GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc5893

Internet Engineering Task Force (IETF) H. Alvestrand, Ed. Request for Comments: 5893 Google Category: Standards Track C. Karp ISSN: 2070-1721 Swedish Museum of Natural History

                                                           August 2010
                     Right-to-Left Scripts for
       Internationalized Domain Names for Applications (IDNA)

Abstract

 The use of right-to-left scripts in Internationalized Domain Names
 (IDNs) has presented several challenges.  This memo provides a new
 Bidi rule for Internationalized Domain Names for Applications (IDNA)
 labels, based on the encountered problems with some scripts and some
 shortcomings in the 2003 IDNA Bidi criterion.

Status of This Memo

 This is an Internet Standards Track document.
 This document is a product of the Internet Engineering Task Force
 (IETF).  It represents the consensus of the IETF community.  It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG).  Further information on
 Internet Standards is available in Section 2 of RFC 5741.
 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5893.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors.  All rights reserved.
 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document.  Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.  Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Alvestrand & Karp Standards Track [Page 1] RFC 5893 IDNA Right to Left August 2010

Table of Contents

 1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
   1.1.  Purpose and Applicability  . . . . . . . . . . . . . . . .  2
   1.2.  Background and History . . . . . . . . . . . . . . . . . .  3
   1.3.  Structure of the Rest of This Document . . . . . . . . . .  3
   1.4.  Terminology  . . . . . . . . . . . . . . . . . . . . . . .  4
 2.  The Bidi Rule  . . . . . . . . . . . . . . . . . . . . . . . .  6
 3.  The Requirement Set for the Bidi Rule  . . . . . . . . . . . .  6
 4.  Examples of Issues Found with RFC 3454 . . . . . . . . . . . .  9
   4.1.  Dhivehi  . . . . . . . . . . . . . . . . . . . . . . . . .  9
   4.2.  Yiddish  . . . . . . . . . . . . . . . . . . . . . . . . . 10
   4.3.  Strings with Numbers . . . . . . . . . . . . . . . . . . . 12
 5.  Troublesome Situations and Guidelines  . . . . . . . . . . . . 12
 6.  Other Issues in Need of Resolution . . . . . . . . . . . . . . 13
 7.  Compatibility Considerations . . . . . . . . . . . . . . . . . 14
   7.1.  Backwards Compatibility Considerations . . . . . . . . . . 14
   7.2.  Forward Compatibility Considerations . . . . . . . . . . . 15
 8.  Security Considerations  . . . . . . . . . . . . . . . . . . . 15
 9.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 16
 10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 16
   10.1. Normative References . . . . . . . . . . . . . . . . . . . 16
   10.2. Informative References . . . . . . . . . . . . . . . . . . 17

1. Introduction

1.1. Purpose and Applicability

 The purpose of this document is to establish a rule that can be
 applied to Internationalized Domain Name (IDN) labels in Unicode form
 (U-labels) containing characters from scripts that are written from
 right to left.  It is part of the revised IDNA protocol [RFC5891].
 When labels satisfy the rule, and when certain other conditions are
 satisfied, there is only a minimal chance of these labels being
 displayed in a confusing way by the Unicode bidirectional display
 algorithm.
 The other normative documents in the IDNA2008 document set establish
 criteria for valid labels, including listing the permitted
 characters.  This document establishes additional validity criteria
 for labels in scripts normally written from right to left.
 This specification is not intended to place any requirements on
 domain names that do not contain characters from such scripts.

Alvestrand & Karp Standards Track [Page 2] RFC 5893 IDNA Right to Left August 2010

1.2. Background and History

 The "Stringprep" specification [RFC3454], part of IDNA2003, made the
 following statement in its Section 6 on the Bidi algorithm:
    3) If a string contains any RandALCat character, a RandALCat
    character MUST be the first character of the string, and a
    RandALCat character MUST be the last character of the string.
 (A RandALCat character is a character with unambiguously
 right-to-left directionality.)
 The reasoning behind this prohibition was to ensure that every
 component of a displayed domain name has an unambiguously preferred
 direction.  However, this made certain words in languages written
 with right-to-left scripts invalid as IDN labels, and in at least one
 case (Dhivehi) meant that all the words of an entire language were
 forbidden as IDN labels.
 This is illustrated below with examples taken from the Dhivehi and
 Yiddish languages, as written with the Thaana and Hebrew scripts,
 respectively.
 RFC 3454 did not explicitly state the requirement to be fulfilled.
 Therefore, it is impossible to determine whether a simple relaxation
 of the rule would continue to fulfill the requirement.
 While this document specifies rules quite different from RFC 3454,
 most reasonable labels that were allowed under RFC 3454 will also be
 allowed under this specification (the most important example of
 non-permitted labels being labels that mix Arabic and European digits
 (AN and EN) inside an RTL label, and labels that use AN in an LTR
 label -- see Section 1.4 for terminology), so the operational impact
 of using the new rule in the updated IDNA specification is limited.

1.3. Structure of the Rest of This Document

 Section 2 defines a rule, the "Bidi rule", which can be used on a
 domain name label to check how safe it is to use in a domain name of
 possibly mixed directionality.  The primary initial use of this rule
 is as part of the IDNA2008 protocol [RFC5891].
 Section 3 sets out the requirements for defining the Bidi rule.
 Section 4 gives detailed examples that serve as justification for the
 new rule.

Alvestrand & Karp Standards Track [Page 3] RFC 5893 IDNA Right to Left August 2010

 Section 5 to Section 8 describe various situations that can occur
 when dealing with domain names with characters of different
 directionality.
 Only Section 1.4 and Section 2 are normative.

1.4. Terminology

 The terminology used to describe IDNA concepts is defined in the
 Definitions document [RFC5890].
 The terminology used for the Bidi properties of Unicode characters is
 taken from the Unicode Standard [Unicode52].
 The Unicode Standard specifies a Bidi property for each character.
 That property controls the character's behavior in the Unicode
 bidirectional algorithm [Unicode-UAX9].  For reference, here are the
 values that the Unicode Bidi property can have:
 o  L - Left to right - most letters in LTR scripts
 o  R - Right to left - most letters in non-Arabic RTL scripts
 o  AL - Arabic letters - most letters in the Arabic script
 o  EN - European Number (0-9, and Extended Arabic-Indic numbers)
 o  ES - European Number Separator (+ and -)
 o  ET - European Number Terminator (currency symbols, the hash sign,
    the percent sign and so on)
 o  AN - Arabic Number; this encompasses the Arabic-Indic numbers, but
    not the Extended Arabic-Indic numbers
 o  CS - Common Number Separator (. , / : et al)
 o  NSM - Nonspacing Mark - most combining accents
 o  BN - Boundary Neutral - control characters (ZWNJ, ZWJ, and others)
 o  B - Paragraph Separator
 o  S - Segment Separator
 o  WS - Whitespace, including the SPACE character
 o  ON - Other Neutrals, including @, &, parentheses, MIDDLE DOT

Alvestrand & Karp Standards Track [Page 4] RFC 5893 IDNA Right to Left August 2010

 o  LRE, LRO, RLE, RLO, PDF - these are "directional control
    characters" and are not used in IDNA labels.
 In this memo, we use "network order" to describe the sequence of
 characters as transmitted on the wire or stored in a file; the terms
 "first", "next", "previous", "beginning", "end", "before", and
 "after" are used to refer to the relationship of characters and
 labels in network order.
 We use "display order" to talk about the sequence of characters as
 imaged on a display medium; the terms "left" and "right" are used to
 refer to the relationship of characters and labels in display order.
 Most of the time, the examples use the abbreviations for the Unicode
 Bidi classes to denote the directionality of the characters; the
 example string CS L consists of one character of class CS and one
 character of class L.  In some examples, the convention that
 uppercase characters are of class R or AL, and lowercase characters
 are of class L is used -- thus, the example string ABC.abc would
 consist of three right-to-left characters and three left-to-right
 characters.
 The directionality of such examples is determined by context -- for
 instance, in the sentence "ABC.abc is displayed as CBA.abc", the
 first example string is in network order, the second example string
 is in display order.
 The term "paragraph" is used in the sense of the Unicode Bidi
 specification [Unicode-UAX9].  It means "a block of text that has an
 overall direction, either left to right or right to left",
 approximately; see the "Unicode Bidirectional Algorithm"
 [Unicode-UAX9] for details.
 "RTL" and "LTR" are abbreviations for "right to left" and "left to
 right", respectively.
 An RTL label is a label that contains at least one character of type
 R, AL, or AN.
 An LTR label is any label that is not an RTL label.
 A "Bidi domain name" is a domain name that contains at least one RTL
 label.  (Note: This definition includes domain names containing only
 dots and right-to-left characters.  Providing a separate category of
 "RTL domain names" would not make this specification simpler, so it
 has not been done.)

Alvestrand & Karp Standards Track [Page 5] RFC 5893 IDNA Right to Left August 2010

2. The Bidi Rule

 The following rule, consisting of six conditions, applies to labels
 in Bidi domain names.  The requirements that this rule satisfies are
 described in Section 3.  All of the conditions must be satisfied for
 the rule to be satisfied.
 1.  The first character must be a character with Bidi property L, R,
     or AL.  If it has the R or AL property, it is an RTL label; if it
     has the L property, it is an LTR label.
 2.  In an RTL label, only characters with the Bidi properties R, AL,
     AN, EN, ES, CS, ET, ON, BN, or NSM are allowed.
 3.  In an RTL label, the end of the label must be a character with
     Bidi property R, AL, EN, or AN, followed by zero or more
     characters with Bidi property NSM.
 4.  In an RTL label, if an EN is present, no AN may be present, and
     vice versa.
 5.  In an LTR label, only characters with the Bidi properties L, EN,
     ES, CS, ET, ON, BN, or NSM are allowed.
 6.  In an LTR label, the end of the label must be a character with
     Bidi property L or EN, followed by zero or more characters with
     Bidi property NSM.
 The following guarantees can be made based on the above:
 o  In a domain name consisting of only labels that satisfy the rule,
    the requirements of Section 3 are satisfied.  Note that even LTR
    labels and pure ASCII labels have to be tested.
 o  In a domain name consisting of only LDH labels (as defined in the
    Definitions document [RFC5890]) and labels that satisfy the rule,
    the requirements of Section 3 are satisfied as long as a label
    that starts with an ASCII digit does not come after a
    right-to-left label.
 No guarantee is given for other combinations.

3. The Requirement Set for the Bidi Rule

 This document, unlike RFC 3454 [RFC3454], provides an explicit
 justification for the Bidi rule, and states a set of requirements for
 which it is possible to test whether or not the modified rule
 fulfills the requirement.

Alvestrand & Karp Standards Track [Page 6] RFC 5893 IDNA Right to Left August 2010

 All the text in this document assumes that text containing the labels
 under consideration will be displayed using the Unicode bidirectional
 algorithm [Unicode-UAX9].
 The requirements proposed are these:
 o  Label Uniqueness: No two labels, when presented in display order
    in the same paragraph, should have the same sequence of characters
    without also having the same sequence of characters in network
    order, both when the paragraph has LTR direction and when the
    paragraph has RTL direction.  (This is the criterion that is
    explicit in RFC 3454).  (Note that a label displayed in an RTL
    paragraph may display the same as a different label displayed in
    an LTR paragraph and still satisfy this criterion.)
 o  Character Grouping: When displaying a string of labels, using the
    Unicode Bidi algorithm to reorder the characters for display, the
    characters of each label should remain grouped between the
    characters delimiting the labels, both when the string is embedded
    in a paragraph with LTR direction and when it is embedded in a
    paragraph with RTL direction.
 Several stronger statements were considered and rejected, because
 they seem to be impossible to fulfill within the constraints of the
 Unicode bidirectional algorithm.  These include:
 o  The appearance of a label should be unaffected by its embedding
    context.  This proved impossible even for ASCII labels; the label
    "123-A" will have a different display order in an RTL context than
    in an LTR context.  (This particular example is, however,
    disallowed anyway.)
 o  The sequence of labels should be consistent with network order.
    This proved impossible -- a domain name consisting of the labels
    (in network order) L1.R2.R3.L4 will be displayed as L1.R3.R2.L4 in
    an LTR context.  (In an RTL context, it will be displayed as
    L4.R3.R2.L1).
 o  No two domain names should be displayed the same, even under
    differing directionality.  This was shown to be unsound, since the
    domain name (in network order) ABC.abc will have display order
    CBA.abc in an LTR context and abc.CBA in an RTL context, while the
    domain name (network) abc.ABC will have display order abc.CBA in
    an LTR context and CBA.abc in an RTL context.

Alvestrand & Karp Standards Track [Page 7] RFC 5893 IDNA Right to Left August 2010

 One possible requirement was thought to be problematic, but turned
 out to be satisfied by a string that obeys the proposed rules:
 o  The Character Grouping requirement should be satisfied when
    directional controls (LRE, RLE, RLO, LRO, PDF) are used in the
    same paragraph (outside of the labels).  Because these controls
    affect presentation order in non-obvious ways, by affecting the
    "sor" and "eor" properties of the Unicode Bidi algorithm, the
    conditions above require extra testing in order to figure out
    whether or not they influence the display of the domain name.
    Testing found that for the strings allowed under the rule
    presented in this document, directional controls do not influence
    the display of the domain name.
 This is still not stated as a requirement, since it did not seem as
 important as the stated requirements, but it is useful to know that
 Bidi domain names where the labels satisfy the rule have this
 property.
 In the following descriptions, first-level bullets are used to
 indicate rules or normative statements; second-level bullets are
 commentary.
 The Character Grouping requirement can be more formally stated as:
 o  Let "Delimiterchars" be a set of characters with the Unicode Bidi
    properties CS, WS, ON.  (These are commonly used to delimit labels
    -- both the FULL STOP and the space are included.  They are not
    allowed in domain labels.)
  • ET, though it commonly occurs next to domain names in practice,

is problematic: the context R CS L EN ET (for instance A.a1%)

       makes the label L EN not satisfy the character grouping
       requirement.
  • ES commonly occurs in labels as HYPHEN-MINUS, but could also be

used as a delimiter (for instance, the plus sign). It is left

       out here.
 o  Let "unproblematic label" be a label that either satisfies the
    requirements or does not contain any character with the Bidi
    properties R, AL, or AN and does not begin with a character with
    the Bidi property EN.  (Informally, "it does not start with a
    number".)

Alvestrand & Karp Standards Track [Page 8] RFC 5893 IDNA Right to Left August 2010

 A label X satisfies the Character Grouping requirement when, for any
 Delimiter Character D1 and D2, and for any label S1 and S2 that is an
 unproblematic label or an empty string, the following holds true:
 If the string formed by concatenating S1, D1, X, D2, and S2 is
 reordered according to the Bidi algorithm, then all the characters of
 X in the reordered string are between D1 and D2, and no other
 characters are between D1 and D2, both if the overall paragraph
 direction is LTR and if the overall paragraph direction is RTL.
 Note that the definition is self-referential, since S1 and S2 are
 constrained to be "legal" by this definition.  This makes testing
 changes to proposed rules a little complex, but does not create
 problems for testing whether or not a given proposed rule satisfies
 the criterion.
 The "zero-length" case represents the case where a domain name is
 next to something that isn't a domain name, separated by a delimiter
 character.
 Note about the position of BN: The Unicode bidirectional algorithm
 specifies that a BN has an effect on the adjoining characters in
 network order, not in display order, and are therefore treated as if
 removed during Bidi processing ([Unicode-UAX9], Section 3.3.2, rule
 X9 and Section 5.3).  Therefore, the question of "what position does
 a BN have after reordering" is not meaningful.  It has been ignored
 while developing the rules here.
 The Label Uniqueness requirement can be formally stated as:
 If two non-identical labels X and Y, embedded as for the test above,
 displayed in paragraphs with the same directionality, are reordered
 by the Bidi algorithm into the same sequence of code points, the
 labels X and Y cannot both be legal.

4. Examples of Issues Found with RFC 3454

4.1. Dhivehi

 Dhivehi, the official language of the Maldives, is written with the
 Thaana script.  This script displays some of the characteristics of
 the Arabic script, including its directional properties, and the
 indication of vowels by the diacritical marking of consonantal base
 characters.  This marking is obligatory, and both two consecutive
 vowels and syllable-final consonants are indicated with unvoiced
 combining marks.  Every Dhivehi word therefore ends with a combining
 mark.

Alvestrand & Karp Standards Track [Page 9] RFC 5893 IDNA Right to Left August 2010

 The word for "computer", which is romanized as "konpeetaru", is
 written with the following sequence of Unicode code points:
    U+0786 THAANA LETTER KAAFU (AL)
    U+07AE THAANA OBOFILI (NSM)
    U+0782 THAANA LETTER NOONU (AL)
    U+07B0 THAANA SUKUN (NSM)
    U+0795 THAANA LETTER PAVIYANI (AL)
    U+07A9 THAANA LETTER EEBEEFILI (AL)
    U+0793 THAANA LETTER TAVIYANI (AL)
    U+07A6 THAANA ABAFILI (NSM)
    U+0783 THAANA LETTER RAA (AL)
    U+07AA THAANA UBUFILI (NSM)
 The directionality class of U+07AA in the Unicode database
 [Unicode52] is NSM (Nonspacing Mark), which is not R or AL; a
 conformant implementation of the IDNA2003 algorithm will say that
 "this is not in RandALCat" and refuse to encode the string.

4.2. Yiddish

 Yiddish is one of several languages written with the Hebrew script
 (others include Hebrew and Ladino).  This is basically a consonantal
 alphabet (also termed an "abjad"), but Yiddish is written using an
 extended form that is fully vocalic.  The vowels are indicated in
 several ways, one of which is by repurposing letters that are
 consonants in Hebrew.  Other letters are used both as vowels and
 consonants, with combining marks, called "points", used to
 differentiate between them.  Finally, some base characters can
 indicate several different vowels, which are also disambiguated by
 combining marks.  Pointed characters can appear in word-final
 position and may therefore also be needed at the end of labels.  This
 is not an invariable attribute of a Yiddish string and there is thus
 greater latitude here than there is with Dhivehi.
 The organization now known as the "YIVO Institute for Jewish
 Research" developed orthographic rules for modern Standard Yiddish
 during the 1930s on the basis of work conducted in several venues
 since earlier in that century.  These are given in, "The Standardized

Alvestrand & Karp Standards Track [Page 10] RFC 5893 IDNA Right to Left August 2010

 Yiddish Orthography: Rules of Yiddish Spelling" [SYO], and are taken
 as normatively descriptive of modern Standard Yiddish in any context
 where that notion is deemed relevant.  They have been applied
 exclusively in all formal Yiddish dictionaries published since their
 establishment, and are similarly dominant in academic and
 bibliographic regards.
 It therefore appears appropriate for this repertoire also to be
 supported fully by IDNA.  This presents no difficulty with characters
 in initial and medial positions, but pointed characters are regularly
 used in final position as well.  All of the characters in the SYO
 repertoire appear in both marked and unmarked form with one
 exception: the HEBREW LETTER PE (U+05E4).  The SYO only permits this
 with a HEBREW POINT DAGESH (U+05BC), providing the Yiddish equivalent
 to the Latin letter "p", or a HEBREW POINT RAFE (U+05BF), equivalent
 to the Latin letter "f".  There is, however, a separate unpointed
 allograph, the HEBREW LETTER FINAL PE (U+05E3), for the latter
 character when it appears in final position.  The constraint on the
 use of the SYO repertoire resulting from the proscription of
 combining marks at the end of RTL strings thus reduces to nothing
 more, or less, than the equivalent of saying that a string of Latin
 characters cannot end with the letter "p".  It must also be noted
 that the HEBREW LETTER PE with the HEBREW POINT DAGESH is
 characteristic of almost all traditional Yiddish orthographies that
 predate (or remain in use in parallel to) the SYO, being the first
 pointed character to appear in any of them.
 A more general instantiation of the basic problem can be seen in the
 representation of the YIVO acronym.  This acronym is written with the
 Hebrew letters YOD YOD HIRIQ VAV VAV ALEF QAMATS, where HIRIQ and
 QAMATS are combining points.  The Unicode code points are:
    U+05D9 HEBREW LETTER YOD (R)
    U+05B4 HEBREW POINT HIRIQ (NSM)
    U+05D5 HEBREW LETTER VAV (R)
    U+05D0 HEBREW LETTER ALEF (R)
    U+05B8 HEBREW POINT QAMATS (NSM)
 The directionality class of U+05B8 HEBREW POINT QAMATS in the Unicode
 database is NSM, which again causes the IDNA2003 algorithm to reject
 the string.

Alvestrand & Karp Standards Track [Page 11] RFC 5893 IDNA Right to Left August 2010

 It may also be noted that all of the combined characters mentioned
 above exist in precomposed form at separate positions in the Unicode
 chart.  However, by invoking Stringprep, the IDNA2003 algorithm also
 rejects those code points, for reasons not discussed here.

4.3. Strings with Numbers

 By requiring that the first or last character of a string be a member
 of category R or AL, the Stringprep specification [RFC3454]
 prohibited a string containing right-to-left characters from ending
 with a number.
 Consider the strings ALEF 5 (HEBREW LETTER ALEF + DIGIT FIVE) and 5
 ALEF.  Displayed in an LTR context, the first one will be displayed
 from left to right as 5 ALEF (with the 5 being considered right to
 left because of the leading ALEF), while 5 ALEF will be displayed in
 exactly the same order (5 taking the direction from context).
 Clearly, only one of those should be permitted as a registered label,
 but barring them both seems unnecessary.

5. Troublesome Situations and Guidelines

 There are situations in which labels that satisfy the rule above will
 be displayed in a surprising fashion.  The most important of these is
 the case where a label ending in a character with Bidi property AL,
 AN, or R occurs before a label beginning with a character of Bidi
 property EN.  In that case, the number will appear to move into the
 label containing the right-to-left character, violating the Character
 Grouping requirement.
 If the label that occurs after the right-to-left label itself
 satisfies the Bidi criterion, the requirements will be satisfied in
 all cases (this is the reason why the criterion talks about strings
 containing L in some cases).  However, the IDNABIS WG concluded that
 this could not be required for several reasons:
 o  There is a large current deployment of ASCII domain names starting
    with digits.  These cannot possibly be invalidated.
 o  Domain names are often constructed piecemeal, for instance, by
    combining a string with the content of a search list.  This may
    occur after IDNA processing, and thus in part of the code that is
    not IDNA-aware, making detection of the undesirable combination
    impossible.

Alvestrand & Karp Standards Track [Page 12] RFC 5893 IDNA Right to Left August 2010

 o  Even if a label is registered under a "safe" label, there may be a
    DNAME [RFC2672] with an "unsafe" label that points to the "safe"
    label, thus creating seemingly valid names that would not satisfy
    the criterion.
 o  Wildcards create the odd situation where a label is "valid" (can
    be looked up successfully) without the zone owner knowing that
    this label exists.  So an owner of a zone whose name starts with a
    digit and contains a wildcard has no way of controlling whether or
    not names with RTL labels in them are looked up in his zone.
 Rather than trying to suggest rules that disallow all such
 undesirable situations, this document merely warns about the
 possibility, and leaves it to application developers to take whatever
 measures they deem appropriate to avoid problematic situations.

6. Other Issues in Need of Resolution

 This document concerns itself only with the rules that are needed
 when dealing with domain names with characters that have differing
 Bidi properties, and considers characters only in terms of their Bidi
 properties.  All other issues with scripts that are written from
 right to left must be considered in other contexts.
 One such issue is the need to keep numbers separate.  Several scripts
 are used with multiple sets of numbers -- most commonly they use
 Latin numbers and a script-specific set of numbers, but in the case
 of Arabic, there are two sets of "Arabic-Indic" digits involved.
 The algorithm in this document disallows occurrences of AN-class
 characters ("Arabic-Indic digits", U+0660 to U+0669) together with
 EN-class characters (which includes "European" digits, U+0030 to
 U+0039 and "extended Arabic-Indic digits", U+06F0 to U+06F9), but
 does not help in preventing the mixing of, for instance, Bengali
 digits (U+09E6 to U+09EF) and Gujarati digits (U+0AE6 to U+0AEF),
 both of which have Bidi class L.  A registry or script community that
 wishes to create rules restricting the mixing of digits in a label
 will be able to specify these restrictions at the registry level.
 Some rules are also specified at the protocol level.
 Another set of issues concerns the proper display of IDNs with a
 mixture of LTR and RTL labels, or only RTL labels.
 It is unrealistic to expect that applications will display domain
 names using embedded formatting codes between their labels (for one
 thing, no reliable algorithms for identifying domain names in running
 text exist); thus, the display order will be determined by the Bidi
 algorithm.  Thus, a sequence (in network order) of R1.R2.ltr will be

Alvestrand & Karp Standards Track [Page 13] RFC 5893 IDNA Right to Left August 2010

 displayed in the order 2R.1R.ltr in an LTR context, which might
 surprise someone expecting to see labels displayed in hierarchical
 order.  People used to working with text that mixes LTR and RTL
 strings might not be so surprised by this.  Again, this memo does not
 attempt to suggest a solution to this problem.

7. Compatibility Considerations

7.1. Backwards Compatibility Considerations

 As with any change to an existing standard, it is important to
 consider what happens with existing implementations when the change
 is introduced.  Some troublesome cases include:
 o  An old program used to input the newly allowed label.  If the old
    program checks the input against RFC 3454, some labels will not be
    allowed, and domain names containing those labels will remain
    inaccessible.
 o  An old program is asked to display the newly allowed label, and
    checks it against RFC 3454 before displaying.  The program will
    perform some kind of fallback, most likely displaying the label in
    A-label form.
 o  An old program tries to display the newly allowed label.  If the
    old program has code for displaying the last character of a label
    that is different from the code used to display the characters in
    the middle of the label, the display may be inconsistent and cause
    confusion.
 One particular example of the last case is if a program chooses to
 examine the last character (in network order) of a string in order to
 determine its directionality, rather than its first.  If it finds an
 NSM character and tries to display the string as if it was a
 left-to-right string, the resulting display may be interesting, but
 not useful.
 The editors believe that these cases will have a less harmful impact
 in practice than continuing to deny the use of words from the
 languages for which these strings are necessary as IDN labels.
 This specification does not forbid using leading European digits in
 ASCII-only labels, since this would conflict with a large installed
 base of such labels, and would increase the scope of the
 specification from RTL labels to all labels.  The harm resulting from
 this limitation of scope is described in Section 5.  Registries and
 private zone managers can check for this particular condition before
 they allow registration of any RTL label.  Generally, it is best to

Alvestrand & Karp Standards Track [Page 14] RFC 5893 IDNA Right to Left August 2010

 disallow registration of any right-to-left strings in a zone where
 the label at the level above begins with a digit.

7.2. Forward Compatibility Considerations

 This text is intentionally specified strictly in terms of the Unicode
 Bidi properties.  The determination that the condition is sufficient
 to fulfill the criteria depends on the Unicode Bidi algorithm; it is
 unlikely that drastic changes will be made to this algorithm.
 However, the determination of validity for any string depends on the
 Unicode Bidi property values, which are not declared immutable by the
 Unicode Consortium.  Furthermore, the behavior of the algorithm for
 any given character is likely to be linguistically and culturally
 sensitive, so while it should occur rarely, it is possible that later
 versions of the Unicode Standard may change the Bidi properties
 assigned to certain Unicode characters.
 This memo does not propose a solution for this problem.

8. Security Considerations

 The display behavior of mixed-direction text can be extremely
 surprising to users who are not used to it; for instance, cut and
 paste of a piece of text can cause the text to display differently at
 the destination, if the destination is in another directionality
 context, and adding a character in one place of a text can cause
 characters some distance from the point of insertion to change their
 display position.  This is, however, not a phenomenon unique to the
 display of domain names.
 The new IDNA protocol, and particularly these new Bidi rules, will
 allow some strings to be used in IDNA contexts that are not allowed
 today.  It is possible that differences in the interpretation of
 labels between implementations of IDNA2003 and IDNA2008 could pose a
 security risk, but it is difficult to envision any specific
 instantiation of this.
 Any rational attempt to compute, for instance, a hash over an
 identifier processed by IDNA would use network order for its
 computation, and thus be unaffected by the new rules proposed here.
 While it is not believed to pose a problem, if display routines had
 been written with specific knowledge of the RFC 3454 IDNA
 prohibitions, it is possible that the potential problems noted under
 "Backwards Compatibility Considerations" could cause new kinds of
 confusion.

Alvestrand & Karp Standards Track [Page 15] RFC 5893 IDNA Right to Left August 2010

9. Acknowledgements

 While the listed editors held the pen, this document represents the
 joint work and conclusions of an ad hoc design team.  In addition to
 the editors, this consisted of, in alphabetic order, Tina Dam, Patrik
 Faltstrom, and John Klensin.  Many further specific contributions and
 helpful comments were received from the people listed below, and
 others who have contributed to the development and use of the IDNA
 protocols.
 The particular formulation of the Bidi rule in Section 2 was
 suggested by Matitiahu Allouche.
 The team wishes, in particular, to thank Roozbeh Pournader for
 calling its attention to the issue with the Thaana script, Paul
 Hoffman for pointing out the need to be explicit about backwards
 compatibility considerations, Ken Whistler for suggesting the basis
 of the formalized "Character Grouping" requirement, Mark Davis for
 commentary, Erik van der Poel for careful review, comments, and
 verification of the rulesets, Marcos Sanz, Andrew Sullivan, and Pete
 Resnick for reviews, and Vint Cerf for chairing the working group and
 contributing massively to getting the documents finished.

10. References

10.1. Normative References

 [RFC5890]      Klensin, J., "Internationalized Domain Names for
                Applications (IDNA): Definitions and Document
                Framework", RFC 5890, August 2010.
 [Unicode-UAX9] The Unicode Consortium, "Unicode Standard Annex #9:
                Unicode Bidirectional Algorithm", September 2009,
                <http://www.unicode.org/reports/tr9/>.
 [Unicode52]    The Unicode Consortium.  The Unicode Standard, Version
                5.2.0, defined by: "The Unicode Standard, Version
                5.2.0", (Mountain View, CA: The Unicode Consortium,
                2009. ISBN 978-1-936213-00-9).
                <http://www.unicode.org/versions/Unicode5.2.0/>.

Alvestrand & Karp Standards Track [Page 16] RFC 5893 IDNA Right to Left August 2010

10.2. Informative References

 [RFC2672]      Crawford, M., "Non-Terminal DNS Name Redirection",
                RFC 2672, August 1999.
 [RFC3454]      Hoffman, P. and M. Blanchet, "Preparation of
                Internationalized Strings ("stringprep")", RFC 3454,
                December 2002.
 [RFC5891]      Klensin, J., "Internationalized Domain Names in
                Applications (IDNA): Protocol", RFC 5891, August 2010.
 [SYO]          "The Standardized Yiddish Orthography: Rules of
                Yiddish Spelling, 6th ed., New York, ISBN
                0-914512-25-0", 1999.

Authors' Addresses

 Harald Tveit Alvestrand (editor)
 Google
 Beddingen 10
 Trondheim,   7014
 Norway
 EMail: harald@alvestrand.no
 Cary Karp
 Swedish Museum of Natural History
 Frescativ. 40
 Stockholm,   10405
 Sweden
 Phone: +46 8 5195 4055
 Fax:
 EMail: ck@nic.museum

Alvestrand & Karp Standards Track [Page 17]

/data/webs/external/dokuwiki/data/pages/rfc/rfc5893.txt · Last modified: 2010/08/04 14:50 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki