
        45 00 00 3c 24 2d 00 00 7f 01 ed d4 0a 6f 0a c5
        0a 6f 0a 1d 08 00 de 5b 02 00 6d 00 61 62 63 64
        65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
        75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
    ciphertext [64]:
        fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c 4a 91 7e 0c
        d8 6f 8e 61 04 03 87 64 6b b9 df bd 91 50 3f 4a
        f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc 99 ac ee 9e
        32 43 e2 3b a4 d1 1e 84 5c 91 a7 19 15 52 cc e8
    ESP ICV [8]:
        5f 4a fa 8b 02 94 0f 5c
    ESP packet [108]:
        45 00 00 6c 00 62 00 00 ff 32 91 3e 0a 6f 0a c5
        0a 6f 0a 1d c8 c2 b2 8d 00 00 00 01 00 00 00 00
        00 00 00 00 fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c
        4a 91 7e 0c d8 6f 8e 61 04 03 87 64 6b b9 df bd
        91 50 3f 4a f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc
        99 ac ee 9e 32 43 e2 3b a4 d1 1e 84 5c 91 a7 19
        15 52 cc e8 5f 4a fa 8b 02 94 0f 5c
 4.  ENCR_MAGMA_MGM_KTREE (Example 2):
    transform key [36]:
        5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
        22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
        cf 36 63 12
    K [32]:
        5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
        22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
    salt [4]:
        cf 36 63 12
    i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000
    K_msg [32]:
        20 e0 46 d4 09 83 9b 23 f0 66 a5 0a 7a 06 5b 4a
        39 24 4f 0e 29 ef 1e 6f 2e 5d 2e 13 55 f5 da 08
    nonce [8]:
        00 00 00 00 cf 36 63 12
    IV [8]:
        00 00 01 00 01 00 00 00
    AAD [8]:
        c8 c2 b2 8d 00 00 00 10
    plaintext [64]:
        45 00 00 3c 24 40 00 00 7f 01 ed c1 0a 6f 0a c5
        0a 6f 0a 1d 08 00 cf 5b 02 00 7c 00 61 62 63 64
        65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
        75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
    ciphertext [64]:
        7a 71 48 41 a5 34 b7 58 93 6a 8e ab 26 91 40 a8
        25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c 9b 88 db 72
        1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b d7 7a 07 1d
        4b 93 78 bd 08 97 6c 33 ed 9a 01 91 bf fe a1 dd
    ESP ICV [8]:
        dd 5d 50 9a fd b8 09 98
    ESP packet [108]:
        45 00 00 6c 00 71 00 00 ff 32 91 2f 0a 6f 0a c5
        0a 6f 0a 1d c8 c2 b2 8d 00 00 00 10 00 00 01 00
        01 00 00 00 7a 71 48 41 a5 34 b7 58 93 6a 8e ab
        26 91 40 a8 25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c
        9b 88 db 72 1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b
        d7 7a 07 1d 4b 93 78 bd 08 97 6c 33 ed 9a 01 91
        bf fe a1 dd dd 5d 50 9a fd b8 09 98
 5.  ENCR_KUZNYECHIK_MGM_MAC_KTREE (Example 1):
    transform key [44]:
        98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
        88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
        6c 51 cb ac 93 c4 5b ea 99 62 79 1d
    K [32]:
        98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
        88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
    salt [12]:
        6c 51 cb ac 93 c4 5b ea 99 62 79 1d
    i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
    K_msg [32]:
        98 f1 03 01 81 0a 04 1c da dd e1 bd 85 a0 8f 21
        8b ac b5 7e 00 35 e2 22 c8 31 e3 e4 f0 a2 0c 8f
    nonce [16]:
        00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
    IV [8]:
        00 00 00 00 00 00 00 00
    AAD [80]:
        3d ac 92 6a 00 00 00 01 00 00 00 00 00 00 00 00
        45 00 00 3c 0c f1 00 00 7f 01 05 11 0a 6f 0a c5
        0a 6f 0a 1d 08 00 48 5c 02 00 03 00 61 62 63 64
        65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
        75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
    plaintext [0]:
    ciphertext [0]:
    ESP ICV [12]:
        ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d
    ESP packet [112]:
        45 00 00 70 00 01 00 00 ff 32 91 9b 0a 6f 0a c5
        0a 6f 0a 1d 3d ac 92 6a 00 00 00 01 00 00 00 00
        00 00 00 00 45 00 00 3c 0c f1 00 00 7f 01 05 11
        0a 6f 0a c5 0a 6f 0a 1d 08 00 48 5c 02 00 03 00
        61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
        71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
        01 02 02 04 ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d
 6.  ENCR_KUZNYECHIK_MGM_MAC_KTREE (Example 2):
    transform key [44]:
        98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
        88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
        6c 51 cb ac 93 c4 5b ea 99 62 79 1d
    K [32]:
        98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
        88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
    salt [12]:
        6c 51 cb ac 93 c4 5b ea 99 62 79 1d
    i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000
    K_msg [32]:
        02 c5 41 87 7c c6 23 f3 f1 35 91 9a 75 13 b6 f8
        a8 a1 8c b2 63 99 86 2f 50 81 4f 52 91 01 67 84
    nonce [16]:
        00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
    IV [8]:
        00 00 00 00 01 00 00 00
    AAD [80]:
        3d ac 92 6a 00 00 00 06 00 00 00 00 01 00 00 00
        45 00 00 3c 0c fb 00 00 7f 01 05 07 0a 6f 0a c5
        0a 6f 0a 1d 08 00 43 5c 02 00 08 00 61 62 63 64
        65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
        75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
    plaintext [0]:
    ciphertext [0]:
    ESP ICV [12]:
        ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91
    ESP packet [112]:
        45 00 00 70 00 06 00 00 ff 32 91 96 0a 6f 0a c5
        0a 6f 0a 1d 3d ac 92 6a 00 00 00 06 00 00 00 00
        01 00 00 00 45 00 00 3c 0c fb 00 00 7f 01 05 07
        0a 6f 0a c5 0a 6f 0a 1d 08 00 43 5c 02 00 08 00
        61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
        71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
        01 02 02 04 ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91
 7.  ENCR_MAGMA_MGM_MAC_KTREE (Example 1):
    transform key [36]:
        d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
        2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
        88 79 8f 29
    K [32]:
        d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
        2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
    salt [4]:
        88 79 8f 29
    i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
    K_msg [32]:
        4c 61 45 99 a0 a0 67 f1 94 87 24 0a e1 00 e1 b7
        ea f2 3e da f8 7e 38 73 50 86 1c 68 3b a4 04 46
    nonce [8]:
        00 00 00 00 88 79 8f 29
    IV [8]:
        00 00 00 00 00 00 00 00
    AAD [80]:
        3e 40 69 9c 00 00 00 01 00 00 00 00 00 00 00 00
        45 00 00 3c 0e 08 00 00 7f 01 03 fa 0a 6f 0a c5
        0a 6f 0a 1d 08 00 36 5c 02 00 15 00 61 62 63 64
        65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
        75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
    plaintext [0]:
    ciphertext [0]:
    ESP ICV [8]:
        4d d4 25 8a 25 35 95 df
    ESP packet [108]:
        45 00 00 6c 00 13 00 00 ff 32 91 8d 0a 6f 0a c5
        0a 6f 0a 1d 3e 40 69 9c 00 00 00 01 00 00 00 00
        00 00 00 00 45 00 00 3c 0e 08 00 00 7f 01 03 fa
        0a 6f 0a c5 0a 6f 0a 1d 08 00 36 5c 02 00 15 00
        61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
        71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
        01 02 02 04 4d d4 25 8a 25 35 95 df
 8.  ENCR_MAGMA_MGM_MAC_KTREE (Example 2):
    transform key [36]:
        d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
        2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
        88 79 8f 29
    K [32]:
        d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
        2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
    salt [4]:
        88 79 8f 29
    i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000
    K_msg [32]:
        b4 f3 f9 0d c4 87 fa b8 c4 af d0 eb 45 49 f2 f0
        e4 36 32 b6 79 19 37 2e 1e 96 09 ea f0 b8 e2 28
    nonce [8]:
        00 00 00 00 88 79 8f 29
    IV [8]:
        00 00 00 00 01 00 00 00
    AAD [80]:
        3e 40 69 9c 00 00 00 06 00 00 00 00 01 00 00 00
        45 00 00 3c 0e 13 00 00 7f 01 03 ef 0a 6f 0a c5
        0a 6f 0a 1d 08 00 31 5c 02 00 1a 00 61 62 63 64
        65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
        75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
    plaintext [0]:
    ciphertext [0]:
    ESP ICV [8]:
        84 84 a9 23 30 a0 b1 96
    ESP packet [108]:
        45 00 00 6c 00 18 00 00 ff 32 91 88 0a 6f 0a c5
        0a 6f 0a 1d 3e 40 69 9c 00 00 00 06 00 00 00 00
        01 00 00 00 45 00 00 3c 0e 13 00 00 7f 01 03 ef
        0a 6f 0a c5 0a 6f 0a 1d 08 00 31 5c 02 00 1a 00
        61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
        71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
        01 02 02 04 84 84 a9 23 30 a0 b1 96

Acknowledgments

 The author wants to thank Adrian Farrel, Russ Housley, Yaron Sheffer,
 and Stanislav Smyshlyaev for valuable input during the publication
 process for this document.

Author's Address

 Valery Smyslov
 ELVIS-PLUS
 PO Box 81
 Moscow (Zelenograd)
 124460
 Russian Federation
 Phone: +7 495 276 0211
 Email: svan@elvis.ru
/home/gen.uk/domains/wiki.gen.uk/public_html/data/pages/rfc/rfc9227.txt · Last modified: 2022/04/01 00:54 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki