GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc8682



Internet Engineering Task Force (IETF) M. Saito Request for Comments: 8682 M. Matsumoto Category: Standards Track Hiroshima University ISSN: 2070-1721 V. Roca, Ed.

                                                           E. Baccelli
                                                                 INRIA
                                                          January 2020
           TinyMT32 Pseudorandom Number Generator (PRNG)

Abstract

 This document describes the TinyMT32 Pseudorandom Number Generator
 (PRNG), which produces 32-bit pseudorandom unsigned integers and aims
 at having a simple-to-use and deterministic solution.  This PRNG is a
 small-sized variant of the Mersenne Twister (MT) PRNG.  The main
 advantage of TinyMT32 over MT is the use of a small internal state,
 compatible with most target platforms that include embedded devices,
 while keeping reasonably good randomness that represents a
 significant improvement compared to the Park-Miller Linear
 Congruential PRNG.  However, neither the TinyMT nor MT PRNG is meant
 to be used for cryptographic applications.

Status of This Memo

 This is an Internet Standards Track document.
 This document is a product of the Internet Engineering Task Force
 (IETF).  It represents the consensus of the IETF community.  It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG).  Further information on
 Internet Standards is available in Section 2 of RFC 7841.
 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8682.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors.  All rights reserved.
 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document.  Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.  Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1.  Introduction
   1.1.  Requirements Language
 2.  TinyMT32 PRNG Specification
   2.1.  TinyMT32 Source Code
   2.2.  TinyMT32 Usage
   2.3.  Specific Implementation Validation and Deterministic
         Behavior
 3.  Security Considerations
 4.  IANA Considerations
 5.  References
   5.1.  Normative References
   5.2.  Informative References
 Acknowledgments
 Authors' Addresses

1. Introduction

 This document specifies the TinyMT32 PRNG as a specialization of the
 reference implementation version 1.1 (2015/04/24) by Mutsuo Saito and
 Makoto Matsumoto from Hiroshima University, which can be found at
 [TinyMT-web] (the TinyMT website) and [TinyMT-dev] (the GitHub site).
 This specialization aims at having a simple-to-use and deterministic
 PRNG, as explained below.  However, the TinyMT32 PRNG is not meant to
 be used for cryptographic applications.
 TinyMT is a new, small-sized variant of the Mersenne Twister (MT)
 PRNG introduced in 2011 [MT98].  This document focuses on the
 TinyMT32 variant (rather than TinyMT64) of the TinyMT PRNG, which
 outputs 32-bit unsigned integers.
 The purpose of TinyMT is not to replace the Mersenne Twister: TinyMT
 has a far shorter period (2^(127) - 1) than MT.  The merit of TinyMT
 is in the small size of the 127-bit internal state, far smaller than
 the 19937 bits of MT.  The outputs of TinyMT satisfy several
 statistical tests for non-cryptographic randomness, including
 BigCrush in TestU01 [TestU01] and AdaptiveCrush [AdaptiveCrush],
 leaving it well placed for non-cryptographic usage, especially given
 the small size of its internal state (see [TinyMT-web]).  From this
 point of view, TinyMT32 represents a major improvement with respect
 to the Park-Miller Linear Congruential PRNG (e.g., as specified in
 [RFC5170]), which suffers from several known limitations (see, for
 instance, [PTVF92], Section 7.1, p. 279 and [RFC8681], Appendix B).
 The TinyMT32 PRNG initialization depends, among other things, on a
 parameter set, namely (mat1, mat2, tmat).  In order to facilitate the
 use of this PRNG and to make the sequence of pseudorandom numbers
 depend only on the seed value, this specification requires the use of
 a specific parameter set (see Section 2.1).  This is a major
 difference with respect to the implementation version 1.1
 (2015/04/24), which leaves this parameter set unspecified.
 Finally, the determinism of this PRNG for a given seed has been
 carefully checked (see Section 2.3).  This means that the same
 sequence of pseudorandom numbers should be generated, no matter the
 target execution platform and compiler, for a given initial seed
 value.  This determinism can be a key requirement, as is the case
 with [RFC8681], which normatively depends on this specification.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. TinyMT32 PRNG Specification

2.1. TinyMT32 Source Code

 The TinyMT32 PRNG must be initialized with a parameter set that needs
 to be well chosen.  In this specification, for the sake of
 simplicity, the following parameter set MUST be used:
  • mat1 = 0x8f7011ee = 2406486510
  • mat2 = 0xfc78ff1f = 4235788063
  • tmat = 0x3793fdff = 932445695
 This parameter set is the first entry of the precalculated parameter
 sets in tinymt32dc/tinymt32dc.0.1048576.txt by Kenji Rikitake,
 available at [TinyMT-params].  This is also the parameter set used in
 [KR12].
 The TinyMT32 PRNG reference implementation is reproduced in Figure 1.
 This is a C language implementation written for C99 [C99].  This
 reference implementation differs from the original source code as
 follows:
  • The original authors, who are coauthors of this document, have

granted IETF the rights to publish this version with a license and

    copyright that are in accordance with BCP 78 and the IETF Trust's
    Legal Provisions Relating to IETF Documents
    (http://trustee.ietf.org/license-info).
  • The source code initially spread over the tinymt32.h and

tinymt32.c files has been merged.

  • The unused parts of the original source code have been removed.

This is the case of the tinymt32_init_by_array() alternative

    initialization function.  This is also the case of the
    period_certification() function after having checked it is not
    required with the chosen parameter set.
  • The unused constants TINYMT32_MEXP and TINYMT32_MUL have been

removed.

  • The appropriate parameter set has been added to the initialization

function.

  • The function order has been changed.
  • Certain internal variables have been renamed for compactness

purposes.

  • The const qualifier has been added to the constant definitions.
  • The code that was dependent on the representation of negative

integers by 2's complements has been replaced by a more portable

    version.
 <CODE BEGINS>
 /**
  * Tiny Mersenne Twister: only 127-bit internal state.
  * Derived from the reference implementation version 1.1 (2015/04/24)
  * by Mutsuo Saito (Hiroshima University) and Makoto Matsumoto
  * (Hiroshima University).
  */
 #include <stdint.h>
 /**
  * tinymt32 internal state vector and parameters
  */
 typedef struct {
     uint32_t status[4];
     uint32_t mat1;
     uint32_t mat2;
     uint32_t tmat;
 } tinymt32_t;
 static void tinymt32_next_state (tinymt32_t* s);
 static uint32_t tinymt32_temper (tinymt32_t* s);
 /**
  * Parameter set to use for this IETF specification. Don't change.
  * This parameter set is the first entry of the precalculated
  * parameter sets in tinymt32dc/tinymt32dc.0.1048576.txt by
  * Kenji Rikitake, available at:
  *    https://github.com/jj1bdx/tinymtdc-longbatch/.
  * It is also the parameter set used in:
  *    Rikitake, K., "TinyMT pseudo random number generator for
  *    Erlang", Proceedings of the 11th ACM SIGPLAN Erlang Workshop,
  *    September 2012.
  */
 const uint32_t  TINYMT32_MAT1_PARAM = UINT32_C(0x8f7011ee);
 const uint32_t  TINYMT32_MAT2_PARAM = UINT32_C(0xfc78ff1f);
 const uint32_t  TINYMT32_TMAT_PARAM = UINT32_C(0x3793fdff);
 /**
  * This function initializes the internal state array with a
  * 32-bit unsigned integer seed.
  * @param s     pointer to tinymt internal state.
  * @param seed  a 32-bit unsigned integer used as a seed.
  */
 void tinymt32_init (tinymt32_t* s, uint32_t seed)
 {
     const uint32_t    MIN_LOOP = 8;
     const uint32_t    PRE_LOOP = 8;
     s->status[0] = seed;
     s->status[1] = s->mat1 = TINYMT32_MAT1_PARAM;
     s->status[2] = s->mat2 = TINYMT32_MAT2_PARAM;
     s->status[3] = s->tmat = TINYMT32_TMAT_PARAM;
     for (int i = 1; i < MIN_LOOP; i++) {
         s->status[i & 3] ^= i + UINT32_C(1812433253)
             * (s->status[(i - 1) & 3]
                ^ (s->status[(i - 1) & 3] >> 30));
     }
     /*
      * NB: The parameter set of this specification warrants
      * that none of the possible 2^^32 seeds leads to an
      * all-zero 127-bit internal state. Therefore, the
      * period_certification() function of the original
      * TinyMT32 source code has been safely removed. If
      * another parameter set is used, this function will
      * have to be reintroduced here.
      */
     for (int i = 0; i < PRE_LOOP; i++) {
         tinymt32_next_state(s);
     }
 }
 /**
  * This function outputs a 32-bit unsigned integer from
  * the internal state.
  * @param s     pointer to tinymt internal state.
  * @return      32-bit unsigned integer r (0 <= r < 2^32).
  */
 uint32_t tinymt32_generate_uint32 (tinymt32_t* s)
 {
     tinymt32_next_state(s);
     return tinymt32_temper(s);
 }
 /**
  * Internal tinymt32 constants and functions.
  * Users should not call these functions directly.
  */
 const uint32_t  TINYMT32_SH0 = 1;
 const uint32_t  TINYMT32_SH1 = 10;
 const uint32_t  TINYMT32_SH8 = 8;
 const uint32_t  TINYMT32_MASK = UINT32_C(0x7fffffff);
 /**
  * This function changes the internal state of tinymt32.
  * @param s     pointer to tinymt internal state.
  */
 static void tinymt32_next_state (tinymt32_t* s)
 {
     uint32_t x;
     uint32_t y;
     y = s->status[3];
     x = (s->status[0] & TINYMT32_MASK)
         ^ s->status[1]
         ^ s->status[2];
     x ^= (x << TINYMT32_SH0);
     y ^= (y >> TINYMT32_SH0) ^ x;
     s->status[0] = s->status[1];
     s->status[1] = s->status[2];
     s->status[2] = x ^ (y << TINYMT32_SH1);
     s->status[3] = y;
     /*
      * The if (y & 1) {...} block below replaces:
      *     s->status[1] ^= -((int32_t)(y & 1)) & s->mat1;
      *     s->status[2] ^= -((int32_t)(y & 1)) & s->mat2;
      * The adopted code is equivalent to the original code
      * but does not depend on the representation of negative
      * integers by 2's complements. It is therefore more
      * portable but includes an if branch, which may slow
      * down the generation speed.
      */
     if (y & 1) {
          s->status[1] ^= s->mat1;
          s->status[2] ^= s->mat2;
      }
 }
 /**
  * This function outputs a 32-bit unsigned integer from
  * the internal state.
  * @param s     pointer to tinymt internal state.
  * @return      32-bit unsigned pseudorandom number.
  */
 static uint32_t tinymt32_temper (tinymt32_t* s)
 {
     uint32_t t0, t1;
     t0 = s->status[3];
     t1 = s->status[0] + (s->status[2] >> TINYMT32_SH8);
     t0 ^= t1;
     /*
      * The if (t1 & 1) {...} block below replaces:
      *     t0 ^= -((int32_t)(t1 & 1)) & s->tmat;
      * The adopted code is equivalent to the original code
      * but does not depend on the representation of negative
      * integers by 2's complements. It is therefore more
      * portable but includes an if branch, which may slow
      * down the generation speed.
      */
     if (t1 & 1) {
         t0 ^= s->tmat;
     }
     return t0;
 }
 <CODE ENDS>
              Figure 1: TinyMT32 Reference Implementation

2.2. TinyMT32 Usage

 This PRNG MUST first be initialized with the following function:
    void tinymt32_init (tinymt32_t* s, uint32_t seed);
 It takes as input a 32-bit unsigned integer used as a seed (note that
 value 0 is permitted by TinyMT32).  This function also takes as input
 a pointer to an instance of a tinymt32_t structure that needs to be
 allocated by the caller but is left uninitialized.  This structure
 will then be updated by the various TinyMT32 functions in order to
 keep the internal state of the PRNG.  The use of this structure
 admits several instances of this PRNG to be used in parallel, each of
 them having its own instance of the structure.
 Then, each time a new 32-bit pseudorandom unsigned integer between 0
 and 2^(32) - 1 inclusive is needed, the following function is used:
    uint32_t tinymt32_generate_uint32 (tinymt32_t * s);
 Of course, the tinymt32_t structure must be left unchanged by the
 caller between successive calls to this function.

2.3. Specific Implementation Validation and Deterministic Behavior

 For a given seed, PRNG determinism can be a requirement (e.g., with
 [RFC8681]).  Consequently, any implementation of the TinyMT32 PRNG in
 line with this specification MUST have the same output as that
 provided by the reference implementation of Figure 1.  In order to
 increase the compliancy confidence, this document proposes the
 following criteria.  Using a seed value of 1, the first 50 values
 returned by tinymt32_generate_uint32(s) as 32-bit unsigned integers
 are equal to the values provided in Figure 2, which are to be read
 line by line.  Note that these values come from the tinymt/
 check32.out.txt file provided by the PRNG authors to validate
 implementations of TinyMT32 as part of the MersenneTwister-Lab/TinyMT
 GitHub repository.
 2545341989  981918433 3715302833 2387538352 3591001365
 3820442102 2114400566 2196103051 2783359912  764534509
  643179475 1822416315  881558334 4207026366 3690273640
 3240535687 2921447122 3984931427 4092394160   44209675
 2188315343 2908663843 1834519336 3774670961 3019990707
 4065554902 1239765502 4035716197 3412127188  552822483
  161364450  353727785  140085994  149132008 2547770827
 4064042525 4078297538 2057335507  622384752 2041665899
 2193913817 1080849512   33160901  662956935  642999063
 3384709977 1723175122 3866752252  521822317 2292524454
  Figure 2: First 50 decimal values (to be read per line) returned by
  tinymt32_generate_uint32(s) as 32-bit unsigned integers, with a seed
                               value of 1
 In particular, the deterministic behavior of the Figure 1 source code
 has been checked across several platforms: high-end laptops running
 64-bit Mac OS X and Linux/Ubuntu; a board featuring a 32-bit ARM
 Cortex-A15 and running 32-bit Linux/Ubuntu; several embedded cards
 featuring either an ARM Cortex-M0+, a Cortex-M3, or a Cortex-M4
 32-bit microcontroller, all of them running RIOT [Baccelli18]; two
 low-end embedded cards featuring either a 16-bit microcontroller (TI
 MSP430) or an 8-bit microcontroller (Arduino ATMEGA2560), both of
 them running RIOT.
 This specification only outputs 32-bit unsigned pseudorandom numbers
 and does not try to map this output to a smaller integer range (e.g.,
 between 10 and 49 inclusive).  If a specific use case needs such a
 mapping, it will have to provide its own function.  In that case, if
 PRNG determinism is also required, the use of a floating point
 (single or double precision) to perform this mapping should probably
 be avoided, as these calculations may lead to different rounding
 errors across different target platforms.  Great care should also be
 taken to not introduce biases in the randomness of the mapped output
 (which may be the case with some mapping algorithms) incompatible
 with the use-case requirements.  The details of how to perform such a
 mapping are out of scope of this document.

3. Security Considerations

 The authors do not believe the present specification generates
 specific security risks per se.  However, the TinyMT and MT PRNG must
 not be used for cryptographic applications.

4. IANA Considerations

 This document has no IANA actions.

5. References

5.1. Normative References

 [C99]      International Organization for Standardization,
            "Programming languages - C: C99, correction 3:2007", ISO/
            IEC 9899:1999/Cor 3:2007, November 2007.
 [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119,
            DOI 10.17487/RFC2119, March 1997,
            <https://www.rfc-editor.org/info/rfc2119>.
 [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
            2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
            May 2017, <https://www.rfc-editor.org/info/rfc8174>.

5.2. Informative References

 [AdaptiveCrush]
            Haramoto, H., "Automation of Statistical Tests on
            Randomness to Obtain Clearer Conclusion", Monte Carlo and
            Quasi-Monte Carlo Methods 2008,
            DOI 10.1007/978-3-642-04107-5_26, November 2009,
            <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
            ADAPTIVE>.
 [Baccelli18]
            Baccelli, E., Gundogan, C., Hahm, O., Kietzmann, P.,
            Lenders, M. S., Petersen, H., Schleiser, K., Schmidt, T.
            C., and M. Wahlisch, "RIOT: An Open Source Operating
            System for Low-End Embedded Devices in the IoT", IEEE
            Internet of Things Journal, Volume 5, Issue 6,
            DOI 10.1109/JIOT.2018.2815038, December 2018,
            <https://doi.org/10.1109/JIOT.2018.2815038>.
 [KR12]     Rikitake, K., "TinyMT pseudo random number generator for
            Erlang", Proceedings of the 11th ACM SIGPLAN Erlang
            Workshop, pp. 67-72, DOI 10.1145/2364489.2364504,
            September 2012, <https://doi.org/10.1145/2364489.2364504>.
 [MT98]     Matsumoto, M. and T. Nishimura, "Mersenne twister: A
            623-dimensionally equidistributed uniform pseudo-random
            number generator", ACM Transactions on Modeling and
            Computer Simulation (TOMACS), Volume 8, Issue 1, pp. 3-30,
            DOI 10.1145/272991.272995, January 1998,
            <https://doi.org/10.1145/272991.272995>.
 [PTVF92]   Press, W., Teukolsky, S., Vetterling, W., and B. Flannery,
            "Numerical recipes in C (2nd ed.): the art of scientific
            computing", Cambridge University Press,
            ISBN 0-521-43108-5, 1992.
 [RFC5170]  Roca, V., Neumann, C., and D. Furodet, "Low Density Parity
            Check (LDPC) Staircase and Triangle Forward Error
            Correction (FEC) Schemes", RFC 5170, DOI 10.17487/RFC5170,
            June 2008, <https://www.rfc-editor.org/info/rfc5170>.
 [RFC8681]  Roca, V. and B. Teibi, "Sliding Window Random Linear Code
            (RLC) Forward Erasure Correction (FEC) Schemes for
            FECFRAME", RFC 8681, DOI 10.17487/RFC8681, January 2020,
            <https://www.rfc-editor.org/info/rfc8681>.
 [TestU01]  L'Ecuyer, P. and R. Simard, "TestU01: A C library for
            empirical testing of random number generators", ACM
            Transactions on Mathematical Software (TOMS), Volume 33,
            Issue 4, Article 22, DOI 10.1145/1268776.1268777, August
            2007, <http://simul.iro.umontreal.ca/testu01/tu01.html>.
 [TinyMT-dev]
            "Tiny Mersenne Twister (TinyMT)", commit 9d7ca3c, March
            2018, <https://github.com/MersenneTwister-Lab/TinyMT>.
 [TinyMT-params]
            "TinyMT pre-calculated parameter list", commit 30079eb,
            March 2013,
            <https://github.com/jj1bdx/tinymtdc-longbatch>.
 [TinyMT-web]
            Saito, M. and M. Matsumoto, "Tiny Mersenne Twister
            (TinyMT)",
            <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT/>.

Acknowledgments

 The authors would like to thank Belkacem Teibi, with whom we explored
 TinyMT32 specificities when looking to an alternative to the Park-
 Miller Linear Congruential PRNG.  The authors would also like to
 thank Carl Wallace; Stewart Bryant; Greg Skinner; Mike Heard; the
 three TSVWG chairs, Wesley Eddy (our shepherd), David Black, and
 Gorry Fairhurst; as well as Spencer Dawkins and Mirja Kuehlewind.
 Last but not least, the authors are really grateful to the IESG
 members, in particular Benjamin Kaduk, Eric Rescorla, Adam Roach,
 Roman Danyliw, Barry Leiba, Martin Vigoureux, and Eric Vyncke for
 their highly valuable feedback that greatly contributed to improving
 this specification.

Authors' Addresses

 Mutsuo Saito
 Hiroshima University
 Japan
 Email: saito@math.sci.hiroshima-u.ac.jp
 Makoto Matsumoto
 Hiroshima University
 Japan
 Email: m-mat@math.sci.hiroshima-u.ac.jp
 Vincent Roca (editor)
 INRIA
 Univ. Grenoble Alpes
 France
 Email: vincent.roca@inria.fr
 Emmanuel Baccelli
 INRIA
 France
 Email: emmanuel.baccelli@inria.fr
/home/gen.uk/domains/wiki.gen.uk/public_html/data/pages/rfc/rfc8682.txt · Last modified: 2020/01/14 23:28 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki