GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc8645

Internet Research Task Force (IRTF) S. Smyshlyaev, Ed. Request for Comments: 8645 CryptoPro Category: Informational August 2019 ISSN: 2070-1721

              Re-keying Mechanisms for Symmetric Keys

Abstract

 A certain maximum amount of data can be safely encrypted when
 encryption is performed under a single key.  This amount is called
 the "key lifetime".  This specification describes a variety of
 methods for increasing the lifetime of symmetric keys.  It provides
 two types of re-keying mechanisms based on hash functions and block
 ciphers that can be used with modes of operations such as CTR, GCM,
 CBC, CFB, and OMAC.
 This document is a product of the Crypto Forum Research Group (CFRG)
 in the IRTF.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.
 This document is a product of the Internet Research Task Force
 (IRTF).  The IRTF publishes the results of Internet-related research
 and development activities.  These results might not be suitable for
 deployment.  This RFC represents the consensus of the Crypto Forum
 Research Group of the Internet Research Task Force (IRTF).  Documents
 approved for publication by the IRSG are not candidates for any level
 of Internet Standard; see Section 2 of RFC 7841.
 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8645.

Smyshlyaev Informational [Page 1] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors.  All rights reserved.
 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document.  Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Smyshlyaev Informational [Page 2] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

Table of Contents

 1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
 2.  Conventions Used in This Document . . . . . . . . . . . . . .   7
 3.  Basic Terms and Definitions . . . . . . . . . . . . . . . . .   7
 4.  Choosing Constructions and Security Parameters  . . . . . . .   9
 5.  External Re-keying Mechanisms . . . . . . . . . . . . . . . .  11
   5.1.  Methods of Key Lifetime Control . . . . . . . . . . . . .  14
   5.2.  Parallel Constructions  . . . . . . . . . . . . . . . . .  14
     5.2.1.  Parallel Construction Based on a KDF on a Block
             Cipher  . . . . . . . . . . . . . . . . . . . . . . .  15
     5.2.2.  Parallel Construction Based on a KDF on a Hash
             Function  . . . . . . . . . . . . . . . . . . . . . .  16
     5.2.3.  Tree-Based Construction . . . . . . . . . . . . . . .  16
   5.3.  Serial Constructions  . . . . . . . . . . . . . . . . . .  17
     5.3.1.  Serial Construction Based on a KDF on a Block Cipher   19
     5.3.2.  Serial Construction Based on a KDF on a Hash Function  19
   5.4.  Using Additional Entropy during Re-keying . . . . . . . .  19
 6.  Internal Re-keying Mechanisms . . . . . . . . . . . . . . . .  20
   6.1.  Methods of Key Lifetime Control . . . . . . . . . . . . .  22
   6.2.  Constructions that Do Not Require a Master Key  . . . . .  23
     6.2.1.  ACPKM Re-keying Mechanisms  . . . . . . . . . . . . .  23
     6.2.2.  CTR-ACPKM Encryption Mode . . . . . . . . . . . . . .  25
     6.2.3.  GCM-ACPKM Authenticated Encryption Mode . . . . . . .  26
   6.3.  Constructions that Require a Master Key . . . . . . . . .  29
     6.3.1.  ACPKM-Master Key Derivation from the Master Key . . .  29
     6.3.2.  CTR-ACPKM-Master Encryption Mode  . . . . . . . . . .  31
     6.3.3.  GCM-ACPKM-Master Authenticated Encryption Mode  . . .  33
     6.3.4.  CBC-ACPKM-Master Encryption Mode  . . . . . . . . . .  37
     6.3.5.  CFB-ACPKM-Master Encryption Mode  . . . . . . . . . .  39
     6.3.6.  OMAC-ACPKM-Master Authentication Mode . . . . . . . .  40
 7.  Joint Usage of External and Internal Re-keying  . . . . . . .  42
 8.  Security Considerations . . . . . . . . . . . . . . . . . . .  43
 9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  43
 10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  44
   10.1.  Normative References . . . . . . . . . . . . . . . . . .  44
   10.2.  Informative References . . . . . . . . . . . . . . . . .  45
 Appendix A.  Test Examples  . . . . . . . . . . . . . . . . . . .  48
   A.1.  Test Examples for External Re-keying  . . . . . . . . . .  48
     A.1.1.  External Re-keying with a Parallel Construction . . .  48
     A.1.2.  External Re-keying with a Serial Construction . . . .  49
   A.2.  Test Examples for Internal Re-keying  . . . . . . . . . .  52
     A.2.1.  Internal Re-keying Mechanisms that Do Not
             Require a Master Key  . . . . . . . . . . . . . . . .  52
     A.2.2.  Internal Re-keying Mechanisms with a Master Key . . .  56
 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  69
 Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  69
 Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  69

Smyshlyaev Informational [Page 3] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

1. Introduction

 A certain maximum amount of data can be safely encrypted when
 encryption is performed under a single key.  Hereinafter, this amount
 will be referred to as the "key lifetime".  The need for such a
 limitation is dictated by the following methods of cryptanalysis:
 1.  Methods based on the combinatorial properties of the used block
     cipher mode of operation
        These methods do not depend on the underlying block cipher.
        Common mode restrictions derived from such methods are of
        order 2^{n/2}, where n is a block size defined in Section 3.
        [Sweet32] includes an example of an attack that is based on
        such methods.
 2.  Methods based on side-channel analysis issues
        In most cases, these methods do not depend on the used
        encryption modes and weakly depend on the used cipher
        features.  Limitations resulting from these considerations are
        usually the most restrictive ones.  [TEMPEST] is an example of
        an attack that is based on such methods.
 3.  Methods based on the properties of the used block cipher
        The most common methods of this type are linear and
        differential cryptanalysis [LDC].  In most cases, these
        methods do not depend on the used modes of operation.  In the
        case of secure block ciphers, bounds resulting from such
        methods are roughly the same as the natural bounds of 2^n and
        are dominated by the other bounds above.  Therefore, they can
        be excluded from the considerations here.
 As a result, it is important to replace a key when the total size of
 the processed plaintext under that key approaches the lifetime
 limitation.  A specific value of the key lifetime should be
 determined in accordance with some safety margin for protocol
 security and the methods outlined above.
 Suppose L is a key lifetime limitation in some protocol P.  For
 simplicity, assume that all messages have the same length m.  Hence,
 the number of messages q that can be processed with a single key K
 should be such that m * q <= L.  This can be depicted graphically as
 a rectangle with sides m and q enclosed by area L (see Figure 1).

Smyshlyaev Informational [Page 4] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

                    +------------------------+
                    |                      L |
                    | +--------m---------+   |
                    | |==================|   |
                    | |==================|   |
                    | q==================|   |       m * q <= L
                    | |==================|   |
                    | |==================|   |
                    | +------------------+   |
                    +------------------------+
       Figure 1: Graphic Display of the Key Lifetime Limitation
 In practice, the amount of data that corresponds to limitation L may
 not be enough.  The simplest and obvious solution in this situation
 is a regular renegotiation of an initial key after processing this
 threshold amount of data L.  However, this reduces the total
 performance, since it usually entails termination of application data
 transmission, additional service messages, the use of a random number
 generator, and many other additional calculations, including
 resource-intensive public key cryptography.
 For protocols based on block ciphers or stream ciphers, a more
 efficient way to increase the key lifetime is to use various
 re-keying mechanisms.  This specification considers re-keying
 mechanisms for block ciphers only; re-keying mechanisms typical for
 stream ciphers (e.g., [Pietrzak2009], [FPS2012]) are beyond the scope
 of this document.
 Re-keying mechanisms can be applied at the different protocol levels:
 the block cipher level (this approach is known as fresh re-keying and
 is described, for instance, in [FRESHREKEYING]; the block cipher mode
 of operation level (see Section 6); and the protocol level above the
 block cipher mode of operation (see Section 5).  The usage of the
 first approach is highly inefficient due to the key changing after
 each message block is processed.  Moreover, fresh re-keying
 mechanisms can change the block cipher internal structure and,
 consequently, can require an additional security analysis for each
 particular block cipher.  As a result, this approach depends on
 particular primitive properties and cannot be applied to any
 arbitrary block cipher without additional security analysis.
 Therefore, fresh re-keying mechanisms go beyond the scope of this
 document.
 Thus, this document contains the list of recommended re-keying
 mechanisms that can be used in the symmetric encryption schemes based
 on the block ciphers.  These mechanisms are independent from the

Smyshlyaev Informational [Page 5] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 particular block cipher specification, and their security properties
 rely only on the standard block cipher security assumption.
 This specification presents two basic approaches to extending the
 lifetime of a key while avoiding renegotiation, which were introduced
 in [AAOS2017]:
 1.  External re-keying
    External re-keying is performed by a protocol, and it is
    independent of the underlying block cipher and the mode of
    operation.  External re-keying can use parallel and serial
    constructions.  In the parallel case, data processing keys K^1,
    K^2, ... are generated directly from the initial key K
    independently of each other.  In the serial case, every data-
    processing key depends on the state that is updated after the
    generation of each new data-processing key.
    As a generalization of external parallel re-keying, an external
    tree-based mechanism can be considered.  It is specified in
    Section 5.2.3 and can be viewed as the tree generalization in
    [GGM].  Similar constructions are used in the one-way tree
    mechanism ([OWT]) and [AESDUKPT] standard.
 2.  Internal re-keying
    Internal re-keying is built into the mode, and it depends heavily
    on the properties of the mode of operation and the block size.
 The re-keying approaches extend the key lifetime for a single initial
 key by allowing the leakages to be limited (via side channels) and by
 improving the combinatorial properties of the used block cipher mode
 of operation.
 In practical applications, re-keying can be useful for protocols that
 need to operate in hostile environments or under restricted resource
 conditions (e.g., those that require lightweight cryptography, where
 ciphers have a small block size that imposes strict combinatorial
 limitations).  Moreover, mechanisms that use external or internal
 re-keying may provide some protection against possible future attacks
 (by limiting the number of plaintext-ciphertext pairs that an
 adversary can collect) and some properties of forward or backward
 security (meaning that past or future data-processing keys remain
 secure even if the current key is compromised; see [AbBell] for more
 details).  External or internal re-keying can be used in network
 protocols as well as in the systems for data-at-rest encryption.

Smyshlyaev Informational [Page 6] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Depending on the concrete protocol characteristics, there might be
 situations in which both external and internal re-keying mechanisms
 (see Section 7) can be applied.  For example, a similar approach was
 used in Taha's tree construction (see [TAHA]).
 Note that there are key-updating (key regression) algorithms (e.g.,
 [FKK2005] and [KMNT2003]) that are called "re-keying" as well, but
 they pursue goals other than increasing the key lifetime.  Therefore,
 key regression algorithms are excluded from the considerations here.
 This document represents the consensus of the Crypto Forum Research
 Group (CFRG).

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Basic Terms and Definitions

 This document uses the following terms and definitions for the sets
 and operations on the elements of these sets:
 V*      the set of all bit strings of a finite length (hereinafter
         referred to as strings), including the empty string;
 V_s     the set of all bit strings of length s, where s is a
         non-negative integer;
 |X|     the bit length of the bit string X;
 A | B   the concatenation of strings A and B both belonging to V*,
         i.e., a string in V_{|A|+|B|}, where the left substring in
         V_|A| is equal to A and the right substring in V_|B| is equal
         to B;
 (xor)   the exclusive-or of two bit strings of the same length;
 Z_{2^n} the ring of residues modulo 2^n;
 Int_s: V_s -> Z_{2^s}
         the transformation that maps the string a = (a_s, ... , a_1)
         in V_s into the integer Int_s(a) = 2^{s-1} * a_s + ... + 2 *
         a_2 + a_1 (the interpretation of the binary string as an
         integer);

Smyshlyaev Informational [Page 7] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Vec_s: Z_{2^s} -> V_s
         the transformation inverse to the mapping Int_s (the
         interpretation of an integer as a binary string);
 MSB_i: V_s -> V_i
         the transformation that maps the string a = (a_s, ... , a_1)
         in V_s into the string MSB_i(a) = (a_s, ... , a_{s-i+1}) in
         V_i (most significant bits);
 LSB_i: V_s -> V_i
         the transformation that maps the string a = (a_s, ... , a_1)
         in V_s into the string LSB_i(a) = (a_i, ... , a_1) in V_i
         (least significant bits);
 Inc_c: V_s -> V_s
         the transformation that maps the string a = (a_s, ... , a_1)
         in V_s into the string Inc_c(a) = MSB_{|a|-c}(a) |
         Vec_c(Int_c(LSB_c(a)) + 1(mod 2^c)) in V_s (incrementing the
         least significant c bits of the bit string, regarded as the
         binary representation of an integer);
 a^s     the string in V_s that consists of s 'a' bits;
 E_{K}: V_n -> V_n
         the block cipher permutation under the key K in V_k;
 ceil(x) the smallest integer that is greater than or equal to x;
 floor(x)
         the biggest integer that is less than or equal to x;
 k       the bit length of the K; k is assumed to be divisible by 8;
 n       the block size of the block cipher (in bits); n is assumed to
         be divisible by 8;
 b       the number of data blocks in the plaintext P (b =
         ceil(|P|/n));
 N       the section size (the number of bits that are processed with
         one section key before this key is transformed).
 A plaintext message P and the corresponding ciphertext C are divided
 into b = ceil(|P|/n) blocks, denoted as P = P_1 | P_2 | ... | P_b and
 C = C_1 | C_2 | ... | C_b, respectively.  The first b-1 blocks P_i
 and C_i are in V_n for i = 1, 2, ... , b-1.  The b-th blocks P_b and
 C_b may be incomplete blocks, i.e., in V_r, where r <= n if not
 otherwise specified.

Smyshlyaev Informational [Page 8] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

4. Choosing Constructions and Security Parameters

 External re-keying is an approach assuming that a key is transformed
 after encrypting a limited number of entire messages.  The external
 re-keying method is chosen at the protocol level, regardless of the
 underlying block cipher or the encryption mode.  External re-keying
 is recommended for protocols that process relatively short messages
 or protocols that have a way to divide a long message into manageable
 pieces.  Through external re-keying, the number of messages that can
 be securely processed with a single initial key K is substantially
 increased without a loss of message length.
 External re-keying has the following advantages
 1.  It increases the lifetime of an initial key by increasing the
     number of messages processed with this key.
 2.  It has minimal impact on performance when the number of messages
     processed under one initial key is sufficiently large.
 3.  It provides forward and backward security of data-processing
     keys.
 However, the use of external re-keying has the following
 disadvantage: in cases with restrictive key lifetime limitations, the
 message sizes can become obstructive due to the impossibility of
 processing sufficiently large messages, so it may be necessary to
 perform additional fragmentation at the protocol level.  For example,
 if the key lifetime L is 1 GB and the message length m = 3 GB, then
 this message cannot be processed as a whole, and it should be divided
 into three fragments that will be processed separately.
 Internal re-keying is an approach assuming that a key is transformed
 during each separate message processing.  Such procedures are
 integrated into the base modes of operations, so every internal
 re-keying mechanism is defined for the particular operation mode and
 the block size of the used cipher.  Internal re-keying is recommended
 for protocols that process long messages: the size of each single
 message can be substantially increased without loss in the number of
 messages that can be securely processed with a single initial key.
 Internal re-keying has the following advantages:
 1.  It increases the lifetime of an initial key by increasing the
     size of the messages processed with one initial key.
 2.  It has minimal impact on performance.

Smyshlyaev Informational [Page 9] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 3.  Internal re-keying mechanisms without a master key do not affect
     short-message transformation at all.
 4.  It is transparent (works like any mode of operation): it does not
     require changes of initialization vectors (IVs) and a restart of
     MACing.
 However, the use of internal re-keying has the following
 disadvantages:
 1.  a specific method must not be chosen independently of a mode of
     operation.
 2.  internal re-keying mechanisms without a master key do not provide
     backward security of data-processing keys.
 Any block cipher modes of operations with internal re-keying can be
 jointly used with any external re-keying mechanisms.  Such joint
 usage increases both the number of messages processed with one
 initial key and their maximum possible size.
 If the adversary has access to the data-processing interface, the use
 of the same cryptographic primitives both for data-processing and
 re-keying transformation decreases the code size but can lead to some
 possible vulnerabilities (the possibility of mounting a chosen-
 plaintext attack may lead to the compromise of the following keys).
 This vulnerability can be eliminated by using different primitives
 for data processing and re-keying, e.g., block cipher for data
 processing and hash for re-keying (see Section 5.2.2 and
 Section 5.3.2).  However, in this case, the security of the whole
 scheme cannot be reduced to standard notions like a pseudorandom
 function (PRF) or pseudorandom permutation (PRP), so security
 estimations become more difficult and unclear.
 Summing up the abovementioned issues briefly:
 1.  If a protocol assumes processing of long records (e.g., [CMS]),
     internal re-keying should be used.  If a protocol assumes
     processing of a significant number of ordered records, which can
     be considered as a single data stream (e.g., [TLS], [SSH]),
     internal re-keying may also be used.
 2.  For protocols that allow out-of-order delivery and lost records
     (e.g., [DTLS], [ESP]), external re-keying should be used as, in
     this case, records cannot be considered as a single data stream.
     If the records are also long enough, internal re-keying should
     also be used during each separate message processing.

Smyshlyaev Informational [Page 10] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 For external re-keying:
 1.  If it is desirable to separate transformations used for data
     processing and key updates, hash function-based re-keying should
     be used.
 2.  If parallel data processing is required, then parallel external
     re-keying should be used.
 3.  If restrictive key lifetime limitations are present, external
     tree-based re-keying should be used.
 For internal re-keying:
 1.  If the property of forward and backward security is desirable for
     data-processing keys and if additional key material can be easily
     obtained for the data-processing stage, internal re-keying with a
     master key should be used.

5. External Re-keying Mechanisms

 This section presents an approach to increasing the initial key
 lifetime by using a transformation of a data-processing key (frame
 key) after processing a limited number of entire messages (frame).
 The approach provides external parallel and serial re-keying
 mechanisms (see [AbBell]).  These mechanisms use initial key K only
 for frame key generation and never use it directly for data
 processing.  Such mechanisms operate outside of the base modes of
 operations and do not change them at all; therefore, they are called
 "external re-keying" mechanisms in this document.
 External re-keying mechanisms are recommended for usage in protocols
 that process quite small messages, since the maximum gain in
 increasing the initial key lifetime is achieved by increasing the
 number of messages.
 External re-keying increases the initial key lifetime through the
 following approach.  Suppose there is a protocol P with some mode of
 operation (base encryption or authentication mode).  Let L1 be a key
 lifetime limitation induced by side-channel analysis methods (side-
 channel limitation), let L2 be a key lifetime limitation induced by
 methods based on the combinatorial properties of a used mode of
 operation (combinatorial limitation), and let q1, q2 be the total
 numbers of messages of length m that can be safely processed with an
 initial key K according to these limitations.

Smyshlyaev Informational [Page 11] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Let L = min(L1, L2), q = min(q1, q2), and q * m <= L.  As the L1
 limitation is usually much stronger than the L2 limitation (L1 < L2),
 the final key lifetime restriction is equal to the most restrictive
 limitation L1.  Thus, as displayed in Figure 2, without re-keying,
 only q1 (q1 * m <= L1) messages can be safely processed.
                       <--------m------->
                       +----------------+ ^ ^
                       |================| | |
                       |================| | |
                   K-->|================| q1|
                       |================| | |
                       |==============L1| | |
                       +----------------+ v |
                       |                |   |
                       |                |   |
                       |                |   q2
                       |                |   |
                       |                |   |
                       |                |   |
                       |                |   |
                       |                |   |
                       |                |   |
                       |                |   |
                       |                |   |
                       |              L2|   |
                       +----------------+   v
           Figure 2: Basic Principles of Message Processing
                      without External Re-keying
 Suppose that the safety margin for the protocol P is fixed and the
 external re-keying approach is applied to the initial key K to
 generate the sequence of frame keys.  The frame keys are generated in
 such a way that the leakage of a previous frame key does not have any
 impact on the following one, so the side-channel limitation L1 is
 switched off.  Thus, the resulting key lifetime limitation of the
 initial key K can be calculated on the basis of a new combinatorial
 limitation L2'.  It is proven (see [AbBell]) that the security of the
 mode of operation that uses external re-keying leads to an increase
 when compared to base mode without re-keying (thus, L2 < L2').
 Hence, as displayed in Figure 3, the resulting key lifetime
 limitation if using external re-keying can be increased up to L2'.

Smyshlyaev Informational [Page 12] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

                       <--------m------->
                 K     +----------------+
                 |     |================|
                 v     |================|
                K^1--> |================|
                 |     |================|
                 |     |==============L1|
                 |     +----------------+
                 |     |================|
                 v     |================|
                K^2--> |================|
                 |     |================|
                 |     |==============L1|
                 |     +----------------+
                 |     |================|
                 v     |================|
                ...    |      . . .     |
                       |                |
                       |                |
                       |              L2|
                       +----------------+
                       |                |
                      ...              ...
                       |             L2'|
                       +----------------+
           Figure 3: Basic Principles of Message Processing
                        with External Re-keying
 Note: The key transformation process is depicted in a simplified
 form.  A specific approach (parallel and serial) is described below.
 Consider an example.  Let the message size in a protocol P be equal
 to 1 KB.  Suppose L1 = 128 MB and L2 = 1 TB.  Thus, if an external
 re-keying mechanism is not used, the initial key K must be
 renegotiated after processing 128 MB / 1 KB = 131072 messages.
 If an external re-keying mechanism is used, the key lifetime
 limitation L1 goes off.  Hence, the resulting key lifetime limitation
 L2' can be set to more than 1 TB.  Thus, if an external re-keying
 mechanism is used, more than 1 TB / 1 KB = 2^30 messages can be
 processed before the initial key K is renegotiated.  This is 8192
 times greater than the number of messages that can be processed when
 an external re-keying mechanism is not used.

Smyshlyaev Informational [Page 13] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

5.1. Methods of Key Lifetime Control

 Suppose L is an amount of data that can be safely processed with one
 frame key.  For i in {1, 2, ... , t}, the frame key K^i (see Figures
 4 and 6) should be transformed after processing q_i messages, where
 q_i can be calculated in accordance with one of the following
 approaches:
 Explicit approach:
    q_i is such that |M^{i,1}| + ... + |M^{i,q_i}| <= L, |M^{i,1}| +
    ... + |M^{i,q_i+1}| > L.
    This approach allows use of the frame key K^i in an almost optimal
    way, but it can be applied only when messages cannot be lost or
    reordered (e.g., TLS records).
 Implicit approach:
    q_i = L / m_max, i = 1, ... , t.
    The amount of data processed with one frame key K^i is calculated
    under the assumption that every message has the maximum length
    m_max.  Hence, this amount can be considerably less than the key
    lifetime limitation L.  On the other hand, this approach can be
    applied when messages may be lost or reordered (e.g., DTLS
    records).
 Dynamic key changes:
    We can organize the key change using the Protected Point to Point
    ([P3]) solution by building a protected tunnel between the
    endpoints in which the information about frame key updating can be
    safely passed across.  This can be useful, for example, when we
    want the adversary to not detect the key change during the
    protocol evaluation.

5.2. Parallel Constructions

 External parallel re-keying mechanisms generate frame keys K^1, K^2,
 ... directly from the initial key K independently of each other.
 The main idea behind external re-keying with a parallel construction
 is presented in Figure 4:

Smyshlyaev Informational [Page 14] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Maximum message size = m_max.
 _____________________________________________________________
                                 m_max
                           <---------------->
                 M^{1,1}   |===             |
                 M^{1,2}   |=============== |
       +->K^1-->   ...            ...
       |         M^{1,q_1} |========        |
       |
       |
       |         M^{2,1}   |================|
       |         M^{2,2}   |=====           |
 K-----|->K^2-->   ...            ...
       |         M^{2,q_2} |==========      |
       |
      ...
       |         M^{t,1}   |============    |
       |         M^{t,2}   |=============   |
       +->K^t-->   ...            ...
                 M^{t,q_t} |==========      |
 _____________________________________________________________
           Figure 4: External Parallel Re-keying Mechanisms
 The frame key K^i, i = 1, ... , t - 1 is updated after processing a
 certain number of messages (see Section 5.1).

5.2.1. Parallel Construction Based on a KDF on a Block Cipher

 The ExtParallelC re-keying mechanism is based on the key derivation
 function on a block cipher and is used to generate t frame keys as
 follows:
    K^1 | K^2 | ... | K^t = ExtParallelC(K, t * k) = MSB_{t *
    k}(E_{K}(Vec_n(0)) |
    E_{K}(Vec_n(1)) | ... | E_{K}(Vec_n(R - 1))),
 where R = ceil(t * k/n).

Smyshlyaev Informational [Page 15] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

5.2.2. Parallel Construction Based on a KDF on a Hash Function

 The ExtParallelH re-keying mechanism is based on the key derivation
 function HKDF-Expand, described in [RFC5869], and is used to generate
 t frame keys as follows:
    K^1 | K^2 | ... | K^t = ExtParallelH(K, t * k) = HKDF-Expand(K,
    label, t * k),
 where label is a string (may be a zero-length string) that is defined
 by a specific protocol.

5.2.3. Tree-Based Construction

 The application of an external tree-based mechanism leads to the
 construction of the key tree with the initial key K (root key) at the
 0 level and the frame keys K^1, K^2, ... at the last level, as
 described in Figure 5.
                          K_root = K
                    ___________|___________
                   |          ...          |
                   V                       V
                  K{1,1}                K{1,W1}
             ______|______           ______|______
            |     ...     |         |     ...     |
            V             V         V             V
         K{2,1}       K{2,W2}  K{2,(W1-1)*W2+1} K{2,W1*W2}
          __|__         __|__     __|__         __|__
         | ... |       | ... |   | ... |       | ... |
         V     V       V     V   V     V       V     V
      K{3,1}  ...     ...   ... ...   ...     ...   K{3,W1*W2*W3}
       ...                                           ...
      __|__                   ...                   __|__
     | ... |                                       | ... |
     V     V                                       V     V
 K{h,1}   K{h,Wh}         K{h,(W1*...*W{h-1}-1)*Wh+1}  K{h,W1*...*Wh}
   //       \\                                  //       \\
 K^1       K^{Wh}        K^{(W1*...*W{h-1}-1)*Wh+1}     K^{W1*...*Wh}
 ____________________________________________________________________
                Figure 5: External Tree-Based Mechanism
 The tree height h and the number of keys Wj, j in {1, ... , h}, which
 can be partitioned from the "parent" key, are defined in accordance
 with a specific protocol and key lifetime limitations for the used
 derivation functions.

Smyshlyaev Informational [Page 16] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Each j-level key K{j,w}, where j in {1, ... , h}, w in {1, ... , W1 *
 ... * Wj}, is derived from the (j-1)-level "parent" key K{j-1,
 ceil(w/Wi)} (and other appropriate input data) using the j-th level
 derivation function.  This function can be based on the block cipher
 function or on the hash function and is defined in accordance with a
 specific protocol.
 The i-th frame K^i, i in {1, 2, ... , W1*...*Wh}, can be calculated
 as follows:
    K^i = ExtKeyTree(K, i) = KDF_h(KDF_{h-1}(... KDF_1(K, ceil(i / (W2
    * ... * Wh)) ... , ceil(i / Wh)), i),
 where KDF_j is the j-th level derivation function that takes two
 arguments (the parent key value and the integer in a range from 1 to
 W1 * ... * Wj) and outputs the j-th level key value.
 The frame key K^i is updated after processing a certain number of
 messages (see Section 5.1).
 In order to create an efficient implementation, during frame key K^i
 generation, the derivation functions KDF_j, j in {1, ... , h-1}
 should be used only when ceil(i / (W{j+1} * ... * Wh)) != ceil((i -
 1) / (W{j+1} * ... * Wh)); otherwise, it is necessary to use a
 previously generated value.  This approach also makes it possible to
 take countermeasures against side-channel attacks.
 Consider an example.  Suppose h = 3, W1 = W2 = W3 = W, and KDF_1,
 KDF_2, KDF_3 are key derivation functions based on the
 KDF_GOSTR3411_2012_256 (hereafter simply KDF) function described in
 [RFC7836].  The resulting ExtKeyTree function can be defined as
 follows:
    ExtKeyTree(K, i) = KDF(KDF(KDF(K, "level1", ceil(i / W^2)),
    "level2", ceil(i / W)), "level3", i).
 where i in {1, 2, ... , W^3}.
 A structure similar to the external tree-based mechanism can be found
 in Section 6 of [NISTSP800-108].

5.3. Serial Constructions

 External serial re-keying mechanisms generate frame keys, each of
 which depends on the secret state (K*_1, K*_2, ...) that is updated
 after the generation of each new frame key; see Figure 6.  Similar
 approaches are used in the [SIGNAL] protocol and the [TLS] updating

Smyshlyaev Informational [Page 17] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 traffic key mechanism and were proposed for use in the [U2F]
 protocol.
 External serial re-keying mechanisms have the obvious disadvantage of
 being impossible to implement in parallel, but they may be the
 preferred option if additional forward secrecy is desirable.  If all
 keys are securely deleted after usage, the compromise of a current
 secret state at some point does not lead to a compromise of all
 previous secret states and frame keys.  In terms of [TLS], compromise
 of application_traffic_secret_N does not compromise all previous
 application_traffic_secret_i, i < N.
 The main idea behind external re-keying with a serial construction is
 presented in Figure 6:
 Maximum message size = m_max.
 _____________________________________________________________
                                      m_max
                                <---------------->
                      M^{1,1}   |===             |
                      M^{1,2}   |=============== |
 K*_1 = K --->K^1-->    ...            ...
   |                  M^{1,q_1} |========        |
   |
   |
   |                  M^{2,1}   |================|
   v                  M^{2,2}   |=====           |
 K*_2 ------->K^2-->    ...            ...
   |                  M^{2,q_2} |==========      |
   |
  ...
   |                  M^{t,1}   |============    |
   v                  M^{t,2}   |=============   |
 K*_t ------->K^t-->    ...            ...
                      M^{t,q_t} |==========      |
 _____________________________________________________________
            Figure 6: External Serial Re-keying Mechanisms
 The frame key K^i, i = 1, ... , t - 1, is updated after processing a
 certain number of messages (see Section 5.1).

Smyshlyaev Informational [Page 18] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

5.3.1. Serial Construction Based on a KDF on a Block Cipher

 The frame key K^i is calculated using the ExtSerialC transformation
 as follows:
    K^i = ExtSerialC(K, i) =
    MSB_k(E_{K*_i}(Vec_n(0)) |E_{K*_i}(Vec_n(1)) | ... |
    E_{K*_i}(Vec_n(J - 1))),
 where J = ceil(k / n), i = 1, ... , t, K*_i is calculated as follows:
    K*_1 = K,
    K*_{j+1} = MSB_k(E_{K*_j}(Vec_n(J)) | E_{K*_j}(Vec_n(J + 1)) |
    ... |
    E_{K*_j}(Vec_n(2 * J - 1))),
 where j = 1, ... , t - 1.

5.3.2. Serial Construction Based on a KDF on a Hash Function

 The frame key K^i is calculated using the ExtSerialH transformation
 as follows:
    K^i = ExtSerialH(K, i) = HKDF-Expand(K*_i, label1, k),
 where i = 1, ... , t; HKDF-Expand is the HMAC-based key derivation
 function, as described in [RFC5869]; and K*_i is calculated as
 follows:
    K*_1 = K,
    K*_{j+1} = HKDF-Expand(K*_j, label2, k), where j = 1, ... , t - 1,
 where label1 and label2 are different strings from V* that are
 defined by a specific protocol (see, for example, the algorithm for
 updating traffic keys in TLS 1.3 [TLS]).

5.4. Using Additional Entropy during Re-keying

 In many cases, using additional entropy during re-keying won't
 increase security but may give a false sense of that.  Therefore, one
 can rely on additional entropy only after conducting a deep security
 analysis.  For example, good PRF constructions do not require
 additional entropy for the quality of keys, so, in most cases, there
 is no need to use additional entropy with external re-keying
 mechanisms based on secure KDFs.  However, in some situations, mixed-
 in entropy can still increase security in the case of a time-limited

Smyshlyaev Informational [Page 19] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 but complete breach of the system when an adversary can access the
 frame-key generation interface but cannot reveal the master keys
 (e.g., when the master keys are stored in a Hardware Security Module
 (HSM)).
 For example, an external parallel construction based on a KDF on a
 hash function with a mixed-in entropy can be described as follows:
    K^i = HKDF-Expand(K, label_i, k),
 where label_i is additional entropy that must be sent to the
 recipient (e.g., sent jointly with an encrypted message).  The
 entropy label_i and the corresponding key K^i must be generated
 directly before message processing.

6. Internal Re-keying Mechanisms

 This section presents an approach to increasing the key lifetime by
 using a transformation of a data-processing key (section key) during
 each separate message processing.  Each message is processed starting
 with the same key (the first section key), and each section key is
 updated after processing N bits of the message (section).
 This section provides internal re-keying mechanisms called ACPKM
 (Advanced Cryptographic Prolongation of Key Material) and ACPKM-
 Master that do not use a master key and use a master key,
 respectively.  Such mechanisms are integrated into the base modes of
 operation and actually form new modes of operation.  Therefore, they
 are called "internal re-keying" mechanisms in this document.
 Internal re-keying mechanisms are recommended to be used in protocols
 that process large single messages (e.g., CMS messages), since the
 maximum gain in increasing the key lifetime is achieved by increasing
 the length of a message, while it provides almost no increase in the
 number of messages that can be processed with one initial key.
 Internal re-keying increases the key lifetime through the following
 approach.  Suppose protocol P uses some base mode of operation.  Let
 L1 and L2 be a side channel and combinatorial limitations,
 respectively, and for some fixed number of messages q, let m1, m2 be
 the lengths of messages that can be safely processed with a single
 initial key K according to these limitations.
 Thus, the approach without re-keying (analogous to Section 5) yields
 a final key lifetime restriction equal to L1, and only q messages of
 the length m1 can be safely processed; see Figure 7.

Smyshlyaev Informational [Page 20] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

              K
              |
              v
    ^ +----------------+------------------------------------+
    | |==============L1|                                  L2|
    | |================|                                    |
    q |================|                                    |
    | |================|                                    |
    | |================|                                    |
    v +----------------+------------------------------------+
      <-------m1------->
      <----------------------------m2----------------------->
           Figure 7: Basic Principles of Message Processing
                      without Internal Re-keying
 Suppose that the safety margin for the protocol P is fixed and the
 internal re-keying approach is applied to the base mode of operation.
 Suppose further that every message is processed with a section key,
 which is transformed after processing N bits of data, where N is a
 parameter.  If q * N does not exceed L1, then the side-channel
 limitation L1 goes off, and the resulting key lifetime limitation of
 the initial key K can be calculated on the basis of a new
 combinatorial limitation L2'.  The security of the mode of operation
 that uses internal re-keying increases when compared to the base mode
 of operation without re-keying (thus, L2 < L2').  Hence, as displayed
 in Figure 8, the resulting key lifetime limitation if using internal
 re-keying can be increased up to L2'.
   K-----> K^1-------------> K^2 -----------> . . .
           |                 |
           v                 v
 ^ +---------------+---------------+------------------+--...--+
 | |=============L1|=============L1|======          L2|    L2'|
 | |===============|===============|======            |       |
 q |===============|===============|====== . . .      |       |
 | |===============|===============|======            |       |
 | |===============|===============|======            |       |
 v +---------------+---------------+------------------+--...--+
   <-------N------->
           Figure 8: Basic Principles of Message Processing
                        with Internal Re-keying
 Note: The key transformation process is depicted in a simplified
 form.  A specific approach (ACPKM and ACPKM-Master re-keying
 mechanisms) is described below.

Smyshlyaev Informational [Page 21] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Since the performance of encryption can slightly decrease for rather
 small values of N, the maximum possible value should be selected for
 parameter N for a particular protocol in order to provide the
 necessary key lifetime for the considered security models.
 Consider an example.  Suppose L1 = 128 MB and L2 = 10 TB.  Let the
 message size in the protocol be large/unlimited (which may exhaust
 the whole key lifetime L2).  The most restrictive resulting key
 lifetime limitation is equal to 128 MB.
 Thus, there is a need to put a limit on the maximum message size
 m_max.  For example, if m_max = 32 MB, it may happen that the
 renegotiation of initial key K would be required after processing
 only four messages.
 If an internal re-keying mechanism with section size N = 1 MB is
 used, more than L1 / N = 128 MB / 1 MB = 128 messages can be
 processed before the renegotiation of initial key K (instead of four
 messages when an internal re-keying mechanism is not used).  Note
 that only one section of each message is processed with the section
 key K^i, and, consequently, the key lifetime limitation L1 goes off.
 Hence, the resulting key lifetime limitation L2' can be set to more
 than 10 TB (in cases when a single large message is processed using
 the initial key K).

6.1. Methods of Key Lifetime Control

 Suppose L is an amount of data that can be safely processed with one
 section key and N is a section size (fixed parameter).  Suppose
 M^{i}_1 is the first section of message M^{i}, i = 1, ... , q (see
 Figures 9 and 10); the parameter q can then be calculated in
 accordance with one of the following two approaches:
 o  Explicit approach:
    q_i is such that |M^{1}_1| + ... + |M^{q}_1| <= L, |M^{1}_1| + ...
    + |M^{q+1}_1| > L
    This approach allows use of the section key K^i in an almost
    optimal way, but it can be applied only when messages cannot be
    lost or reordered (e.g., TLS records).
 o  Implicit approach:
    q = L / N.
    The amount of data processed with one section key K^i is
    calculated under the assumption that the length of every message
    is equal to or greater than section size N and thus can be
    considerably less than the key lifetime limitation L.  On the
    other hand, this approach can be applied when messages may be lost
    or reordered (e.g., DTLS records).

Smyshlyaev Informational [Page 22] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

6.2. Constructions that Do Not Require a Master Key

 This section describes the block cipher modes that use the ACPKM
 re-keying mechanism, which does not use a master key; an initial key
 is used directly for the data encryption.

6.2.1. ACPKM Re-keying Mechanisms

 This section defines a periodical key transformation without a master
 key, which is called the ACPKM re-keying mechanism.  This mechanism
 can be applied to one of the base encryption modes (CTR and GCM block
 cipher modes) to get an extension of this encryption mode that uses
 periodical key transformation without a master key.  This extension
 can be considered as a new encryption mode.
 An additional parameter that defines the functioning of base
 encryption modes with the ACPKM re-keying mechanism is the section
 size N.  The value of N is measured in bits and is fixed within a
 specific protocol based on the requirements of the system capacity
 and the key lifetime.  The section size N MUST be divisible by the
 block size n.
 The main idea behind internal re-keying without a master key is
 presented in Figure 9:
 Section size = const = N,
 maximum message size = m_max.
 ____________________________________________________________________
               ACPKM       ACPKM              ACPKM
        K^1 = K ---> K^2 ---...-> K^{l_max-1} ----> K^{l_max}
            |          |                |           |
            |          |                |           |
            v          v                v           v
 M^{1} |==========|==========| ... |==========|=======:  |
 M^{2} |==========|==========| ... |===       |       :  |
   .        .          .        .       .          .  :
   :        :          :        :       :          :  :
 M^{q} |==========|==========| ... |==========|=====  :  |
                    section                           :
                  <---------->                      m_max
                     N bit
 ___________________________________________________________________
 l_max = ceil(m_max/N).
           Figure 9: Internal Re-keying without a Master Key

Smyshlyaev Informational [Page 23] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 During the processing of the input message M with the length m in
 some encryption mode that uses the ACPKM key transformation of the
 initial key K, the message is divided into l = ceil(m / N) sections
 (denoted as M = M_1 | M_2 | ... | M_l, where M_i is in V_N for i in
 {1, 2, ... , l - 1} and M_l is in V_r, r <= N).  The first section of
 each message is processed with the section key K^1 = K.  To process
 the (i + 1)-th section of each message, the section key K^{i+1} is
 calculated using the ACPKM transformation as follows:
    K^{i+1} = ACPKM(K^i) = MSB_k(E_{K^i}(D_1) | ... | E_{K^i}(D_J)),
 where J = ceil(k/n) and D_1, D_2, ... , D_J are in V_n and are
 calculated as follows:
    D_1 | D_2 | ... | D_J = MSB_{J * n}(D),
 where D is the following constant in V_{1024}:
           D = ( 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87
               | 88 | 89 | 8a | 8b | 8c | 8d | 8e | 8f
               | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97
               | 98 | 99 | 9a | 9b | 9c | 9d | 9e | 9f
               | a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7
               | a8 | a9 | aa | ab | ac | ad | ae | af
               | b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7
               | b8 | b9 | ba | bb | bc | bd | be | bf
               | c0 | c1 | c2 | c3 | c4 | c5 | c6 | c7
               | c8 | c9 | ca | cb | cc | cd | ce | cf
               | d0 | d1 | d2 | d3 | d4 | d5 | d6 | d7
               | d8 | d9 | da | db | dc | dd | de | df
               | e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7
               | e8 | e9 | ea | eb | ec | ed | ee | ef
               | f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7
               | f8 | f9 | fa | fb | fc | fd | fe | ff)
 Note: The constant D is such that D_1, ... , D_J are pairwise
 different for any allowed n and k values.
 Note: The highest bit of each octet of the constant D is equal to 1.
 This condition is important as, in conjunction with a certain mode
 message length limitation, it allows prevention of collisions of
 block cipher permutation inputs in cases with key transformation and
 message processing (for more details, see Section 4.4 of [AAOS2017]).

Smyshlyaev Informational [Page 24] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

6.2.2. CTR-ACPKM Encryption Mode

 This section defines a CTR-ACPKM encryption mode that uses the ACPKM
 internal re-keying mechanism for the periodical key transformation.
 The CTR-ACPKM mode can be considered as the base encryption mode CTR
 (see [MODES]) extended by the ACPKM re-keying mechanism.
 The CTR-ACPKM encryption mode can be used with the following
 parameters:
 o  64 <= n <= 512.
 o  128 <= k <= 512.
 o  The number c of bits in a specific part of the block to be
    incremented is such that 32 <= c <= 3 / 4 n, where c is a multiple
    of 8.
 o  The maximum message size m_max = n * 2^{c-1}.
 The CTR-ACPKM mode encryption and decryption procedures are defined
 as follows:
 +----------------------------------------------------------------+
 |  CTR-ACPKM-Encrypt(N, K, ICN, P)                               |
 |----------------------------------------------------------------|
 |  Input:                                                        |
 |  - section size N,                                             |
 |  - initial key K,                                              |
 |  - initial counter nonce ICN in V_{n-c},                       |
 |  - plaintext P = P_1 | ... | P_b, |P| <= m_max.                |
 |  Output:                                                       |
 |  - ciphertext C.                                               |
 |----------------------------------------------------------------|
 |  1. CTR_1 = ICN | 0^c                                          |
 |  2. For j = 2, 3, ... , b do                                   |
 |         CTR_{j} = Inc_c(CTR_{j-1})                             |
 |  3. K^1 = K                                                    |
 |  4. For i = 2, 3, ... , ceil(|P| / N)                          |
 |         K^i = ACPKM(K^{i-1})                                   |
 |  5. For j = 1, 2, ... , b do                                   |
 |         i = ceil(j * n / N),                                   |
 |         G_j = E_{K^i}(CTR_j)                                   |
 |  6. C = P (xor) MSB_{|P|}(G_1 | ... | G_b)                     |
 |  7. Return C                                                   |
 +----------------------------------------------------------------+

Smyshlyaev Informational [Page 25] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 +----------------------------------------------------------------+
 |  CTR-ACPKM-Decrypt(N, K, ICN, C)                               |
 |----------------------------------------------------------------|
 |  Input:                                                        |
 |  - section size N,                                             |
 |  - initial key K,                                              |
 |  - initial counter nonce ICN in V_{n-c},                       |
 |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max.               |
 |  Output:                                                       |
 |  - plaintext P.                                                |
 |----------------------------------------------------------------|
 |  1. P = CTR-ACPKM-Encrypt(N, K, ICN, C)                        |
 |  2. Return P                                                   |
 +----------------------------------------------------------------+
 The initial counter nonce (ICN) value for each message that is
 encrypted under the given initial key K must be chosen in a unique
 manner.

6.2.3. GCM-ACPKM Authenticated Encryption Mode

 This section defines the GCM-ACPKM authenticated encryption mode that
 uses the ACPKM internal re-keying mechanism for the periodical key
 transformation.
 The GCM-ACPKM mode can be considered as the base authenticated
 encryption mode GCM (see [GCM]) extended by the ACPKM re-keying
 mechanism.
 The GCM-ACPKM authenticated encryption mode can be used with the
 following parameters:
 o  n in {128, 256}.
 o  128 <= k <= 512.
 o  The number c of bits in a specific part of the block to be
    incremented is such that 1 / 4 n <= c <= 1 / 2 n, c is a multiple
    of 8.
 o  Authentication tag length t.
 o  The maximum message size m_max = min{n * (2^{c-1} - 2), 2^{n/2} -
    1}.

Smyshlyaev Informational [Page 26] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 The GCM-ACPKM mode encryption and decryption procedures are defined
 as follows:
 +-------------------------------------------------------------------+
 |  GHASH(X, H)                                                      |
 |-------------------------------------------------------------------|
 |  Input:                                                           |
 |  - bit string X = X_1 | ... | X_m, X_1, ... , X_m in V_n.         |
 |  Output:                                                          |
 |  - block GHASH(X, H) in V_n.                                      |
 |-------------------------------------------------------------------|
 |  1. Y_0 = 0^n                                                     |
 |  2. For i = 1, ... , m do                                         |
 |         Y_i = (Y_{i-1} (xor) X_i) * H                             |
 |  3. Return Y_m                                                    |
 +-------------------------------------------------------------------+
 +-------------------------------------------------------------------+
 |  GCTR(N, K, ICB, X)                                               |
 |-------------------------------------------------------------------|
 |  Input:                                                           |
 |  - section size N,                                                |
 |  - initial key K,                                                 |
 |  - initial counter block ICB,                                     |
 |  - X = X_1 | ... | X_b.                                           |
 |  Output:                                                          |
 |  - Y in V_{|X|}.                                                  |
 |-------------------------------------------------------------------|
 |  1. If X in V_0, then return Y, where Y in V_0                    |
 |  2. GCTR_1 = ICB                                                  |
 |  3. For i = 2, ... , b do                                         |
 |         GCTR_i = Inc_c(GCTR_{i-1})                                |
 |  4. K^1 = K                                                       |
 |  5. For j = 2, ... , ceil(|X| / N)                                |
 |         K^j = ACPKM(K^{j-1})                                      |
 |  6. For i = 1, ... , b do                                         |
 |         j = ceil(i * n / N),                                      |
 |         G_i = E_{K_j}(GCTR_i)                                     |
 |  7. Y = X (xor) MSB_{|X|}(G_1 | ... | G_b)                        |
 |  8. Return Y                                                      |
 +-------------------------------------------------------------------+

Smyshlyaev Informational [Page 27] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 +-------------------------------------------------------------------+
 |  GCM-ACPKM-Encrypt(N, K, ICN, P, A)                               |
 |-------------------------------------------------------------------|
 |  Input:                                                           |
 |  - section size N,                                                |
 |  - initial key K,                                                 |
 |  - initial counter nonce ICN in V_{n-c},                          |
 |  - plaintext P = P_1 | ... | P_b, |P| <= m_max,                   |
 |  - additional authenticated data A.                               |
 |  Output:                                                          |
 |  - ciphertext C,                                                  |
 |  - authentication tag T.                                          |
 |-------------------------------------------------------------------|
 |  1. H = E_{K}(0^n)                                                |
 |  2. ICB_0 = ICN | 0^{c-1} | 1                                     |
 |  3. C = GCTR(N, K, Inc_c(ICB_0), P)                               |
 |  4. u = n * ceil(|C| / n) - |C|                                   |
 |     v = n * ceil(|A| / n) - |A|                                   |
 |  5. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |
 |               | Vec_{n/2}(|C|), H)                                |
 |  6. T = MSB_t(E_{K}(ICB_0) (xor) S)                               |
 |  7. Return C | T                                                  |
 +-------------------------------------------------------------------+
 +-------------------------------------------------------------------+
 |  GCM-ACPKM-Decrypt(N, K, ICN, A, C, T)                            |
 |-------------------------------------------------------------------|
 |  Input:                                                           |
 |  - section size N,                                                |
 |  - initial key K,                                                 |
 |  - initial counter block ICN,                                     |
 |  - additional authenticated data A,                               |
 |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max,                  |
 |  - authentication tag T.                                          |
 |  Output:                                                          |
 |  - plaintext P or FAIL.                                           |
 |-------------------------------------------------------------------|
 |  1. H = E_{K}(0^n)                                                |
 |  2. ICB_0 = ICN | 0^{c-1} | 1                                     |
 |  3. P = GCTR(N, K, Inc_c(ICB_0), C)                               |
 |  4. u = n * ceil(|C| / n) - |C|                                   |
 |     v = n * ceil(|A| / n) - |A|                                   |
 |  5. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |
 |               | Vec_{n/2}(|C|), H)                                |
 |  6. T' = MSB_t(E_{K}(ICB_0) (xor) S)                              |
 |  7. If T = T', then return P; else return FAIL                    |
 +-------------------------------------------------------------------+

Smyshlyaev Informational [Page 28] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 The * operation on (pairs of) the 2^n possible blocks corresponds to
 the multiplication operation for the binary Galois (finite) field of
 2^n elements defined by the polynomial f as follows (analogous to
 [GCM]):
 n = 128:  f = a^128 + a^7 + a^2 + a^1 + 1,
 n = 256:  f = a^256 + a^10 + a^5 + a^2 + 1.
 The initial counter nonce ICN value for each message that is
 encrypted under the given initial key K must be chosen in a unique
 manner.
 The key for computing values E_{K}(ICB_0) and H is not updated and is
 equal to the initial key K.

6.3. Constructions that Require a Master Key

 This section describes the block cipher modes that use the ACPKM-
 Master re-keying mechanism, which use the initial key K as a master
 key, so K is never used directly for data processing but is used for
 key derivation.

6.3.1. ACPKM-Master Key Derivation from the Master Key

 This section defines periodical key transformation with a master key,
 which is called the ACPKM-Master re-keying mechanism.  This mechanism
 can be applied to one of the base modes of operation (CTR, GCM, CBC,
 CFB, OMAC modes) for getting an extension that uses periodical key
 transformation with a master key.  This extension can be considered
 as a new mode of operation.
 Additional parameters that define the functioning of modes of
 operation that use the ACPKM-Master re-keying mechanism are the
 section size N, the change frequency T* of the master keys K*_1,
 K*_2, ... (see Figure 10), and the size d of the section key
 material.  The values of N and T* are measured in bits and are fixed
 within a specific protocol based on the requirements of the system
 capacity and the key lifetime.  The section size N MUST be divisible
 by the block size n.  The master key frequency T* MUST be divisible
 by d and by n.

Smyshlyaev Informational [Page 29] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 The main idea behind internal re-keying with a master key is
 presented in Figure 10:
 Master key frequency T*,
 section size N,
 maximum message size = m_max.
 _____________________________________________________________________
                         ACPKM                 ACPKM
              K*_1 = K----------> K*_2 ---------...-----> K*_l_max
             ___|___            ___|___                 ___|___
            |       |          |       |               |       |
            v  ...  v          v  ...  v               v  ...  v
          K[1]     K[t]     K[t+1]  K[2*t]  K[(l_max-1)t+1] K[l_max*t]
            |       |          |       |               |       |
            |       |          |       |               |       |
            v       v          v       v               v       v
 M^{1}||======|...|======||======|...|======||...||======|...|==  : ||
 M^{2}||======|...|======||======|...|======||...||======|...|====: ||
  ... ||      |   |      ||      |   |      ||   ||      |   |    : ||
 M^{q}||======|...|======||====  |...|      ||...||      |...|    : ||
        section                                                   :
       <------>                                                   :
         N bit                                                  m_max
 _____________________________________________________________________
 |K[i]| = d,
 t = T* / d,
 l_max = ceil(m_max / (N * t)).
            Figure 10: Internal Re-keying with a Master Key
 During the processing of the input message M with the length m in
 some mode of operation that uses ACPKM-Master key transformation with
 the initial key K and the master key frequency T*, the message M is
 divided into l = ceil(m / N) sections (denoted as M = M_1 | M_2 |
 ... | M_l, where M_i is in V_N for i in {1, 2, ... , l - 1} and M_l
 is in V_r, r <= N).  The j-th section of each message is processed
 with the key material K[j], j in {1, ... , l}, |K[j]| = d, which is
 calculated with the ACPKM-Master algorithm as follows:
    K[1] | ... | K[l] = ACPKM-Master(T*, K, d, l) = CTR-ACPKM-Encrypt
    (T*, K, 1^{n/2}, 0^{d*l}).
 Note: The parameters d and l MUST be such that d * l <= n *
 2^{n/2-1}.

Smyshlyaev Informational [Page 30] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

6.3.2. CTR-ACPKM-Master Encryption Mode

 This section defines a CTR-ACPKM-Master encryption mode that uses the
 ACPKM-Master internal re-keying mechanism for the periodical key
 transformation.
 The CTR-ACPKM-Master encryption mode can be considered as the base
 encryption mode CTR (see [MODES]) extended by the ACPKM-Master
 re-keying mechanism.
 The CTR-ACPKM-Master encryption mode can be used with the following
 parameters:
 o  64 <= n <= 512.
 o  128 <= k <= 512.
 o  The number c of bits in a specific part of the block to be
    incremented is such that 32 <= c <= 3 / 4 n, c is a multiple of 8.
 o  The maximum message size m_max = min{N * (n * 2^{n/2-1} / k), n *
    2^c}.
 The key material K[j] that is used for one-section processing is
 equal to K^j, where |K^j| = k bits.

Smyshlyaev Informational [Page 31] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 The CTR-ACPKM-Master mode encryption and decryption procedures are
 defined as follows:
 +----------------------------------------------------------------+
 |  CTR-ACPKM-Master-Encrypt(N, K, T*, ICN, P)                    |
 |----------------------------------------------------------------|
 |  Input:                                                        |
 |  - section size N,                                             |
 |  - initial key K,                                              |
 |  - master key frequency T*,                                    |
 |  - initial counter nonce ICN in V_{n-c},                       |
 |  - plaintext P = P_1 | ... | P_b, |P| <= m_max.                |
 |  Output:                                                       |
 |  - ciphertext C.                                               |
 |----------------------------------------------------------------|
 |  1. CTR_1 = ICN | 0^c                                          |
 |  2. For j = 2, 3, ... , b do                                   |
 |         CTR_{j} = Inc_c(CTR_{j-1})                             |
 |  3. l = ceil(|P| / N)                                          |
 |  4. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                |
 |  5. For j = 1, 2, ... , b do                                   |
 |         i = ceil(j * n / N),                                   |
 |         G_j = E_{K^i}(CTR_j)                                   |
 |  6. C = P (xor) MSB_{|P|}(G_1 | ... |G_b)                      |
 |  7. Return C                                                   |
 |----------------------------------------------------------------+
 +----------------------------------------------------------------+
 |  CTR-ACPKM-Master-Decrypt(N, K, T*, ICN, C)                    |
 |----------------------------------------------------------------|
 |  Input:                                                        |
 |  - section size N,                                             |
 |  - initial key K,                                              |
 |  - master key frequency T*,                                    |
 |  - initial counter nonce ICN in V_{n-c},                       |
 |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max.               |
 |  Output:                                                       |
 |  - plaintext P.                                                |
 |----------------------------------------------------------------|
 |  1. P = CTR-ACPKM-Master-Encrypt(N, K, T*, ICN, C)             |
 |  1. Return P                                                   |
 +----------------------------------------------------------------+
 The initial counter nonce ICN value for each message that is
 encrypted under the given initial key must be chosen in a unique
 manner.

Smyshlyaev Informational [Page 32] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

6.3.3. GCM-ACPKM-Master Authenticated Encryption Mode

 This section defines a GCM-ACPKM-Master authenticated encryption mode
 that uses the ACPKM-Master internal re-keying mechanism for the
 periodical key transformation.
 The GCM-ACPKM-Master authenticated encryption mode can be considered
 as the base authenticated encryption mode GCM (see [GCM]) extended by
 the ACPKM-Master re-keying mechanism.
 The GCM-ACPKM-Master authenticated encryption mode can be used with
 the following parameters:
 o  n in {128, 256}.
 o  128 <= k <= 512.
 o  The number c of bits in a specific part of the block to be
    incremented is such that 1 / 4 n <= c <= 1 / 2 n, c is a multiple
    of 8.
 o  authentication tag length t.
 o  the maximum message size m_max = min{N * ( n * 2^{n/2-1} / k), n *
    (2^c - 2), 2^{n/2} - 1}.
 The key material K[j] that is used for the j-th section processing is
 equal to K^j, |K^j| = k bits.
 The GCM-ACPKM-Master mode encryption and decryption procedures are
 defined as follows:
 +-------------------------------------------------------------------+
 |  GHASH(X, H)                                                      |
 |-------------------------------------------------------------------|
 |  Input:                                                           |
 |  - bit string X = X_1 | ... | X_m, X_i in V_n for i in {1, ... ,m}|
 |  Output:                                                          |
 |  - block GHASH(X, H) in V_n                                       |
 |-------------------------------------------------------------------|
 |  1. Y_0 = 0^n                                                     |
 |  2. For i = 1, ... , m do                                         |
 |         Y_i = (Y_{i-1} (xor) X_i) * H                             |
 |  3. Return Y_m                                                    |
 +-------------------------------------------------------------------+

Smyshlyaev Informational [Page 33] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 +-------------------------------------------------------------------+
 |  GCTR(N, K, T*, ICB, X)                                           |
 |-------------------------------------------------------------------|
 |  Input:                                                           |
 |  - section size N,                                                |
 |  - initial key K,                                                 |
 |  - master key frequency T*,                                       |
 |  - initial counter block ICB,                                     |
 |  - X = X_1 | ... | X_b.                                           |
 |  Output:                                                          |
 |  - Y in V_{|X|}.                                                  |
 |-------------------------------------------------------------------|
 |  1. If X in V_0, then return Y, where Y in V_0                    |
 |  2. GCTR_1 = ICB                                                  |
 |  3. For i = 2, ... , b do                                         |
 |         GCTR_i = Inc_c(GCTR_{i-1})                                |
 |  4. l = ceil(|X| / N)                                             |
 |  5. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                   |
 |  6. For j = 1, ... , b do                                         |
 |         i = ceil(j * n / N),                                      |
 |         G_j = E_{K^i}(GCTR_j)                                     |
 |  7. Y = X (xor) MSB_{|X|}(G_1 | ... | G_b)                        |
 |  8. Return Y                                                      |
 +-------------------------------------------------------------------+

Smyshlyaev Informational [Page 34] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 +-------------------------------------------------------------------+
 |  GCM-ACPKM-Master-Encrypt(N, K, T*, ICN, P, A)                    |
 |-------------------------------------------------------------------|
 |  Input:                                                           |
 |  - section size N,                                                |
 |  - initial key K,                                                 |
 |  - master key frequency T*,                                       |
 |  - initial counter nonce ICN in V_{n-c},                          |
 |  - plaintext P = P_1 | ... | P_b, |P| <= m_max.                   |
 |  - additional authenticated data A.                               |
 |  Output:                                                          |
 |  - ciphertext C,                                                  |
 |  - authentication tag T.                                          |
 |-------------------------------------------------------------------|
 |  1. K^1 = ACPKM-Master(T*, K, k, 1)                               |
 |  2. H = E_{K^1}(0^n)                                              |
 |  3. ICB_0 = ICN | 0^{c-1} | 1                                     |
 |  4. C = GCTR(N, K, T*, Inc_c(ICB_0), P)                           |
 |  5. u = n * ceil(|C| / n) - |C|                                   |
 |     v = n * ceil(|A| / n) - |A|                                   |
 |  6. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |
 |               | Vec_{n/2}(|C|), H)                                |
 |  7. T = MSB_t(E_{K^1}(ICB_0) (xor) S)                             |
 |  8. Return C | T                                                  |
 +-------------------------------------------------------------------+

Smyshlyaev Informational [Page 35] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 +-------------------------------------------------------------------+
 |  GCM-ACPKM-Master-Decrypt(N, K, T*, ICN, A, C, T)                 |
 |-------------------------------------------------------------------|
 |  Input:                                                           |
 |  - section size N,                                                |
 |  - initial key K,                                                 |
 |  - master key frequency T*,                                       |
 |  - initial counter nonce ICN in V_{n-c},                          |
 |  - additional authenticated data A.                               |
 |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max,                  |
 |  - authentication tag T.                                          |
 |  Output:                                                          |
 |  - plaintext P or FAIL.                                           |
 |-------------------------------------------------------------------|
 |  1. K^1 = ACPKM-Master(T*, K, k, 1)                               |
 |  2. H = E_{K^1}(0^n)                                              |
 |  3. ICB_0 = ICN | 0^{c-1} | 1                                     |
 |  4. P = GCTR(N, K, T*, Inc_c(ICB_0), C)                           |
 |  5. u = n * ceil(|C| / n) - |C|                                   |
 |     v = n * ceil(|A| / n) - |A|                                   |
 |  6. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |
 |               | Vec_{n/2}(|C|), H)                                |
 |  7. T' = MSB_t(E_{K^1}(ICB_0) (xor) S)                            |
 |  8. If T = T', then return P; else return FAIL.                   |
 +-------------------------------------------------------------------+
 The * operation on (pairs of) the 2^n possible blocks corresponds to
 the multiplication operation for the binary Galois (finite) field of
 2^n elements defined by the polynomial f as follows (by analogy with
 [GCM]):
 n = 128:  f = a^128 + a^7 + a^2 + a^1 + 1,
 n = 256:  f = a^256 + a^10 + a^5 + a^2 + 1.
 The initial counter nonce ICN value for each message that is
 encrypted under the given initial key must be chosen in a unique
 manner.

Smyshlyaev Informational [Page 36] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

6.3.4. CBC-ACPKM-Master Encryption Mode

 This section defines a CBC-ACPKM-Master encryption mode that uses the
 ACPKM-Master internal re-keying mechanism for the periodical key
 transformation.
 The CBC-ACPKM-Master encryption mode can be considered as the base
 encryption mode CBC (see [MODES]) extended by the ACPKM-Master
 re-keying mechanism.
 The CBC-ACPKM-Master encryption mode can be used with the following
 parameters:
 o  64 <= n <= 512.
 o  128 <= k <= 512.
 o  The maximum message size m_max = N * (n * 2^{n/2-1} / k).
 In the specification of the CBC-ACPKM-Master mode, the plaintext and
 ciphertext must be a sequence of one or more complete data blocks.
 If the data string to be encrypted does not initially satisfy this
 property, then it MUST be padded to form complete data blocks.  The
 padding methods are out of the scope of this document.  An example of
 a padding method can be found in Appendix A of [MODES].
 The key material K[j] that is used for the j-th section processing is
 equal to K^j, |K^j| = k bits.
 We use D_{K} to denote the decryption function that is a permutation
 inverse to E_{K}.

Smyshlyaev Informational [Page 37] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 The CBC-ACPKM-Master mode encryption and decryption procedures are
 defined as follows:
 +----------------------------------------------------------------+
 |  CBC-ACPKM-Master-Encrypt(N, K, T*, IV, P)                     |
 |----------------------------------------------------------------|
 |  Input:                                                        |
 |  - section size N,                                             |
 |  - initial key K,                                              |
 |  - master key frequency T*,                                    |
 |  - initialization vector IV in V_n,                            |
 |  - plaintext P = P_1 | ... | P_b, |P_b| = n, |P| <= m_max.     |
 |  Output:                                                       |
 |  - ciphertext C.                                               |
 |----------------------------------------------------------------|
 |  1. l = ceil(|P| / N)                                          |
 |  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                |
 |  3. C_0 = IV                                                   |
 |  4. For j = 1, 2, ... , b do                                   |
 |         i = ceil(j * n / N),                                   |
 |         C_j = E_{K^i}(P_j (xor) C_{j-1})                       |
 |  5. Return C = C_1 | ... | C_b                                 |
 |----------------------------------------------------------------+
 +----------------------------------------------------------------+
 |  CBC-ACPKM-Master-Decrypt(N, K, T*, IV, C)                     |
 |----------------------------------------------------------------|
 |  Input:                                                        |
 |  - section size N,                                             |
 |  - initial key K,                                              |
 |  - master key frequency T*,                                    |
 |  - initialization vector IV in V_n,                            |
 |  - ciphertext C = C_1 | ... | C_b, |C_b| = n, |C| <= m_max.    |
 |  Output:                                                       |
 |  - plaintext P.                                                |
 |----------------------------------------------------------------|
 |  1. l = ceil(|C| / N)                                          |
 |  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                |
 |  3. C_0 = IV                                                   |
 |  4. For j = 1, 2, ... , b do                                   |
 |         i = ceil(j * n / N)                                    |
 |         P_j = D_{K^i}(C_j) (xor) C_{j-1}                       |
 |  5. Return P = P_1 | ... | P_b                                 |
 +----------------------------------------------------------------+
 The initialization vector IV for any particular execution of the
 encryption process must be unpredictable.

Smyshlyaev Informational [Page 38] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

6.3.5. CFB-ACPKM-Master Encryption Mode

 This section defines a CFB-ACPKM-Master encryption mode that uses the
 ACPKM-Master internal re-keying mechanism for the periodical key
 transformation.
 The CFB-ACPKM-Master encryption mode can be considered as the base
 encryption mode CFB (see [MODES]) extended by the ACPKM-Master
 re-keying mechanism.
 The CFB-ACPKM-Master encryption mode can be used with the following
 parameters:
 o  64 <= n <= 512.
 o  128 <= k <= 512.
 o  The maximum message size m_max = N * (n * 2^{n/2-1} / k).
 The key material K[j] that is used for the j-th section processing is
 equal to K^j, |K^j| = k bits.
 The CFB-ACPKM-Master mode encryption and decryption procedures are
 defined as follows:
 +-------------------------------------------------------------+
 |  CFB-ACPKM-Master-Encrypt(N, K, T*, IV, P)                  |
 |-------------------------------------------------------------|
 |  Input:                                                     |
 |  - section size N,                                          |
 |  - initial key K,                                           |
 |  - master key frequency T*,                                 |
 |  - initialization vector IV in V_n,                         |
 |  - plaintext P = P_1 | ... | P_b, |P| <= m_max.             |
 |  Output:                                                    |
 |  - ciphertext C.                                            |
 |-------------------------------------------------------------|
 |  1. l = ceil(|P| / N)                                       |
 |  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)             |
 |  3. C_0 = IV                                                |
 |  4. For j = 1, 2, ... , b - 1 do                            |
 |         i = ceil(j * n / N),                                |
 |         C_j = E_{K^i}(C_{j-1}) (xor) P_j                    |
 |  5. C_b = MSB_{|P_b|}(E_{K^l}(C_{b-1})) (xor) P_b           |
 |  6. Return C = C_1 | ... | C_b                              |
 |-------------------------------------------------------------+

Smyshlyaev Informational [Page 39] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 +-------------------------------------------------------------+
 |  CFB-ACPKM-Master-Decrypt(N, K, T*, IV, C)                  |
 |-------------------------------------------------------------|
 |  Input:                                                     |
 |  - section size N,                                          |
 |  - initial key K,                                           |
 |  - master key frequency T*,                                 |
 |  - initialization vector IV in V_n,                         |
 |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max.            |
 |  Output:                                                    |
 |  - plaintext P.                                             |
 |-------------------------------------------------------------|
 |  1. l = ceil(|C| / N)                                       |
 |  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)             |
 |  3. C_0 = IV                                                |
 |  4. For j = 1, 2, ... , b - 1 do                            |
 |         i = ceil(j * n / N),                                |
 |         P_j = E_{K^i}(C_{j-1}) (xor) C_j                    |
 |  5. P_b = MSB_{|C_b|}(E_{K^l}(C_{b-1})) (xor) C_b           |
 |  6. Return P = P_1 | ... | P_b                              |
 +-------------------------------------------------------------+
 The initialization vector IV for any particular execution of the
 encryption process must be unpredictable.

6.3.6. OMAC-ACPKM-Master Authentication Mode

 This section defines an OMAC-ACPKM-Master message authentication code
 calculation mode that uses the ACPKM-Master internal re-keying
 mechanism for the periodical key transformation.
 The OMAC-ACPKM-Master mode can be considered as the base message
 authentication code calculation mode OMAC1, which is also known as
 CMAC (see [RFC4493]), extended by the ACPKM-Master re-keying
 mechanism.
 The OMAC-ACPKM-Master message authentication code calculation mode
 can be used with the following parameters:
 o  n in {64, 128, 256}.
 o  128 <= k <= 512.
 o  The maximum message size m_max = N * (n * 2^{n/2-1} / (k + n)).
 The key material K[j] that is used for one-section processing is
 equal to K^j | K^j_1, where |K^j| = k bits and |K^j_1| = n bits.

Smyshlyaev Informational [Page 40] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 The following is a specification of the subkey generation process of
 OMAC:
 +-------------------------------------------------------------------+
 | Generate_Subkey(K1, r)                                            |
 |-------------------------------------------------------------------|
 | Input:                                                            |
 |  - key K1.                                                        |
 |  Output:                                                          |
 |  - key SK.                                                        |
 |-------------------------------------------------------------------|
 |   1. If r = n, then return K1                                     |
 |   2. If r < n, then                                               |
 |          if MSB_1(K1) = 0                                         |
 |              return K1 << 1                                       |
 |          else                                                     |
 |              return (K1 << 1) (xor) R_n                           |
 +-------------------------------------------------------------------+
 Here, R_n takes the following values:
 o  n = 64: R_{64} = 0^{59} | 11011.
 o  n = 128: R_{128} = 0^{120} | 10000111.
 o  n = 256: R_{256} = 0^{145} | 10000100101.

Smyshlyaev Informational [Page 41] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 The OMAC-ACPKM-Master message authentication code calculation mode is
 defined as follows:
 +-------------------------------------------------------------------+
 | OMAC-ACPKM-Master(K, N, T*, M)                                    |
 |-------------------------------------------------------------------|
 | Input:                                                            |
 |  - section size N,                                                |
 |  - initial key K,                                                 |
 |  - master key frequency T*,                                       |
 |  - plaintext M = M_1 | ... | M_b, |M| <= m_max.                   |
 |  Output:                                                          |
 |  - message authentication code T.                                 |
 |-------------------------------------------------------------------|
 | 1. C_0 = 0^n                                                      |
 | 2. l = ceil(|M| / N)                                              |
 | 3. K^1 | K^1_1 | ... | K^l | K^l_1 =                              |
                   = ACPKM-Master(T*, K, (k + n), l)                 |
 | 4. For j = 1, 2, ... , b - 1 do                                   |
 |        i = ceil(j * n / N),                                       |
 |        C_j = E_{K^i}(M_j (xor) C_{j-1})                           |
 | 5. SK = Generate_Subkey(K^l_1, |M_b|)                             |
 | 6. If |M_b| = n, then M*_b = M_b                                  |
 |                  else M*_b = M_b | 1 | 0^{n - 1 -|M_b|}           |
 | 7. T = E_{K^l}(M*_b (xor) C_{b-1} (xor) SK)                       |
 | 8. Return T                                                       |
 +-------------------------------------------------------------------+

7. Joint Usage of External and Internal Re-keying

 Both external re-keying and internal re-keying have their own
 advantages and disadvantages, which are discussed in Section 1.  For
 instance, using external re-keying can essentially limit the message
 length, while in the case of internal re-keying, the section size,
 which can be chosen as the maximal possible for operational
 properties, limits the number of separate messages.  Therefore, the
 choice of re-keying mechanism (either external or internal) depends
 on particular protocol features.  However, some protocols may have
 features that require the advantages of both the external and
 internal re-keying mechanisms: for example, the protocol mainly
 transmits short messages, but it must additionally support processing
 of very long messages.  In such situations, it is necessary to use
 external and internal re-keying jointly, since these techniques
 negate each other's disadvantages.
 For composition of external and internal re-keying techniques, any
 mechanism described in Section 5 can be used with any mechanism
 described in Section 6.

Smyshlyaev Informational [Page 42] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 For example, consider the GCM-ACPKM mode with external serial
 re-keying based on a KDF on a hash function.  Denote the number of
 messages in each frame (in the case of the implicit approach to the
 key lifetime control) for external re-keying as a frame size.
 Let L be a key lifetime limitation.  The section size N for internal
 re-keying and the frame size q for external re-keying must be chosen
 in such a way that q * N must not exceed L.
 Suppose that t messages (ICN_i, P_i, A_i), with initial counter nonce
 ICN_i, plaintext P_i, and additional authenticated data A_i will be
 processed before renegotiation.
 For authenticated encryption of each message (ICN_i, P_i, A_i), i =
 1, ..., t, the following algorithm can be applied:
 1. j = ceil(i / q),
 2. K^j = ExtSerialH(K, j),
 3. C_i | T_i = GCM-ACPKM-Encrypt(N, K^j, ICN_i, P_i, A_i).
 Note that nonces ICN_i that are used under the same frame key must be
 unique for each message.

8. Security Considerations

 Re-keying should be used to increase a priori security properties of
 ciphers in hostile environments (e.g., with side-channel
 adversaries).  If efficient attacks on a cipher are known, the cipher
 must not be used.  Thus, re-keying cannot be used as a patch for
 vulnerable ciphers.  Base cipher properties must be well analyzed
 because the security of re-keying mechanisms is based on the security
 of a block cipher as a pseudorandom function.
 Re-keying is not intended to solve any postquantum security issues
 for symmetric cryptography, since the reduction of security caused by
 Grover's algorithm is not connected with a size of plaintext
 transformed by a cipher -- only a negligible (sufficient for key
 uniqueness) material is needed -- and the aim of re-keying is to
 limit the size of plaintext transformed under one initial key.
 Re-keying can provide backward security only if previous key material
 is securely deleted after usage by all parties.

9. IANA Considerations

 This document has no IANA actions.

Smyshlyaev Informational [Page 43] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

10. References

10.1. Normative References

 [CMS]      Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
            RFC 5652, DOI 10.17487/RFC5652, September 2009,
            <https://www.rfc-editor.org/info/rfc5652>.
 [DTLS]     Rescorla, E. and N. Modadugu, "Datagram Transport Layer
            Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
            January 2012, <https://www.rfc-editor.org/info/rfc6347>.
 [ESP]      Kent, S., "IP Encapsulating Security Payload (ESP)",
            RFC 4303, DOI 10.17487/RFC4303, December 2005,
            <https://www.rfc-editor.org/info/rfc4303>.
 [GCM]      Dworkin, M., "Recommendation for Block Cipher Modes of
            Operation: Galois/Counter Mode (GCM) and GMAC", NIST
            Special Publication 800-38D, DOI 10.6028/NIST.SP.800-38D,
            November 2007,
            <http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
            nistspecialpublication800-38d.pdf>.
 [MODES]    Dworkin, M., "Recommendation for Block Cipher Modes of
            Operation: Methods and Techniques", NIST Special
            Publication 800-38A, DOI 10.6028/NIST.SP.800-38A, December
            2001.
 [NISTSP800-108]
            National Institute of Standards and Technology,
            "Recommendation for Key Derivation Using Pseudorandom
            Functions", NIST Special Publication 800-108, October
            2009, <http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
            nistspecialpublication800-108.pdf>.
 [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119,
            DOI 10.17487/RFC2119, March 1997,
            <https://www.rfc-editor.org/info/rfc2119>.
 [RFC4493]  Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
            AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
            2006, <https://www.rfc-editor.org/info/rfc4493>.
 [RFC5869]  Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
            Key Derivation Function (HKDF)", RFC 5869,
            DOI 10.17487/RFC5869, May 2010,
            <https://www.rfc-editor.org/info/rfc5869>.

Smyshlyaev Informational [Page 44] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 [RFC7836]  Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V.,
            Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines
            on the Cryptographic Algorithms to Accompany the Usage of
            Standards GOST R 34.10-2012 and GOST R 34.11-2012",
            RFC 7836, DOI 10.17487/RFC7836, March 2016,
            <https://www.rfc-editor.org/info/rfc7836>.
 [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
            2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
            May 2017, <https://www.rfc-editor.org/info/rfc8174>.
 [SSH]      Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
            Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
            January 2006, <https://www.rfc-editor.org/info/rfc4253>.
 [TLS]      Rescorla, E., "The Transport Layer Security (TLS) Protocol
            Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
            <https://www.rfc-editor.org/info/rfc8446>.

10.2. Informative References

 [AAOS2017] Ahmetzyanova, L., Alekseev, E., Oshkin, I., and S.
            Smyshlyaev, "Increasing the Lifetime of Symmetric Keys for
            the GCM Mode by Internal Re-keying", Cryptology ePrint
            Archive, Report 2017/697, 2017,
            <https://eprint.iacr.org/2017/697.pdf>.
 [AbBell]   Abdalla, M. and M. Bellare, "Increasing the Lifetime of a
            Key: A Comparative Analysis of the Security of Re-keying
            Techniques", ASIACRYPT 2000, Lecture Notes in Computer
            Science, Volume 1976, pp. 546-559,
            DOI 10.1007/3-540-44448-3_42, October 2000.
 [AESDUKPT] American National Standards Institute, "Retail Financial
            Services Symmetric Key Management - Part 3: Derived Unique
            Key Per Transaction", ANSI X9.24-3-2017, October 2017.
 [FKK2005]  Fu, K., Kamara, S., and T. Kohno, "Key Regression:
            Enabling Efficient Key Distribution for Secure Distributed
            Storage", November 2005, <https://homes.cs.washington.edu/
            ~yoshi/papers/KR/NDSS06.pdf>.

Smyshlyaev Informational [Page 45] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 [FPS2012]  Faust, S., Pietrzak, K., and J. Schipper, "Practical
            Leakage-Resilient Symmetric Cryptography", Cryptographic
            Hardware and Embedded Systems (CHES), Lecture Notes in
            Computer Science, Volume 7428, pp. 213-232,
            DOI 10.1007/978-3-642-33027-8_13, 2012,
            <https://link.springer.com/content/
            pdf/10.1007%2F978-3-642-33027-8_13.pdf>.
 [FRESHREKEYING]
            Dziembowski, S., Faust, S., Herold, G., Journault, A.,
            Masny, D., and F. Standaert, "Towards Sound Fresh
            Re-Keying with Hard (Physical) Learning Problems",
            Cryptology ePrint Archive, Report 2016/573, June 2016,
            <https://eprint.iacr.org/2016/573>.
 [GGM]      Goldreich, O., Goldwasser, S., and S. Micali, "How to
            Construct Random Functions", Journal of the Association
            for Computing Machinery, Volume 33, No. 4, pp. 792-807,
            DOI 10.1145/6490.6503, October 1986,
            <https://dl.acm.org/citation.cfm?doid=6490.6503>.
 [KMNT2003] Kim, Y., Maino, F., Narasimha, M., and G. Tsudik, "Secure
            Group Services for Storage Area Networks",
            IEEE Communications Magazine 41, Number 8, pp. 92-99,
            DOI 10.1109/SISW.2002.1183514, August 2003,
            <https://ieeexplore.ieee.org/document/1183514>.
 [LDC]      Heys, H., "A Tutorial on Linear and Differential
            Cryptanalysis", 2001, <https://citeseerx.ist.psu.edu/
            viewdoc/citations?doi=10.1.1.2.2759>.
 [OWT]      Joye, M. and S. Yen, "One-Way Cross-Trees and Their
            Applications", Public Key Cryptography (PKC), Lecture
            Notes in Computer Science, Volume 2274,
            DOI 10.1007/3-540-45664-3_25, February 2002,
            <https://link.springer.com/content/
            pdf/10.1007%2F3-540-45664-3_25.pdf>.
 [P3]       Alexander, P., "Subject: [Cfrg] Dynamic Key Changes on
            Encrypted Sessions. - Draft I-D Attached", message to
            the CFRG mailing list, 4 November 2017,
            <https://mailarchive.ietf.org/arch/msg/cfrg/
            ecTR3Hb-DFfrPCVmY0ghyYOEcxU>.

Smyshlyaev Informational [Page 46] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 [Pietrzak2009]
            Pietrzak, K., "A Leakage-Resilient Mode of Operation",
            EUROCRYPT 2009, Lecture Notes in Computer Science, Volume
            5479, pp. 462-482, DOI 10.1007/978-3-642-01001-9_27, April
            2009, <https://iacr.org/archive/eurocrypt2009/
            54790461/54790461.pdf>.
 [SIGNAL]   Perrin, T., Ed. and M. Marlinspike, "The Double Ratchet
            Algorithm", November 2016, <https://signal.org/docs/
            specifications/doubleratchet/doubleratchet.pdf>.
 [Sweet32]  Bhargavan, K. and G. Leurent, "On the Practical
            (In-)Security of 64-bit Block Ciphers: Collision Attacks
            on HTTP over TLS and OpenVPN", Proceedings of the 2016 ACM
            SIGSAC Conference on Computer and Communications
            Security, pp. 456-467, DOI 10.1145/2976749.2978423,
            October 2016, <https://sweet32.info/SWEET32_CCS16.pdf>.
 [TAHA]     Taha, M. and P. Schaumont, "Key Updating for Leakage
            Resiliency With Application to AES Modes of Operation",
            IEEE Transactions on Information Forensics and Security,
            DOI 10.1109/TIFS.2014.2383359, December 2014,
            <http://ieeexplore.ieee.org/document/6987331/>.
 [TEMPEST]  Ramsay, C. and J. Lohuis, "TEMPEST attacks against AES.
            Covertly stealing keys for 200 euro", June 2017,
            <https://www.fox-it.com/en/wp-content/uploads/sites/11/
            Tempest_attacks_against_AES.pdf>.
 [U2F]      Chang, D., Mishra, S., Sanadhya, S., and A. Singh, "On
            Making U2F Protocol Leakage-Resilient via Re-keying",
            Cryptology ePrint Archive, Report 2017/721, August 2017,
            <https://eprint.iacr.org/2017/721.pdf>.

Smyshlyaev Informational [Page 47] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

Appendix A. Test Examples

A.1. Test Examples for External Re-keying

A.1.1. External Re-keying with a Parallel Construction

 External re-keying with a parallel construction based on AES-256
 ****************************************************************
 k = 256
 t = 128
 Initial key:
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00
 K^1:
 51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86
 64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1
 K^2:
 6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15
 B8 02 92 32 D8 D3 8D 73 FE DC DD C6 C8 36 78 BD
 K^3:
 B6 40 24 85 A4 24 BD 35 B4 26 43 13 76 26 70 B6
 5B F3 30 3D 3B 20 EB 14 D1 3B B7 91 74 E3 DB EC
 ...
 K^126:
 2F 3F 15 1B 53 88 23 CD 7D 03 FC 3D FD B3 57 5E
 23 E4 1C 4E 46 FF 6B 33 34 12 27 84 EF 5D 82 23
 K^127:
 8E 51 31 FB 0B 64 BB D0 BC D4 C5 7B 1C 66 EF FD
 97 43 75 10 6C AF 5D 5E 41 E0 17 F4 05 63 05 ED
 K^128:
 77 4F BF B3 22 60 C5 3B A3 8E FE B1 96 46 76 41
 94 49 AF 84 2D 84 65 A7 F4 F7 2C DC A4 9D 84 F9
 External re-keying with a parallel construction based on SHA-256
 ****************************************************************
 k = 256
 t = 128
 label:
 SHA2label

Smyshlyaev Informational [Page 48] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Initial key:
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00
 K^1:
 C1 A1 4C A0 30 29 BE 43 9F 35 3C 79 1A 51 48 57
 26 7A CD 5A E8 7D E7 D1 B2 E2 C7 AF A4 29 BD 35
 K^2:
 03 68 BB 74 41 2A 98 ED C4 7B 94 CC DF 9C F4 9E
 A9 B8 A9 5F 0E DC 3C 1E 3B D2 59 4D D1 75 82 D4
 K^3:
 2F D3 68 D3 A7 8F 91 E6 3B 68 DC 2B 41 1D AC 80
 0A C3 14 1D 80 26 3E 61 C9 0D 24 45 2A BD B1 AE
 ...
 K^126:
 55 AC 2B 25 00 78 3E D4 34 2B 65 0E 75 E5 8B 76
 C8 04 E9 D3 B6 08 7D C0 70 2A 99 A4 B5 85 F1 A1
 K^127:
 77 4D 15 88 B0 40 90 E5 8C 6A D7 5D 0F CF 0A 4A
 6C 23 F1 B3 91 B1 EF DF E5 77 64 CD 09 F5 BC AF
 K^128:
 E5 81 FF FB 0C 90 88 CD E5 F4 A5 57 B6 AB D2 2E
 94 C3 42 06 41 AB C1 72 66 CC 2F 59 74 9C 86 B3

A.1.2. External Re-keying with a Serial Construction

 External re-keying with a serial construction based on AES-256
 **************************************************************
 AES 256 examples:
 k = 256
 t = 128
 Initial key:
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00
 K*_1:
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

Smyshlyaev Informational [Page 49] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 K^1:
 66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0
 51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86
 K*_2:
 64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1
 6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15
 K^2:
 66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0
 51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86
 K*_3:
 64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1
 6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15
 K^3:
 66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0
 51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86
 ...
 K*_126:
 64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1
 6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15
 K^126:
 66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0
 51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86
 K*_127:
 64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1
 6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15
 K^127:
 66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0
 51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86
 K*_128:
 64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1
 6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15
 K^128:
 66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0
 51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86

Smyshlyaev Informational [Page 50] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 External re-keying with a serial construction based on SHA-256
 **************************************************************
 k = 256
 t = 128
 Initial key:
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00
 label1:
 SHA2label1
 label2:
 SHA2label2
 K*_1:
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00
 K^1:
 2D A8 D1 37 6C FD 52 7F F7 36 A4 E2 81 C6 0A 9B
 F3 8E 66 97 ED 70 4F B5 FB 10 33 CC EC EE D5 EC
 K*_2:
 14 65 5A D1 7C 19 86 24 9B D3 56 DF CC BE 73 6F
 52 62 4A 9D E3 CC 40 6D A9 48 DA 5C D0 68 8A 04
 K^2:
 2F EA 8D 57 2B EF B8 89 42 54 1B 8C 1B 3F 8D B1
 84 F9 56 C7 FE 01 11 99 1D FB 98 15 FE 65 85 CF
 K*_3:
 18 F0 B5 2A D2 45 E1 93 69 53 40 55 43 70 95 8D
 70 F0 20 8C DF B0 5D 67 CD 1B BF 96 37 D3 E3 EB
 K^3:
 53 C7 4E 79 AE BC D1 C8 24 04 BF F6 D7 B1 AC BF
 F9 C0 0E FB A8 B9 48 29 87 37 E1 BA E7 8F F7 92
 ...
 K*_126:
 A3 6D BF 02 AA 0B 42 4A F2 C0 46 52 68 8B C7 E6
 5E F1 62 C3 B3 2F DD EF E4 92 79 5D BB 45 0B CA
 K^126:
 6C 4B D6 22 DC 40 48 0F 29 C3 90 B8 E5 D7 A7 34
 23 4D 34 65 2C CE 4A 76 2C FE 2A 42 C8 5B FE 9A

Smyshlyaev Informational [Page 51] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 K*_127:
 84 5F 49 3D B8 13 1D 39 36 2B BE D3 74 8F 80 A1
 05 A7 07 37 BA 15 72 E0 73 49 C2 67 5D 0A 28 A1
 K^127:
 57 F0 BD 5A B8 2A F3 6B 87 33 CF F7 22 62 B4 D0
 F0 EE EF E1 50 74 E5 BA 13 C1 23 68 87 36 29 A2
 K*_128:
 52 F2 0F 56 5C 9C 56 84 AF 69 AD 45 EE B8 DA 4E
 7A A6 04 86 35 16 BA 98 E4 CB 46 D2 E8 9A C1 09
 K^128:
 9B DD 24 7D F3 25 4A 75 E0 22 68 25 68 DA 9D D5
 C1 6D 2D 2B 4F 3F 1F 2B 5E 99 82 7F 15 A1 4F A4

A.2. Test Examples for Internal Re-keying

A.2.1. Internal Re-keying Mechanisms that Do Not Require a Master Key

 CTR-ACPKM mode with AES-256
 ***************************
 k = 256
 n = 128
 c = 64
 N = 256
 Initial key K:
 00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
 00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF
 Plaintext P:
 00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
 00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
 00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
 00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
 00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22
 00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33
 00060:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44
 ICN:
 12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12
 23 34 45 56 67 78 89 90 12 13 14 15 16 17 18 19
 D_1:
 00000:   80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

Smyshlyaev Informational [Page 52] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 D_2:
 00000:   90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 Section_1
 Section key K^1:
 00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
 00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF
 Input block CTR_1:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 00
 Output block G_1:
 00000:   FD 7E F8 9A D9 7E A4 B8 8D B8 B5 1C 1C 9D 6D D0
 Input block CTR_2:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 01
 Output block G_2:
 00000:   19 98 C5 71 76 37 FB 17 11 E4 48 F0 0C 0D 60 B2
 Section_2
 Section key K^2:
 00000:   F6 80 D1 21 2F A4 3D F4 EC 3A 91 DE 2A B1 6F 1B
 00010:   36 B0 48 8A 4F C1 2E 09 98 D2 E4 A8 88 E8 4F 3D
 Input block CTR_3:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 02
 Output block G_3:
 00000:   E4 88 89 4F B6 02 87 DB 77 5A 07 D9 2C 89 46 EA
 Input block CTR_4:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 03
 Output block G_4:
 00000:   BC 4F 87 23 DB F0 91 50 DD B4 06 C3 1D A9 7C A4
 Section_3
 Section key K^3:
 00000:   8E B9 7E 43 27 1A 42 F1 CA 8E E2 5F 5C C7 C8 3B
 00010:   1A CE 9E 5E D0 6A A5 3B 57 B9 6A CF 36 5D 24 B8
 Input block CTR_5:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 04

Smyshlyaev Informational [Page 53] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Output block G_5:
 00000:   68 6F 22 7D 8F B2 9C BD 05 C8 C3 7D 22 FE 3B B7
 Input block CTR_6:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 05
 Output block G_6:
 00000:   C0 1B F9 7F 75 6E 12 2F 80 59 55 BD DE 2D 45 87
 Section_4
 Section key K^4:
 00000:   C5 71 6C C9 67 98 BC 2D 4A 17 87 B7 8A DF 94 AC
 00010:   E8 16 F8 0B DB BC AD 7D 60 78 12 9C 0C B4 02 F5
 Block number 7:
 Input block CTR_7:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 06
 Output block G_7:
 00000:   03 DE 34 74 AB 9B 65 8A 3B 54 1E F8 BD 2B F4 7D
 The result G = G_1 | G_2 | G_3 | G_4 | G_5 | G_6 | G_7:
 00000:   FD 7E F8 9A D9 7E A4 B8 8D B8 B5 1C 1C 9D 6D D0
 00010:   19 98 C5 71 76 37 FB 17 11 E4 48 F0 0C 0D 60 B2
 00020:   E4 88 89 4F B6 02 87 DB 77 5A 07 D9 2C 89 46 EA
 00030:   BC 4F 87 23 DB F0 91 50 DD B4 06 C3 1D A9 7C A4
 00040:   68 6F 22 7D 8F B2 9C BD 05 C8 C3 7D 22 FE 3B B7
 00050:   C0 1B F9 7F 75 6E 12 2F 80 59 55 BD DE 2D 45 87
 00060:   03 DE 34 74 AB 9B 65 8A 3B 54 1E F8 BD 2B F4 7D
 The result ciphertext C = P (xor) MSB_{|P|}(G):
 00000:   EC 5C CB DE 8C 18 D3 B8 72 56 68 D0 A7 37 F4 58
 00010:   19 89 E7 42 32 62 9D 60 99 7D E2 4B C0 E3 9F B8
 00020:   F5 AA BA 0B E3 64 F0 53 EE F0 BC 15 C2 76 4C EA
 00030:   9E 7C C3 76 BD 87 19 C9 77 0F CA 2D E2 A3 7C B5
 00040:   5B 2B 77 1B F8 3A 05 17 BE 04 2D 82 28 FE 2A 95
 00050:   84 4E 9F 08 FD F7 B8 94 4C B7 AA B7 DE 3C 67 B4
 00060:   56 B8 43 FC 32 31 DE 46 D5 AB 14 F8 AC 09 C7 39

Smyshlyaev Informational [Page 54] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 GCM-ACPKM mode with AES-128
 ***************************
 k = 128
 n = 128
 c = 32
 N = 256
 Initial key K:
 00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 Additional data A:
 00000:   11 22 33
 Plaintext:
 00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00010:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00020:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ICN:
 00000:   00 00 00 00 00 00 00 00 00 00 00 00
 Number of sections: 2
 Section key K^1:
 00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 Section key K^2:
 00000:   15 1A 9F B0 B6 AC C5 97 6A FB 50 31 D1 DE C8 41
 Encrypted GCTR_1 | GCTR_2 | GCTR_3:
 00000:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78
 00010:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0
 00020:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD
 Ciphertext C:
 00000:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78
 00010:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0
 00020:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD
 GHASH input:
 00000:   11 22 33 00 00 00 00 00 00 00 00 00 00 00 00 00
 00010:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78
 00020:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0
 00030:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD
 00040:   00 00 00 00 00 00 00 18 00 00 00 00 00 00 01 80
 GHASH output S:
 00000:   E8 ED E9 94 9A DD 55 30 B0 F4 4E F5 00 FC 3E 3C

Smyshlyaev Informational [Page 55] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Authentication tag  T:
 00000:   B0 0F 15 5A 60 A3 65 51 86 8B 53 A2 A4 1B 7B 66
 The result C | T:
 00000:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78
 00010:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0
 00020:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD
 00030:   B0 0F 15 5A 60 A3 65 51 86 8B 53 A2 A4 1B 7B 66

A.2.2. Internal Re-keying Mechanisms with a Master Key

 CTR-ACPKM-Master mode with AES-256
 **********************************
 k = 256
 n = 128
 c for CTR-ACPKM mode = 64
 c for CTR-ACPKM-Master mode = 64
 N = 256
 T* = 512
 Initial key K:
 00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
 00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF
 Initial vector ICN:
 00000:   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12
 Plaintext P:
 00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
 00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
 00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
 00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
 00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22
 00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33
 00060:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44
 K^1 | K^2 | K^3 | K^4:
 00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
 00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60
 00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
 00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
 00040:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4
 00050:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94
 00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
 00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12

Smyshlyaev Informational [Page 56] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Section_1
 K^1:
 00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
 00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60
 Input block CTR_1:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 00
 Output block G_1:
 00000:   8C A2 B6 82 A7 50 65 3F 8E BF 08 E7 9F 99 4D 5C
 Input block CTR_2:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 01
 Output block G_2:
 00000:   F6 A6 A5 BA 58 14 1E ED 23 DC 31 68 D2 35 89 A1
 Section_2
 K^2:
 00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
 00010:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
 Input block CTR_3:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 02
 Output block G_3:
 00000:   4A 07 5F 86 05 87 72 94 1D 8E 7D F8 32 F4 23 71
 Input block CTR_4:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 03
 Output block G_4:
 00000:   23 35 66 AF 61 DD FE A7 B1 68 3F BA B0 52 4A D7
 Section_3
 K^3:
 00000:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4
 00010:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94
 Input block CTR_5:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 04

Smyshlyaev Informational [Page 57] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Output block G_5:
 00000:   A8 09 6D BC E8 BB 52 FC DE 6E 03 70 C1 66 95 E8
 Input block CTR_6:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 05
 Output block G_6:
 00000:   C6 E3 6E 8E 5B 82 AA C4 A6 6C 14 8D B1 F6 9B EF
 Section_4
 K^4:
 00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
 00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12
 Input block CTR_7:
 00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 06
 Output block G_7:
 00000:   82 2B E9 07 96 37 44 95 75 36 3F A7 07 F8 40 22
 The result G = G_1 | G_2 | G_3 | G_4 | G_5 | G_6 | G_7:
 00000:   8C A2 B6 82 A7 50 65 3F 8E BF 08 E7 9F 99 4D 5C
 00010:   F6 A6 A5 BA 58 14 1E ED 23 DC 31 68 D2 35 89 A1
 00020:   4A 07 5F 86 05 87 72 94 1D 8E 7D F8 32 F4 23 71
 00030:   23 35 66 AF 61 DD FE A7 B1 68 3F BA B0 52 4A D7
 00040:   A8 09 6D BC E8 BB 52 FC DE 6E 03 70 C1 66 95 E8
 00050:   C6 E3 6E 8E 5B 82 AA C4 A6 6C 14 8D B1 F6 9B EF
 00060:   82 2B E9 07 96 37 44 95 75 36 3F A7 07 F8 40 22
 The result ciphertext C = P (xor) MSB_{|P|}(G):
 00000:   9D 80 85 C6 F2 36 12 3F 71 51 D5 2B 24 33 D4 D4
 00010:   F6 B7 87 89 1C 41 78 9A AB 45 9B D3 1E DB 76 AB
 00020:   5B 25 6C C2 50 E1 05 1C 84 24 C6 34 DC 0B 29 71
 00030:   01 06 22 FA 07 AA 76 3E 1B D3 F3 54 4F 58 4A C6
 00040:   9B 4D 38 DA 9F 33 CB 56 65 A2 ED 8F CB 66 84 CA
 00050:   82 B6 08 F9 D3 1B 00 7F 6A 82 EB 87 B1 E7 B9 DC
 00060:   D7 4D 9E 8F 0F 9D FF 59 9B C9 35 A7 16 DA 73 66

Smyshlyaev Informational [Page 58] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 GCM-ACPKM-Master mode with AES-256
 **********************************
 k = 192
 n = 128
 c for the CTR-ACPKM mode = 64
 c for the GCM-ACPKM-Master mode = 32
 T* = 384
 N = 256
 Initial key K:
 00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00010:   00 00 00 00 00 00 00 00
 Additional data A:
 00000:   11 22 33
 Plaintext:
 00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00010:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00020:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00030:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00040:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ICN:
 00000:   00 00 00 00 00 00 00 00 00 00 00 00
 Number of sections: 3
 K^1 | K^2 | K^3:
 00000:   93 BA AF FB 35 FB E7 39 C1 7C 6A C2 2E EC F1 8F
 00010:   7B 89 F0 BF 8B 18 07 05 96 48 68 9F 36 A7 65 CC
 00020:   CD 5D AC E2 0D 47 D9 18 D7 86 D0 41 A8 3B AB 99
 00030:   F5 F8 B1 06 D2 71 78 B1 B0 08 C9 99 0B 72 E2 87
 00040:   5A 2D 3C BE F1 6E 67 3C
 Encrypted GCTR_1 | ... | GCTR_5
 00000:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52
 00010:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8
 00020:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE
 00030:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14
 00040:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08
 Ciphertext C:
 00000:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52
 00010:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8
 00020:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE
 00030:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14
 00040:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08

Smyshlyaev Informational [Page 59] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 GHASH input:
 00000:   11 22 33 00 00 00 00 00 00 00 00 00 00 00 00 00
 00010:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52
 00020:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8
 00030:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE
 00040:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14
 00050:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08
 00060:   00 00 00 00 00 00 00 18 00 00 00 00 00 00 02 80
 GHASH output S:
 00000:   6E A3 4B D5 6A C5 40 B7 3E 55 D5 86 D1 CC 09 7D
 Authentication tag  T:
 00050:   CC 3A BA 11 8C E7 85 FD 77 78 94 D4 B5 20 69 F8
 The result C | T:
 00000:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52
 00010:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8
 00020:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE
 00030:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14
 00040:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08
 00050:   CC 3A BA 11 8C E7 85 FD 77 78 94 D4 B5 20 69 F8
 CBC-ACPKM-Master mode with AES-256
 **********************************
 k = 256
 n = 128
 c for the CTR-ACPKM mode = 64
 N = 256
 T* = 512
 Initial key K:
 00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
 00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF
 Initial vector IV:
 00000:   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12
 Plaintext P:
 00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
 00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
 00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
 00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
 00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22
 00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33
 00060:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44

Smyshlyaev Informational [Page 60] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 K^1 | K^2 | K^3 | K^4:
 00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
 00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60
 00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
 00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
 00040:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4
 00050:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94
 00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
 00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12
 Section_1
 K^1:
 00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
 00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60
 Plaintext block P_1:
 00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
 Input block P_1 (xor) C_0:
 00000:   03 16 65 3C C5 CD B9 F0 5E 5C 1E 18 5E 5A 98 9A
 Output block C_1:
 00000:   59 CB 5B CA C2 69 2C 60 0D 46 03 A0 C7 40 C9 7C
 Plaintext block P_2:
 00000:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
 Input block P_2 (xor) C_1:
 00000:   59 DA 79 F9 86 3C 4A 17 85 DF A9 1B 0B AE 36 76
 Output block C_2:
 00000:   80 B6 02 74 54 8B F7 C9 78 1F A1 05 8B F6 8B 42
 Section_2
 K^2:
 00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
 00010:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
 Plaintext block P_3:
 00000:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
 Input block P_3 (xor) C_2:
 00000:   91 94 31 30 01 ED 80 41 E1 B5 1A C9 65 09 81 42
 Output block C_3:
 00000:   8C 24 FB CF 68 15 B1 AF 65 FE 47 75 95 B4 97 59

Smyshlyaev Informational [Page 61] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Plaintext block P_4:
 00000:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
 Input block P_4 (xor) C_3:
 00000:   AE 17 BF 9A 0E 62 39 36 CF 45 8B 9B 6A BE 97 48
 Output block C_4:
 00000:   19 65 A5 00 58 0D 50 23 72 1B E9 90 E1 83 30 E9
 Section_3
 K^3:
 00000:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4
 00010:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94
 Plaintext block P_5:
 00000:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22
 Input block P_5 (xor) C_4:
 00000:   2A 21 F0 66 2F 85 C9 89 C9 D7 07 6F EB 83 21 CB
 Output block C_5:
 00000:   56 D8 34 F4 6F 0F 4D E6 20 53 A9 5C B5 F6 3C 14
 Plaintext block P_6:
 00000:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33
 Input block P_6 (xor) C_5:
 00000:   12 8D 52 83 E7 96 E7 5D EC BD 56 56 B5 E7 1E 27
 Output block C_6:
 00000:   66 68 2B 8B DD 6E B2 7E DE C7 51 D6 2F 45 A5 45
 Section_4
 K^4:
 00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
 00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12
 Plaintext block P_7:
 00000:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44
 Input block P_7 (xor) C_6:
 00000:   33 0E 5C 03 44 C4 09 B2 30 38 5B D6 3E 67 96 01
 Output block C_7:
 00000:   7F 4D 87 F9 CA E9 56 09 79 C4 FA FE 34 0B 45 34

Smyshlyaev Informational [Page 62] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Ciphertext C:
 00000:   59 CB 5B CA C2 69 2C 60 0D 46 03 A0 C7 40 C9 7C
 00010:   80 B6 02 74 54 8B F7 C9 78 1F A1 05 8B F6 8B 42
 00020:   8C 24 FB CF 68 15 B1 AF 65 FE 47 75 95 B4 97 59
 00030:   19 65 A5 00 58 0D 50 23 72 1B E9 90 E1 83 30 E9
 00040:   56 D8 34 F4 6F 0F 4D E6 20 53 A9 5C B5 F6 3C 14
 00050:   66 68 2B 8B DD 6E B2 7E DE C7 51 D6 2F 45 A5 45
 00060:   7F 4D 87 F9 CA E9 56 09 79 C4 FA FE 34 0B 45 34
 CFB-ACPKM-Master mode with AES-256
 **********************************
 k = 256
 n = 128
 c for the CTR-ACPKM mode = 64
 N = 256
 T* = 512
 Initial key K:
 00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
 00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF
 Initial vector IV:
 00000:   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12
 Plaintext P:
 00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
 00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
 00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
 00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
 00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22
 00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33
 00060:   55 66 77 88 99 AA BB CC
 K^1 | K^2 | K^3 | K^4
 00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
 00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60
 00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
 00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
 00040:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4
 00050:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94
 00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
 00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12

Smyshlyaev Informational [Page 63] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Section_1
 K^1:
 00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
 00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60
 Plaintext block P_1:
 00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
 Encrypted block E_{K^1}(C_0):
 00000:   1C 39 9D 59 F8 5D 91 91 A9 D2 12 9F 63 15 90 03
 Output block C_1 = E_{K^1}(C_0) (xor) P_1:
 00000:   0D 1B AE 1D AD 3B E6 91 56 3C CF 53 D8 BF 09 8B
 Plaintext block P_2:
 00000:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
 Encrypted block E_{K^1}(C_1):
 00000:   6B A2 C5 42 52 69 C6 0B 15 14 06 87 90 46 F6 2E
 Output block C_2 = E_{K^1}(C_1) (xor) P_2:
 00000:   6B B3 E7 71 16 3C A0 7C 9D 8D AC 3C 5C A8 09 24
 Section_2
 K^2:
 00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
 00010:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
 Plaintext block P_3:
 00000:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
 Encrypted block E_{K^2}(C_2):
 00000:   95 45 5F DB C3 9E 0A 13 9F CB 10 F5 BD 79 A3 88
 Output block C_3 = E_{K^2}(C_2) (xor) P_3:
 00000:   84 67 6C 9F 96 F8 7D 9B 06 61 AB 39 53 86 A9 88
 Plaintext block P_4:
 00000:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
 Encrypted block E_{K^2}(C_3):
 00000:   E0 AA 32 5D 80 A4 47 95 BA 42 BF 63 F8 4A C8 B2
 Output block C_4 = E_{K^2}(C_3) (xor) P_4:
 00000:   C2 99 76 08 E6 D3 CF 0C 10 F9 73 8D 07 40 C8 A3

Smyshlyaev Informational [Page 64] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Section_3
 K^3:
 00000:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4
 00010:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94
 Plaintext block P_5:
 00000:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22
 Encrypted block E_{K^3}(C_4):
 00000:   FE 42 8C 70 C2 51 CE 13 36 C1 BF 44 F8 49 66 89
 Output block C_5 = E_{K^3}(C_4) (xor) P_5:
 00000:   CD 06 D9 16 B5 D9 57 B9 8D 0D 51 BB F2 49 77 AB
 Plaintext block P_6:
 00000:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33
 Encrypted block E_{K^3}(C_5):
 00000:   01 24 80 87 86 18 A5 43 11 0A CC B5 0A E5 02 A3
 Output block C_6 = E_{K^3}(C_5) (xor) P_6:
 00000:   45 71 E6 F0 0E 81 0F F8 DD E4 33 BF 0A F4 20 90
 Section_4
 K^4:
 00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
 00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12
 Plaintext block P_7:
 00000:   55 66 77 88 99 AA BB CC
 Encrypted block MSB_{|P_7|}(E_{K^4}(C_6)):
 00000:   97 5C 96 37 55 1E 8C 7F
 Output block C_7 = MSB_{|P_7|}(E_{K^4}(C_6)) (xor) P_7
 00000:   C2 3A E1 BF CC B4 37 B3
 Ciphertext C:
 00000:   0D 1B AE 1D AD 3B E6 91 56 3C CF 53 D8 BF 09 8B
 00010:   6B B3 E7 71 16 3C A0 7C 9D 8D AC 3C 5C A8 09 24
 00020:   84 67 6C 9F 96 F8 7D 9B 06 61 AB 39 53 86 A9 88
 00030:   C2 99 76 08 E6 D3 CF 0C 10 F9 73 8D 07 40 C8 A3
 00040:   CD 06 D9 16 B5 D9 57 B9 8D 0D 51 BB F2 49 77 AB
 00050:   45 71 E6 F0 0E 81 0F F8 DD E4 33 BF 0A F4 20 90
 00060:   C2 3A E1 BF CC B4 37 B3

Smyshlyaev Informational [Page 65] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 OMAC-ACPKM-Master mode with AES-256
 ***********************************
 k = 256
 n = 128
 c for the CTR-ACPKM mode = 64
 N = 256
 T* = 768
 Initial key K:
 00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
 00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF
 Plaintext M:
 00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
 00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
 00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
 00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
 00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22
 K^1 | K^1_1 | K^2 | K^2_1 | K^3 | K^3_1:
 00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
 00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60
 00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
 00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
 00040:   9D CC 66 42 0D FF 45 5B 21 F3 93 F0 D4 D6 6E 67
 00050:   BB 1B 06 0B 87 66 6D 08 7A 9D A7 49 55 C3 5B 48
 00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
 00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12
 00080:   78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07
 Section_1
 K^1:
 00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64
 00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60
 K^1_1:
 00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0
 Plaintext block M_1:
 00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
 Input block M_1 (xor) C_0:
 00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
 Output block C_1:
 00000:   0B A5 89 BF 55 C1 15 42 53 08 89 76 A0 FE 24 3E

Smyshlyaev Informational [Page 66] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 Plaintext block M_2:
 00000:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
 Input block M_2 (xor) C_1:
 00000:   0B B4 AB 8C 11 94 73 35 DB 91 23 CD 6C 10 DB 34
 Output block C_2:
 00000:   1C 53 DD A3 6D DC E1 17 ED 1F 14 09 D8 6A F3 2C
 Section_2
 K^2:
 00000:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3
 00010:   9D CC 66 42 0D FF 45 5B 21 F3 93 F0 D4 D6 6E 67
 K^2_1:
 00000:   BB 1B 06 0B 87 66 6D 08 7A 9D A7 49 55 C3 5B 48
 Plaintext block M_3:
 00000:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
 Input block M_3 (xor) C_2:
 00000:   0D 71 EE E7 38 BA 96 9F 74 B5 AF C5 36 95 F9 2C
 Output block C_3:
 00000:   4E D4 BC A6 CE 6D 6D 16 F8 63 85 13 E0 48 59 75
 Plaintext block M_4:
 00000:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
 Input block M_4 (xor) C_3:
 00000:   6C E7 F8 F3 A8 1A E5 8F 52 D8 49 FD 1F 42 59 64
 Output block C_4:
 00000:   B6 83 E3 96 FD 30 CD 46 79 C1 8B 24 03 82 1D 81
 Section_3
 K^3:
 00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9
 00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12
 K^3_1:
 00000:   78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07
 MSB1(K1) == 0 -> K2 = K1 << 1

Smyshlyaev Informational [Page 67] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

 K1:
 00000:   78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07
 K2:
 00000:   F0 43 8F 8E D9 7A F2 C6 AD 59 F1 1C D2 D4 00 0E
 Plaintext M_5:
 00000:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22
 Using K1, padding is not required
 Input block M_5 (xor) C_4:
 00000:   FD E6 71 37 E6 05 2D 8F 94 A1 9D 55 60 E8 0C A4
 Output block C_5:
 00000:   B3 AD B8 92 18 32 05 4C 09 21 E7 B8 08 CF A0 B8
 Message authentication code T:
 00000:   B3 AD B8 92 18 32 05 4C 09 21 E7 B8 08 CF A0 B8

Smyshlyaev Informational [Page 68] RFC 8645 Re-keying Mechanisms for Symmetric Keys August 2019

Acknowledgments

 We thank Mihir Bellare, Scott Fluhrer, Dorothy Cooley, Yoav Nir, Jim
 Schaad, Paul Hoffman, Dmitry Belyavsky, Yaron Sheffer, Alexey
 Melnikov, and Spencer Dawkins for their useful comments.

Contributors

 Russ Housley
 Vigil Security, LLC
 housley@vigilsec.com
 Evgeny Alekseev
 CryptoPro
 alekseev@cryptopro.ru
 Ekaterina Smyshlyaeva
 CryptoPro
 ess@cryptopro.ru
 Shay Gueron
 University of Haifa, Israel
 Intel Corporation, Israel Development Center, Israel
 shay.gueron@gmail.com
 Daniel Fox Franke
 Akamai Technologies
 dfoxfranke@gmail.com
 Lilia Ahmetzyanova
 CryptoPro
 lah@cryptopro.ru

Author's Address

 Stanislav Smyshlyaev (editor)
 CryptoPro
 18, Suschevskiy val
 Moscow  127018
 Russian Federation
 Phone: +7 (495) 995-48-20
 Email: svs@cryptopro.ru

Smyshlyaev Informational [Page 69]

/home/gen.uk/domains/wiki.gen.uk/public_html/data/pages/rfc/rfc8645.txt · Last modified: 2019/08/29 17:11 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki